Index

a
 acid/base catalysis 154–157
 – bimolecular, acid catalyzed reaction 155
 – bimolecular, base catalyzed reaction 156
 – Brønsted–Lowry theory 155
 – RNA hydrolysis catalyzed by enzyme RNase-A 157
 acids 132–143, See also solid acids and bases
 Acinetobacter calcoaceticus 181
 activated carbon supports 439
 activation, catalyst 58–64
 – induction periods as catalyst activation 59–60
 active sites 269–273
 activity of catalyst, in homogeneous catalysis 54–58
 acylases 185–186, 256
 adaptive chemistry methods 370
 adiabatic reactor 569
 adsorption entropy 27–30
 adsorption methods for porous materials characterization 514–534
 – adsorption isotherms 517–518
 – application of adsorption methods 518–519
 – Barret–Joyner–Halada (BJH) method 529–530
 – classification of porous materials 517
 – mercury porosimetry 533
 – mesoporous materials characterization 527–532
 – capillary condensation 527
 – Kelvin equation 528–529
 – microporous materials characterization 524–526
 – Dubinin–Astakhov methods 524–525
 – Dubinin–Radushkevich (DR) methods 524–525
 – Horvath–Kawazoe (HK) method 525–526
 – Nonlocal Density Functional Theory (NL–DFT) 530–532
 – physical adsorption 514–516
 – theoretical description of adsorption 519–523
 – BET theory of adsorption 521
 – Langmuir isotherm 519–521
 – standard isotherms 522–523
 – t-method 522–523
 – xenon porosimetry 533–534
 Aerosil® process 435
 alcohols
 – carbonylations of 245–247
 – synthesis 176–177
 aldolases 190–193
 alkenes metathesis 402–406
 altered surface reactivity 38–39
 alumina (Al₂O₃) and other oxides 436–438
 amidases 185–186
 amidases catalyzed reactions 256
 amino acid dehydrogenases (AADHs) 177, 253
 amino acids synthesis 177–178
 6-aminopenicillanic acid (6-APA) 256
 7-aminocephalosporanic acid (7-ACA) 256
 ammonia synthesis 114–119, 289–299
 – activation energies 116
 – based on natural gas 290
 – catalysis 292–295
 – composition dependence 114–119
 – mechanism of reaction 114
 – process optimization 295
 – structure sensitivity 114–119
 – technology development 291–292
 emkin kinetic expression 118

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
ammonia synthesis (contd.)
– Temkin Pyzhev kinetics 292
– ultra-high-vacuum techniques 292
Anderson–Schulz–Flory curve 313
ansa-zirconocene-based olefin polymerization
catalysis 271–272, 275
anti-lock and key model 28, 167
apparent activation energy 69
aqueous ammonium heptamolybdate (AHM) 425
Arrhenius law 49, 69
Arrhenius number 85
Arthrobacter globiformis 255
aryl halides, carbonylations of 245–247
aryl–X derivatives, carbonylation of 246
asymmetric synthesis 174–175
atom utilization 17
atomic force microscopy (AFM) 494

b
Baeyer–Villiger oxidation 179
– Baeyer-Villiger Monoxygenases (BVMOs) 180–181
– enzyme-catalyzed, mechanism 182
‘band gap’ 218
Barret–Joyner–Halada (BJH) method 529–530
bases 132–143, See also solid acids and bases
basicity and nucleophilicity, relation between 154
batchwise-operated stirred-tank reactors (BSTR) 578–579
Bayer process 436
bimolecular catalytic reactions 76–77
biocatalysis 171–194, 250–259, See also hydrolyses; lyases; oxidoreductases
– applications 253–257
– best route, choosing 250–253
– – enzymatic routes 251–252
– biocatalysis cycle 173
– case studies 257–259
– – lipitor building blocks synthesis 257–259
– development 172
– reaction strategy choice 174–175
– – kinetic resolution or asymmetric synthesis 174–175
– reaction systems, choice 175–176, 250–259
biotransformations 171
biphasic fluid/fluid systems, homogenous
catalysis in 103–108
Bodenstein number 596–597, 607
Boltzmann constant 34
Braunauer, Emmett, and Teller (BET) theory 6, 521
Brønsted acid/base catalysis 132–143, 154,
See also acid/base catalysis
Brønsted–Evans–Polanyi (BEP) relationship 14, 22
Brønsted–Lowry theory 155
Brunauer classification 518
Brunauer, Deming, Deming, and Teller (BDDT) 517
Burkholderia plantarii 254
Butler–Volmer setting 382
butylbranching mechanism 329
c
Candida cylindracea 254
Carberry number 83, 85
carbon materials 438–440
carbonylation reactions 234–247
– of alcohols and aryl halides 245–247
– – aryl–X derivatives 246
– – Ibuprofen 246
– – lazabemide 247
– – Rhodium-catalyzed carbonylation of methanol 245
– – hydroformylation 235–239
– – of olefins and alkenes 239–244
– – 1,3-butadiene 243
– – palladium-catalyzed carbonylation 242
5-carboxyfluorescein diacetate (C-FDA) 506–507
catalytic partial oxidation (CPOX) 357
catalytic reactor engineering 563–624, See also fluid–solid reactors; ideal reactor
modeling/heat management; microreaction engineering; residence time distribution
(RTD); single-phase reactors
– fixed-bed reactors 574
– fluid–fluid reactors 571–573
– liquid–liquid–gas system 573
– principles 67–108
– – formal kinetics of catalytic reactions 68–77, See also individual entry
– – – homogeneous catalysis in biphasic fluid/fluid systems 103–108
– – – mass and heat transfer effects 77–103, See also individual entry
– – slurry–suspension reactors 574–575
– – structured catalysts for multiphase reactions 575
– – three-phase gas–liquid–solid systems 573–575
– – types 564–575
catalytic selective oxidation 341–363
– complexity/ issues of 354, 356–358
– consolidated technologies 341–363
– in continuous development of more-sustainable industrial technologies 355–356
– development of industrial process, challenges 353–355
– directions for innovation 361–363
– dream oxidations 359–361
– fundamentals 341–363
– main features 341–353
– for organic compounds synthesis in petrochemical industry 342–352
– oxidation process PHASE reactor 342–353

