Contents

List of Contributors xvii
About the Editors xxi
Foreword xxiii
Preface xxvii

1 Disease Interception in Autoimmune Diseases: From a Conceptual Framework to Practical Implementation 1
Anish Suri
1.1 Introduction to Disease Interception 1
1.1.1 What is Disease Interception and How Does This Impact Our Prospective Thinking Toward Novel Solutions for Patients Suffering from Autoimmune Diseases? 2
1.2 Disease Interception in Autoimmune Diseases 3
1.3 Progress in Modulation of the Adaptive Immune Response in Autoimmune Inflammatory Diseases 5
1.4 The Complex Interplay between the Specificity of the Pathogenic Immune Repertoire and Its Sculpting by the Environment – Implications for Disease Interception 8
1.5 Clinical Application and Concluding Remarks 14
Acknowledgments 15
References 15

2 The Role of Biomarkers in Treatment Algorithms for Ulcerative Colitis (UC) 25
Reena Khanna and Brian G. Feagan
2.1 Background 25
2.1.1 Serum Biomarkers 26
2.1.2 Serum Hematologic Markers 28
2.1.3 Fecal Markers 29
2.1.3.1 Fecal Calprotectin 29
2.1.3.2 Additional Fecal Biomarkers 31
2.1.4 Urine Biomarkers 31
2.1.5 Endoscopic Outcomes 31
2.2 Histology 32
2.2.1 Tissue Markers 33
2.3 Treatment Algorithms 34
2.3.1 Differentiating Inflammatory and Noninflammatory Disease 34
2.4 Assessing Response to Therapy 35
2.5 Predicting Relapse 35
2.6 Summary 35
References 35

3 Mechanism and Physiologically Based PK/PD Model in Assisting Translation from Preclinical to Clinical: Understanding PK/PD of Therapeutic Proteins at Site-of-Action 43
Xi Chen and Weirong Wang
3.1 Introduction 43
3.2 Biologic Distribution to Tissue Site of Action 44
3.2.1 Overview 44
3.2.2 Bioanalytical Methods for Biologics at Tissue Sites 45
3.2.3 Full PBPK Model and Minimal PBPK (mPBPK) Model 46
3.2.4 Application of PBPK and mPBPK Models to Facilitate Understanding of Biologic Tissue Distribution 49
3.3 Target Engagement of Biologics at Site of Action 50
3.3.1 Overview 50
3.3.2 Bioanalytical Methods to Understand Target Engagement by Biologics 51
3.3.3 Mechanistic PBPK/PD Modeling to Facilitate Understanding of Target Engagement at Site of Action 52
3.4 Translational Application of Mechanistic PBPK Modeling 54
3.5 Conclusion 59
References 59

4 Application of Minimal Anticipated Biological Effect Level (MABEL) in Human Starting Dose Selection for Immunomodulatory Protein Therapeutics – Principles and Case Studies 65
Haiqing Wang, Zheng Yang, and Rong Shi
4.1 Introduction 65
4.2 Safety and Immune-Related Toxicities of Immunomodulatory Protein Therapeutics 66
4.3 Uncertainties of Toxicology Approach in FIH Safe Starting Dose Selection for Immunomodulatory Protein Therapeutics 68
4.3.1 HED Calculation for Immunomodulatory Protein Therapeutics 68
4.3.2 Determination of Safety Factor for Immunomodulatory Protein Therapeutics 69
4.3.3 TGN1412 Incident and Minimal Anticipated Biological Effect Level 70
4.4 Incorporating Mabel Approach in FIH Starting Dose Selection for High-Risk Immunomodulatory Protein Therapeutics 71
4.4.1 In vitro Cytokine Release Assay and Other In vitro Assays as Toxicity Assessment for Immunomodulatory Protein Therapeutics 73
4.4.2 Integrate In vitro Pharmacology Data to Estimate MABEL for High-risk Immunomodulatory Protein Therapeutics 74
4.5 Case Studies of Mabel Calculation 75
4.5.1 Case Study I: MABEL Determination for Anti-CD28 Antagonist Domain Antibody BMS-931699 75
4.5.2 Case Study II: MABEL Determination for Anti-CD40L Receptor Antagonist BMS-986004 78
4.5.3 Case Study III: MABEL Determination for MOXR0916, an Agonistic Antibody Targeting OX40 82
4.5.4 Case Study IV: MABEL Determination for Bispecific Immunomodulatory P-cadherin LP-DART (PF-06671008) in Immune-oncology 83
4.6 Discussion and Conclusion 85
References 87

5 Model-Based Meta-Analysis Use in the Development of Therapeutic Proteins 93
Timothy J. Taylor, Bill Frame, and Angela D. Taylor
5.1 Introduction 93
5.2 Types of MBMA and Database Considerations 94
5.3 Data Analytic Models Useful for MBMA 96
5.4 Example 1: MBMA in Inflammatory Bowel Disease 97
5.4.1 Overview of Inflammatory Bowel Disease and Clinical Endpoints 98
5.4.2 MBMA for Inflammatory Bowel Disease Treated with Biologics 99
5.5 MBMA Literature Search 99
5.6 Kinetic-Pharmacodynamic Models 100
5.6.1 K-PD Models Results 104
5.6.1.1 CDAI K-PD Model Results 104
5.6.1.2 CR100 K-PD Model 112
5.6.1.3 C-Reactive Protein K-PD Model 112
5.6.1.4 Immunogenicity K-PD Model 112
5.7 MBMA Implications for Inflammatory Bowel Disease 116

6 Utility of Joint Population