C–C bond cleavage 126–132
chain growth 314–315
chain walking 279
chemocatalysis, equivalence of 30–32
Chilton–Colburn analogy 84, 100
clariant process 247
classical chlorohydrin route 18
‘classical’ guidelines for catalyst testing 536–557
– appropriate laboratory reactor, selecting 546–548
– catalyst stability, assessing 554–555
– data collection 543–546
– effective experimental strategies 541–543
– two-variables system 542
– encouraging effectiveness 536–540
– ensuring efficiency 540–555
– ideal flow pattern, establishing 548–549
– isothermal conditions, ensuring 549–551
– quality guidelines 540
– selectivity 544
– space–time yield 545
– transport, diagnosing and minimizing the effects of 552–554
– ‘DrySyn’ Beta vs commercial Beta performance 553
– diagnostic tests for interphase (external) transport 552
– diagnostic tests for intraparticle (internal) transport 553
– yield 545
cobalt 312
– cobalt catalyst formation 321–322
– cobalt promoter 394–395
co-catalysts 59
co-catalyzed carbylation 241
cofactor regeneration 178
Coherent Anti-Stokes Raman Spectroscopy (CARS) 502
combinatorial approaches in solid catalysts development 453
– for optimal catalytic performance 453–456
– compensation effect 44–46
– exocyclic methylation reaction 45
– pairing reaction 45
– complex reaction 73
– consecutive first-order reactions 82
– consecutive reactions 92
– constant selectivity relationship 159
– constrained geometry catalysts 279
Continuously Operated Ideal Stirred Tank Reactors (CSTR) 580–581
– space time in 583
continuously stirred tank reactors (CSTRs) 546–547
continuous-phase contacting 616–618
– falling-film contactors 617
Corynebacterium glutamicum 253
coupling of catalytic reaction 42
crystalline catalysts design 222–223
cumylhydroperoxide (CHP) 362
cycle, catalytic 20–27

\(d\)

Damköhler number 81–82, 547
de Donder concept 32
deactivation, catalyst 58–64
– due to irreversible reactions 65–64
– due to multinuclear complexes formation 61–62
– due to non-reactive complexes formation 61
dered hydrogenases 176–178
– alcohols synthesis 176–177
– amino acids synthesis 177–178
– formate dehydrogenase (FDH) 178
– polyethylene glycol (PEG) 178
– Prelog-rule 177
dered hydrogenation 126–132
– cyclohexane dehydrogenation 131
– mechanism of 126
– olefin hydrogenation kinetics 126–127
density functional theory (DFT) 209, 367, 395–397
deposition precipitation 427–428
desulfurization 291
development of catalytic materials 445–459
– catalytic OCM reaction, reaction mechanism and kinetics of 448–449
– combinatorial approaches in 453–459
– fundamental aspects 446–448
development of catalytic materials (contd.)
– high-throughput technologies in 456–459
– kinetic analysis 450–451
– micro-kinetics and solid-state properties as knowledge source 448–453
– – electronic conductivity 452
– – ion conductivity 452
– – redox properties 452
– – structural defects 451–452
– – supported catalysts 453
– – surface acidity and basicity 452
– – surface oxygen species in methane conversion 449–450
development of catalytic processes 11–13
– history 11–13
– future 11–13
dibenzothiophene 392
dihydroxyacetone phosphate (DHAP) 191–192
– DHAP-dependent aldolases 192
dilution rate 580
direct alkane activation 139–141
direct desulfurization (DDS) 392
dispersed phase contacting 619–622
– gas–liquid–liquid 622
– micro packed beds 621
– segmented flow gas–liquid–solid reactors 620
dispersion model 595–596
‘dormant’ sites 269–273
dry impregnation 425
Dubinin–Astakhov methods 524–525
Dubinin–Radushkevich (DR) methods 524–525
Dusty Gas Model 382
dynamic kinetic resolution (DKR) 175
efficiency factor 105
electric double layer 204–207
– diffuse double-layer 206
– inner layer 206
electrocatalysis 201–213
– electric double layer 204–207
– – diffuse double-layer 206
– – inner layer 206
– electrochemical potentials 203–204
– equivalence of 30–32
– theory 203–207
electrochemical potentials 203–204
electrolyte-reservoir 205
electron backscatter diffraction (EBSD) measurements 502
electrophilic catalysis 154–157
enantiomeric excess 405
epoxypropylene rubber (EPR) 264
Evonik-Uhde process 361–362
exocyclic methylation reaction 45
extended X-ray absorption fine spectroscopy (EXAFS) 400, 499
external and internal transfer resistances, combination 96–101
– external and internal temperature gradient 100–101
– in isothermal pellets 96–98
– mass transfer implication on temperature dependence 98–99
external mass and heat transfer 78–85
falling-film contactors 617
‘finger printing’ 267
Fischer–Tropsch (FT) synthesis 40, 301–323, 569
– catalysts, general 311–313
– – cobalt 312
– – iron 312–313
– – nickel catalysts 312
– – Ruthenium 312
– gas chromatogram of 303
– operation ranges 306–308
– processes and product composition 308–311
– – commercial FT-synthesis 308–311
– – high-temperature Fischer–Tropsch synthesis 310–311
– – hydrocracking 309
– – hydroisomerization 309
– – isomerization 309
– – low-temperature synthesis 309–310
– – multi-tubular fixed-bed reactors 309
– – slurry-phase bubble column reactors 309
– – slurry reactors 310
– – synthesis gas 311
– rate equations 306
– reaction fundamentals 313–322
– – ideal polymerization model 313–322
– stoichiometry 304–305
– thermodynamic aspects 305–306
Fischer-Tropsch Synthesis (FTS) catalyst 509
fixed-bed reactors 568–569, 574
– adiabatic reactor 569
– multitubular reactor 569
– staged fixed-bed 569
fluid catalytic cracking (FCC) process 391
fluid–fluid MSR 610–612
– falling film microchannel 610
– microchannel 610
– micromixer 610
fluid–fluid reactors 571–573
fluidized-bed reactors 569–571
fluid–solid MSR 607–610
fluid–solid reactors 568–571
– fixed-bed reactors 568–569
– fluidized-bed reactors 569–571
– minimum fluidization velocity and pressure drop 570–571
fluorescence microscopy (focused ion beam (FIB)) 502
formal kinetics of catalytic reactions 68–77
– general definitions 69–70
– heterogeneous catalytic reactions 70–71
– Langmuir adsorption isotherms 72–73
– reaction mechanisms 73–77
formate dehydrogenase (FDH) 178, 254
fractional surface coverage 71
framework-substituted redox ions 335–339
– Ti-catalyzed epoxidation 335–338
fumed silica 433–436
fundamental catalysis in practice 13
gas–liquid–liquid reactors 622
gas–liquid–solid reactors 616
gas–liquid systems 611–613
glycerophosphate oxidase (GPO) 192
Gouy–Chapman diffuse double layer 205
Gouy–Chapman model 205
Gouy–Chapman–Stern model 205
‘growing chain orientation’ mechanism 268
Haber–Bosch process 3, 291
Hagen–Poiseuille law 593, 605
half-titanocene precatalyst structures 281
Hammett acidity function 154
Hatta number (Ha) 103, 572
heat balance 583
heat management in microstructured reactors 622–624
heat transfer 85–96, See also mass and heat transfer effects
Helmholtz model 205
heterogeneous catalysis 4–7, 113–150, 273–278, See also kinetics of heterogeneous catalytic reactions; reducible oxides; solid acids and bases; transition metal catalysis
– catalyst’s performance and its composition and structure 4–7
– – Brunauer-Emmett-Teller (BET) technique 6
– – characterization tools 6
– – dynamic Monte Carlo methods 7
– – Langmuir–Hinshelwood–Watson–Hougson (LHWH) expressions 6
– – Michaelis–Menten expression 6
– in situ spectroscopic measurements 5
– – T-plot techniques 6
– – X-ray scattering techniques 6
– formal kinetics 70–71
– molecularly defined systems in 399–413, See also individual entry
– monomer insertion 274
– ‘replication’ phenomenon 274, 277
– steps involved in 68
– Ziegler–Natta catalysts 274
heterogeneous catalysts 493–510, See also in-situ characterization of heterogeneous catalysts
– design of, requirements 447
heterogeneous chemistry, of high-temperature catalysis 365–385
– heterogeneous reaction mechanisms 367–368
heterogeneous photocatalysis 216–228
– case studies 220–228
– – crystalline catalysts design 222–223
– – energy conversion 222–225
– – microreactors 227–228
– – supported chromophores 223–225
– – visible light-sensitive systems 223
– – water purification 220–222
– – Z-scheme process 224
– – photocatalysis 216–217
– – from surface chemistry to reactor design 216–228
Hevea brasiliensis (HbHNl) 189, 257
High Density PolyEthylene (HDPE) 262
high-energy resolution fluorescence detected (HERFD) X-ray Absorption Spectroscopy (XAS) 497
High Throughput Experimentation (HTE) 280
Highest Occupied Molecular Orbital (HOMO) 217
high-temperature catalysis 365–385
– applications 372–378
– – formulation of an optimal control problem 375–378
Index

high-temperature catalysis (contd.)
- - olefin production by high-temperature oxidative dehydrogenation of alkanes 373–378
- - synthesis gas from natural gas by high-temperature catalysis 373
- - turbulent flow through channels with radical interactions 372–373
- fundamentals 366–372
- - coupling of chemistry with mass and heat transport 369–370
- heterogeneous chemistry role 365–385
- homogeneous chemistry role 365–385
- hydrogen production from logistic fuels by 378–380
- mathematical optimization of reactor conditions and catalyst loading 372
- - radical chemistry role 365–385
- - in solid oxide fuel cells 380–385

high-temperature Fischer–Tropsch synthesis 310–311

high-temperature fuel cells 381

high-throughput technologies in solid catalysts development 456–459
- catalytic materials preparation 457
- data analysis 458–459
- screening of catalytic materials 457
- testing of catalytic materials 457

historic review 3–19
- development of catalytic processes 11–13
- - history and future 11–13
- - fundamental catalysis in practice 13
- - history of catalysis science 3–12
- - chemical engineering 3
- - organic chemistry 3
- - nineteenth century 3
- - synthetic organic chemistry 4
- - physical chemistry 4
- - inorganic chemistry 3–4
- - important scientific discoveries 9–11
- - new industries/new catalytic processes 10

- process choice 17–19
- reactor choice 16–17

Hofmann-type β-hydrogen elimination 391
Hombikat UV 100, 220
homogeneous catalysis 8–9, 152–169, 278–280, 465–490. See also acid/base catalysis; in-situ techniques for homogeneous catalysis; kinetics in homogeneous catalysis
- in biphasic fluid/fluid systems 103–108
- characteristics 152
- - isolation of products and recovery and recycle of catalyst 153
- - ligands for 153–154
- - metal-catalyzed reactions 153
- - nature of compounds 152
- - reaction conditions 152
- - reactions mediated by transition metal complexes 153
- - reactions phase 153
- - enzyme catalysis 155
- - nucleophilic and electrophilic catalysis 154, 157–159
- - acid/base catalyzed RNA hydrolysis 155
- - organometallic complex catalysis 157–160
- - transition metal-centered homogeneous catalysis 155, 159–169. See also individual entry
homogeneous chemistry, of high-temperature catalysis 369
Horvath–Kawazoe (HK) method 525–526
hydantoinases 187–188
hydride transfer 141
hydroaminomethylation reaction 238
hydrocarbon/oxygen (C/O) ratio 377
hydrocarboxylation 240
hydrocracking reaction, acid catalysis 309, 325–332
- - cracking selectivity dependence 326–328
- - hydrocarbon chain length, activity on 326–328
- - symmetric versus asymmetric cracking patterns 328–332
- - butylbranching mechanism 329
- - pore size 328–332
- - side-chain elongation mechanism 329
- - stereo-selective behavior 330
- - stereoselectivity 328–332
- - topology dependence 328–332
hydrodenitrogenation 397
hydrodesulfurization 390–398
- - C-X bond-breaking mechanism 393
- - sulfidic catalyst, structure 393–397
- - DFT calculations 395–397
- - Mo structure 393–394
- - promoter structure 394–395
- - surface sites determination 398
hydroesterification 240
hydroformylation 235–239
- - co-catalyzed carbonylation 241
- - rhodium-catalyzed hydroformylation 236
hydrogen cyanide (HCN) 171
hydrogen evolution reaction (HER) 202
hydrogenation 126–132
 – hydrogenolysis of isopentane, single-center route for 130
 – mechanism of 126
 – route 392
hydrogenolysis of grafted hydrocarbyl-containing systems 409
hydroisomerization 309, 327–328
hydrolases 182–188
 – acylases 185–186
 – amidases 185–186
 – hydantoinases 187–188
 – lipases 182
 – nitrilases 186–187
 – nitrile hydratases 186–187
 – peptidases 185–186
hydroxynitrile lyases (HNLs) 171, 188–190, 257

i
ibuprofen 246
ideal continuously-operated stirred tank reactor 591–592
ideal plug flow reactor 591
ideal polymerization model of FT synthesis 313–322
 – alcohols in 316
 – alternative reactions on growth site 315
 – Anderson–Schulz–Flory curve 313
 – branching 315–316
 – chain growth 314–315
 – desorption (olefins/paraffins) 316–319
 – secondary reactions 317
 – secondary reactions 317
 – in situ catalyst formation 319–322
 – cobalt catalyst formation 321–322
 – iron catalyst formation 319–321
 – self-organization of FT regime 319
ideal reactor modeling/heat management 575–586
 – batchwise-operated stirred-tank reactors 578–579
 – continuously operated ideal stirred tank reactors (CSTR) 580–581
 – ideal plug flow reactor 581–586
 – heat balance 583
 – highly exothermic reactions 586
 – mass balance in 582
 – parametric sensitivity 584
 – stability diagram 586
 – mass and energy balances 576–577
in situ characterization at a single catalyst particle level 501–510
 – single-molecule in-situ spectroscopy of a catalytic solid 504–508
in situ generation of organo-catalyst 42–44
in situ hydroformylation 238
in situ micro-spectroscopy of catalytic solid 501–504
in situ techniques 59, See also individual entries
induction periods as catalyst activation 59–60
inhomogeneous site distribution 40–42
inorganic chemistry 4
 – inorganic solid chemistry 42
in-situ characterization of heterogeneous catalysts 493–510
 – applications 495–497
 – dynamic conditions 494
 – gas chromatography (GC) 495
 – history 495–497
 – mass spectrometer (MS) 495
 – reactor loaded with catalytic solid 497–501
 – Extended X-ray Absorption Fine Structure (EXAFS) 499
 – in-situ HERFD-XAS approach 497
 – probed by multiple characterization methods 499–501
 – probed by one characterization method 497–499
 – XANES 497
 – recent developments 495–497
 – static conditions 494
 – ultra-high vacuum (UHV) conditions 494
in-situ high-resolution transmission electron microscopy (HRTEM) 296
in-situ nano-spectroscopy of a catalytic solid 509–510
in-situ techniques for homogeneous catalysis 465–490, See also IR-spectroscopy; NMR spectroscopy; UV/Vis spectroscopy
 – gas consumption and gas formation 467–470
 – instantaneous or point selectivity 92
 – interfacial activation 183
 – internal mass and heat transfer 85–96
 – isothermal pellet 87–94
 – non-isothermal pellet 94–96
 – Internally Illuminated Monolith Reactor (IIMR) 227
 – ion adsorption 423–424
 – iron 312–313
 – iron middle pressure synthesis 309
irreversible reactions, catalyst deactivation due to 65–64
IR-spectroscopy 481–485
– hydroformylation 484–485
– in-situ FTIR spectroscopic study 483
isomerization catalysis 141–143
isothermal pellet 78–84, 87–94
– consecutive reactions 92
– external concentration profile 80
– instantaneous or point selectivity 92
– isothermal yield and selectivity 82–84, 91
– parallel reactions 91
– porous catalysts, concentration profiles in 79
isothermal yield and selectivity 82–84, 91
– consecutive first-order reactions 82
– parallel reactions 84
– isotherms 71

Kelvin equation 528–529
kinetic resolution 174–175
– dynamic kinetic resolution (DKR) 175
kinetics 4–7, 68
– microkinetics 7
– rate-limiting step 6
kinetics in homogeneous catalysis 48–64
– activation and deactivation, catalyst 58–64
– co-catalysts 59
– in situ techniques 59
– induction periods as catalyst activation 59–60
– spectator ligands 59
– catalyst activity 54–58
– kinetic description 48–54
– principles of catalyst 48–54
kinetics of heterogeneous catalytic reactions 20–46
– altered surface reactivity 38–39
– equivalence of electrocatalysis and chemocatalysis 30–32
– materials gap 39–42
– microkinetics, rate-determining step 32–34
– physical chemical principles 20–27
– activation energy 26
– catalytic cycle 20–27
– rate-limiting step 21
– pressure gap 36–39
– surface reconstruction 37–38

lactate dehydrogenase (LDH) 194
laminar flow reactor 593–595
Langmuir adsorption isotherms 72–73
Langmuir-Hinshelwood kinetics 74–75, 327
Langmuir–Hinshelwood–Watson–Hougen (LHWH) equation 6, 21, 25
Langmuir isotherm 519–521
Laser Doppler Anemometry/Laser Doppler velocimetry (LDA/LDV) 371
laser-induced fluorescence (LIF) 371
lazabemide 247
Lennard–Jones potential (L–J potential) 515–516
leucine dehydrogenase (Leu-DH) 178, 253
Lewis acid–lewis base catalysis 132–143, 332–333
– hydrocarbon activation 332–333
ligand-accelerated catalysis (LAC) 167
Linum usitatissimum 189
lipases 182, 253–255
lipitor building blocks synthesis 257–259
liquid–liquid systems 613–616
liquid–liquid–gas system 573
liquid loading (α) 107
lock and key model 27–30, 168
– anti-lock and key model 28
Low Density PolyEthylene (LDPE) 262–263
Low-Energy Electron Diffraction (LEED) 493
Lowest Unoccupied Molecular Orbital (LUMO) 217
low-pressure oxo processes (LPO) 236
lyases 188–193
– aldolases 190–193
– hydroxynitrile lyases 188–190
– pyruvate/phosphoenolpyruvate-dependent aldolases 192–193

major/minor concept 168, 479
Manihot esculenta 190
mass and heat transfer effects 77–103
– external and internal transfer resistances, combination 96–101
– external mass and heat transfer 78–85, See also internal mass and heat transfer
– isothermal pellet 78–85, See also individual entry
– non-isothermal pellet 84–85
– transport effects, estimation criteria for 101–103
mass Biot number 97
mass transfer implication on temperature dependence 98–99
materials gap 39–42
– catalyst activation or deactivation 40
– inhomogeneous site distribution 40–42
– structure sensitivity 39
maximum rate \(r_{\text{max}} \) 53
mercury porosimetry 533
mesh microcontactor 619
mesoporous materials characterization 527–532
metal-organic frameworks (MOFs) 442–443
methane reforming 120–125
– activation energies and reaction energies 123
– composition dependence 120–125
– mechanism of reaction 120
– structure sensitivity 120–125
methyl methacrylate (MMA) 240
Michaelis–Menten equation 6, 27, 50–55, 166
micro packed beds 621
microkinetics 7
– in catalysts development 448–453
– rate-determining step 32–34
microporous materials characterization 524–526
microreaction engineering 602–624, See also three-phase reactors
– criteria for reactor selection 602–604
– fluid–fluid MSR 610–612
– fluid–solid MSR 607–610
– gas–liquid systems 611–613
– heat management in microstructured reactors 622–624
– liquid–liquid systems 613–616
– micro-structured catalytic wall reactor 608
– residence time distribution 606–607
– single-phase MSR 604–607
– types of 604–610
microractors 227–228
micro-spectroscopic techniques 502
micro-structured reactors (MSRs) 564
minimum fluidizing velocity \(u_{\text{mf}} \) 571
modern pertochemical route 18
molecular basis of catalysis 5
molecular vs surface chemistry 401
– characterization tools 401
molecularly defined systems in heterogeneous catalysis 399–413
– bridging the gap with classical heterogeneous systems 406–408
– molecular vs surface chemistry, characterization tools 401
– – chemical characterization (reactivity) 401
– – elemental analysis 401
– – ESR spectroscopy 401
– – IR (Raman) spectroscopy 401
– – mass spectrometry 401
– – NMR spectroscopy 401
– – UV spectroscopy 401
– – X-ray crystallography 401
– single sites
– – on border between homogeneous and heterogeneous catalysis 400–412
– taking homogeneous catalysis to heterogeneous phase 402–406, See also single-site alkene metathesis catalysts
– toward new reactivity 408–411
– – alkane metathesis 409
– – cross-metathesis of methane and higher alkanes 409–410
– – H/D reaction of D2/H2 or D2/RH mixtures 409
– – hydrogenolysis of alkanes 409
– – methanol-to-olefin (MTO) process 413
– – non-oxidative coupling of methane 410
– – titanium-substituted silicate-1 (TS-1) 413
monolithic catalysts 370–371
– DETCHEMMONOLITH 370–371
– shapes
– – corrugated plate packing 570
– – square-channel monolith 570
monomer insertion 274
Monte Carlo methods 7
Montsanto process 245
mordenite (MOR) 441
most abundant surface intermediate (masi) approximation 75–76
multinuclear complexes formation, catalyst deactivation due to 61–62
multinuclear NMR spectroscopy 470
multitubular reactors 309, 569
n
N-acetylneuraminate (NeuAc) 192
natural gas-based ammonia plant 290–291
– desulfurization 291
– secondary reforming 291
– steam reforming 291, 295–299
nicotinamide adenine dinucleotide (phosphate)(NAD(P)H) 251
nitrilases 186–187
nitrile hydratases 186–187
nitrile hydratases 186–187
NMR spectroscopy 470–480
– carbon monoxide ethylene copolymer formation 477
– hydrodoalkyl intermediate formation 478
– hydroformylation catalyst formation 474
NMR spectroscopy (contd.)
– Iridium catalyst 478
– major/minor principle 479
– multinuclear NMR spectroscopy 470
– palladium-catalyzed
 hydroalkoxycarbonylation 476
non-isothermal pellet 84–85, 94–96
– internal and external mass transport in 96–98
nonlocal Density Functional Theory (NL–DFT) 530–532
non-oxidative coupling of methane 410
non-reactive complexes formation, catalyst deactivation due to 61
non-specific adsorption 204
nucleophilic/electrophilic catalysis 154, 157–159
– bimolecular reaction 158

0
olefin hydrogenation kinetics 126–127
olefin polymerization process technology 264–280, See also heterogeneous catalysis; homogeneous catalysis
– ‘growing chain orientation’ mechanism 268
– propene polymerization catalysts 266
– reactivity 264–269
– structure 264–269
Operando spectroscopy 465
ordered mesoporous materials 442
organocatalyst, in situ generation of 42–44
organometallic complex catalysis 152, 157–160
– major/minor concept 159
– ‘Reppe chemistry’ 157
Ortho-F effect 282
overall effectiveness factor 97
oxidation reactions 148–150
– propane ammonoxidation mechanism 149
– propane oxidation 150
– selective oxidation of propylene 148–150
oxidative addition 162–163
– in transition metal-centered homogeneous catalysis 159–169
 – of non-polar addenda in apolar solvents 171
 – via radical chain mechanism 163–164
oxidative coupling of methane (OCM) 448
– catalytic solid materials for OCM reaction
– physico-chemical properties of 451
– kinetics of 448–449
– reaction mechanism 448–449
oxidoreductases 176–182, See also oxygenases
– dehydrogenases 176–178
 – – alcohols synthesis 176–177
 – oxo synthesis (hydroformylation) 103
oxxygen reduction reaction (ORR) on Pt(111), application 202, 207–212
– electrochemical ORR mechanisms 210
– HOOH pathway 209
– O2 pathway 208
– OOH pathway 209
orxygenases 178–182
– Baeyer-VilligerMonoxygenases (BVMOs) 180–181
– P450 mono-oxgenases 179–180
– P450 superfamily 180

P
P450 mono-oxgenases 179–180
pairing reaction 45
palladium-catalyzed carbonylation 242
parallel reactions 84, 91
parametric sensitivity 584
Pareto plot 15–16
Pauling valency concept 133
Pausen-Khand reaction 244
Péclet number 597
Penicillin G amidase (PGA) 256
peptidases 185–186
phenyl alanine dehydrogenase (Phe-DH) 178, 254
photocatalysis 216–217, See also heterogeneous photocatalysis
– applications of 219
– in practice, reactor considerations 225–228
– principle of 217–219
physical adsorption 514–516
physical chemistry 4
pig liver esterase (PLE) 171
planar laser-induced fluorescence (PLIF) 371
plug flow reactors (PFRs) 546
Point of Zero Charge (PZC) 422–423, 436
polyethylene glycol (PEG) 178
polymerase chain reaction (PCR) 253
polymer-electrolyte (or proton-exchange) membrane fuel cell (PEMFC) 207
polymerization 261–285
– kinetics
 – – active sites 269–273
 – – ‘dormant’ sites 269–273
 – – ‘triggered’ sites 269–273
 – latest breakthroughs 280–285
– half-titanocene precatalyst structures 281
olefin polymerization process technology 264–273, See also individual entry
polyolefins 262–264
Ziegler–Natta-type olefin polymerizations 261
porcine pancreatic lipase (PPL) 184
pore size distribution (PSD) 518
pore volume impregnation (PVI) 425
porous catalysts, concentration profiles in 79
porous materials as catalysts and catalyst supports 431–444, See also adsorption methods for porous materials characterization
activated carbon supports 439
alumina (Al₂O₃) and other oxides 436–438
carbon materials 438–440
fumed silica 433–436
general characteristics 431–433
ordered mesoporous materials 442
shaping 443–444
sol-gel method of preparation of 433–436
Aerosil® process 435
zeolites 440–441
Prelog-rule 177
pressure gap 36–39
primary proton attachment 137
Proactinomyces erythropolis 181
process choice 17–19
classical chlorohydrin route 18
modern pertochemical route 18
propane oxidation 150
propene polymerization catalysts 266
proton activation by zeolites 135–139
Pseudomonas chlororaphis B23 256
Pseudomonas putida 181
pyruvate decarboxylase (PDC) 194
pyruvate/phosphoenolpyruvate-dependent aldolases 192–193
q
α-quartz 433
quasi-surface equilibrium approximation 75
r
radical chemistry, of high-temperature catalysis 365–385
experimental evaluation of models 371
rate-controlling step or slow step 33
rate-determining step 34
rate-limiting step 6, 21
reaction engineering principles, See catalytic reactor engineering
reaction mechanisms 70, 73–77
bimolecular catalytic reactions 76–77
complex reaction 73
Langmuir–Hinshelwood model 74–75
‘masi’ approximation 75–76
quasi-surface equilibrium approximation 75
reaction order 69
reaction rate 69
reactor choice 16–17
reactor engineering, See catalytic reactor engineering
reactor performance (Lₚ) 578
redox catalysis 333–335
reducible oxides 143–150
heats of formation 145
oxidation reactions, mechanism 148–150
– propane ammoxidation mechanism 149
– propane oxidation 150
– selective oxidation of propylene 148–150
relative stabilities, comparison 143–145
structure sensitivity 145–148
residence time distribution (RTD) 587–602, 606–607
– experimental determination of 589–591
– pulse function 590–591
– step function 589–590
– residence time distribution in tubular reactors, estimation 597–599
– RTD for ideal reactors 591–595
– cascade of ideally stirred tanks 592–593
– ideal continuously-operated stirred tank reactor 591–592
– ideal plug flow reactor 591
– laminar flow reactor 593–595
– RTD influence on performance of real reactors 599–602
– RTD models for real reactors 595–597
– cell model 596–597
– dispersion model 595–596
reversible reaction 69
rhodium-catalyzed carbonylation of methanol 245
rhodium-catalyzed hydroformylation 236
Rhodococcus rhodochrous 256
Ruhrchemie/Rhône-Poulenc process 237
ruthenium 312
S
Sabatier Principle 21–23
Sabatier’s catalytic reactivity principle 14
Scanning Electron Microscopy (SEM) 494
Scanning Transmission X-ray Microscopy (STXM) 509
Schmidt number 85
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>second Damköhler number (DaII)</td>
<td>81–82, 98</td>
</tr>
<tr>
<td>Second Harmonic Generation (SHG)</td>
<td>502</td>
</tr>
<tr>
<td>secondary proton attachment</td>
<td>137</td>
</tr>
<tr>
<td>segmented flow gas–liquid–solid reactors</td>
<td>620</td>
</tr>
<tr>
<td>selection, catalyst</td>
<td>13–16</td>
</tr>
<tr>
<td>– Brønsted–Evans–Polanyi (BEP) relationship</td>
<td>14</td>
</tr>
<tr>
<td>– computational approach</td>
<td>13</td>
</tr>
<tr>
<td>– Sabatier’s catalytic reactivity principle</td>
<td>14</td>
</tr>
<tr>
<td>selective oxidation</td>
<td>333–335</td>
</tr>
<tr>
<td>selectivity</td>
<td>544</td>
</tr>
<tr>
<td>shaping, porous material catalysts</td>
<td>443–444</td>
</tr>
<tr>
<td>Shell Higher Olefin Process (SHOP)</td>
<td>103</td>
</tr>
<tr>
<td>Sherwood number (NSh)</td>
<td>547</td>
</tr>
<tr>
<td>side-chain elongation mechanism</td>
<td>329</td>
</tr>
<tr>
<td>silica (SiO₂)</td>
<td>433</td>
</tr>
<tr>
<td>single-molecule in-situ spectroscopy of catalytic solid</td>
<td>504–508</td>
</tr>
<tr>
<td>single-phase MSR</td>
<td>604–607</td>
</tr>
<tr>
<td>– mixing</td>
<td>604</td>
</tr>
<tr>
<td>single-phase reactors</td>
<td>564–568, See also</td>
</tr>
<tr>
<td>– tubular reactors</td>
<td>567–568</td>
</tr>
<tr>
<td>single-site alkene metathesis catalysts</td>
<td>402–406</td>
</tr>
<tr>
<td>– enantioselective ring-closing metathesis</td>
<td>405</td>
</tr>
<tr>
<td>slurry-phase bubble column reactors</td>
<td>309</td>
</tr>
<tr>
<td>slurry reactors</td>
<td>310</td>
</tr>
<tr>
<td>slurry–suspension reactors</td>
<td>574–575</td>
</tr>
<tr>
<td>sol-gel method</td>
<td>433–436</td>
</tr>
<tr>
<td>solid acids and bases</td>
<td>132–143, 440</td>
</tr>
<tr>
<td>– Brønsted acid or base</td>
<td>132</td>
</tr>
<tr>
<td>– Lewis acid or base</td>
<td>132</td>
</tr>
<tr>
<td>– mechanistic considerations</td>
<td>139–143</td>
</tr>
<tr>
<td>– direct alkane activation</td>
<td>139–141</td>
</tr>
<tr>
<td>– hydride transfer</td>
<td>141</td>
</tr>
<tr>
<td>– isomerization catalysis</td>
<td>141–143</td>
</tr>
<tr>
<td>– primary proton attachment</td>
<td>137</td>
</tr>
<tr>
<td>– proton activation by zeolites</td>
<td>135–139</td>
</tr>
<tr>
<td>– secondary proton attachment</td>
<td>137</td>
</tr>
<tr>
<td>– stereochemical effects</td>
<td>139</td>
</tr>
<tr>
<td>– van der Waals interactions</td>
<td>139</td>
</tr>
<tr>
<td>solid oxide fuel cells (SOFC)</td>
<td></td>
</tr>
<tr>
<td>– high-temperature catalysis in</td>
<td>380–385</td>
</tr>
<tr>
<td>solid-state properties, in catalysts</td>
<td></td>
</tr>
<tr>
<td>development</td>
<td>448–453</td>
</tr>
<tr>
<td>solvent complexes</td>
<td>487</td>
</tr>
<tr>
<td>Sorghum bicolor</td>
<td>189–190</td>
</tr>
<tr>
<td>space time</td>
<td>580, 583</td>
</tr>
<tr>
<td>space–time yield</td>
<td>545</td>
</tr>
<tr>
<td>space velocity</td>
<td>580</td>
</tr>
<tr>
<td>specific adsorption</td>
<td>204</td>
</tr>
<tr>
<td>specific surface area (A)</td>
<td>518</td>
</tr>
<tr>
<td>spectator ligands</td>
<td>59</td>
</tr>
<tr>
<td>staged fixed-bed</td>
<td>569</td>
</tr>
<tr>
<td>standard isotherms</td>
<td>522–523</td>
</tr>
<tr>
<td>steam reforming, in ammonia synthesis</td>
<td>291, 295–299</td>
</tr>
<tr>
<td>– catalysis</td>
<td>296–297</td>
</tr>
<tr>
<td>– secondary phenomena</td>
<td>297–299</td>
</tr>
<tr>
<td>– technology</td>
<td>295–296</td>
</tr>
<tr>
<td>– tubular reformer</td>
<td>296</td>
</tr>
<tr>
<td>stirred-tank reactor</td>
<td>564–567</td>
</tr>
<tr>
<td>– heat transfer</td>
<td>567</td>
</tr>
<tr>
<td>– mixing</td>
<td>565</td>
</tr>
<tr>
<td>structural defects</td>
<td>451–452</td>
</tr>
<tr>
<td>structured catalysts for multiphase reactions</td>
<td>575</td>
</tr>
<tr>
<td>sulfidic catalyst</td>
<td>393–397, See also under</td>
</tr>
<tr>
<td>supported catalysts</td>
<td>453</td>
</tr>
<tr>
<td>– preparation</td>
<td>420–429</td>
</tr>
<tr>
<td>– deposition precipitation</td>
<td>427–428</td>
</tr>
<tr>
<td>– drying</td>
<td>425–427</td>
</tr>
<tr>
<td>– impregnation</td>
<td>425–427</td>
</tr>
<tr>
<td>– ion adsorption</td>
<td>423–424</td>
</tr>
<tr>
<td>– outer-sphere complex formation</td>
<td>423</td>
</tr>
<tr>
<td>– selected catalysts, applications</td>
<td>421</td>
</tr>
<tr>
<td>– selective removal</td>
<td>420</td>
</tr>
<tr>
<td>– support surface chemistry</td>
<td>422–423</td>
</tr>
<tr>
<td>– thermal treatment</td>
<td>428–429</td>
</tr>
<tr>
<td>Supported Liquid-Phase Catalyst (SLPC)</td>
<td>106</td>
</tr>
<tr>
<td>supported transition-metal hydrides</td>
<td>408–411</td>
</tr>
<tr>
<td>surface oxygen species in methane conversion</td>
<td>449–450</td>
</tr>
<tr>
<td>surface reactions</td>
<td>34–36</td>
</tr>
<tr>
<td>– elementary rate constant expressions for</td>
<td>34–36</td>
</tr>
<tr>
<td>surface reconstruction</td>
<td>37–38</td>
</tr>
<tr>
<td>suspension reactors</td>
<td>572</td>
</tr>
<tr>
<td>symmetric versus asymmetric cracking</td>
<td></td>
</tr>
<tr>
<td>patterns</td>
<td>328–332</td>
</tr>
<tr>
<td>synthesis gas</td>
<td>311</td>
</tr>
<tr>
<td>synthetic organic chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Temkin kinetic expression</td>
<td>118</td>
</tr>
<tr>
<td>Temkin Pyzhev kinetics</td>
<td>291–292</td>
</tr>
<tr>
<td>temperature-programmed reduction (TPR) method</td>
<td>509</td>
</tr>
<tr>
<td>Temporal Analysis of Products reactor (TAP)</td>
<td>451</td>
</tr>
<tr>
<td>Terrylene diimide (TDI) dye molecule</td>
<td>506</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>57, 176</td>
</tr>
</tbody>
</table>
thermal reaction 216
thermal treatment 428–429
Thiele modulus 88, 95, 98, 547
Thomas chemistry 339
three-center (M-C-H) transition states 128
three-phase gas–liquid–solid systems 573–575
three-phase reactors 616–622
– continuous-phase contacting 616–618
– dispersed phase contacting 619–622
– gas–liquid–solid 616
– mesh microcontactor 619
– trickle-bed reactors 555, See also individual entry

Ti-catalyzed epoxidation 335–338
Time-Resolved Microwave Conductivity (TRMC) 220
t-method 522–523
Topsoe radial flow converter 292
T-plot techniques 6
TPPTS (tris sodium salt of meta-trisulfonated triphenylphosphine) 237
transaminases (TAs) 193–194
transition metal catalysis 114–132
– ammonia synthesis 114–119, See also individual entry
– C–C bond cleavage 126–132
– dehydrogenation 126–132
– ethane hydrogenolysis mechanism 127–132
– hydrogenation 126–132
– methane reforming 120–125, See also individual entry
transition metal-centered homogeneous catalysis 155, 159–169
– hydrometalation of alkenes 165
– kinetic activity 167
– ligand substitution
– – associative pathway 160
– – dissociative pathway 160
– – limiting mechanisms 160
– migratory insertion 164–165
– oxidative addition 162–163
– reductive elimination 164
– substrates and reagents, activation of 159
– Ziegler–Natta polymerization 164
Transmission Electron Microscopy (TEM) 494
transport effects, estimation criteria for 101–103
trickle-bed reactors 552
– advantages 553
– application of 556
– criteria for 554
– – axial mixing 554
– – channeling 554
– – isothermality 554
– – mass transfer 554
– disadvantages 553
– input data 555
– laboratory scale versus industrial trickle-bed reactors 557
tubular reactors 567–565
tubular reformer 296
turnover frequency (TOF) 55
turnover number (TON) 54–55

u
UV Photoelectron Spectroscopy (UPS) 493
UV/Vis spectroscopy 486–490
– principal component analysis 489

v
van der Waals interactions 139
visible light-sensitive systems, quest for 223

w
Washburn equation 533
weight hourly space velocity (WHSV) 544
Weisz module 90, 102
Weisz’ window 545
wet impregnation 425
white biotechnology 171
Wilkinson’s catalyst 166

x
xenon porosimetry 533–534
X-ray Absorption Near Edge Spectroscopy (XANES) 497
x-ray absorption spectroscopy (XAS) 466
x-ray fluorescence spectroscopy (XAFS) 466
X-ray Photoelectron Spectroscopy (XPS) 493
x-ray scattering techniques 6

y
yield 545

z
zeolite catalysis 325–339
– framework-substituted redox ions 335–339
– hydrocracking reaction, acid catalysis 325–332, See also individual entry
– Lewis acid–lewis base catalysis 332–333
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>zeolite catalysis (contd.)</td>
<td>zeolites 7, 28–30, 440–441</td>
</tr>
<tr>
<td>– redox catalysis 333–335</td>
<td>– proton activation by 135–139</td>
</tr>
<tr>
<td>– single-site versus two-center Fe oxycations reactivity 334–335</td>
<td>Z-scheme process 224</td>
</tr>
<tr>
<td>– Thomas chemistry 339</td>
<td></td>
</tr>
</tbody>
</table>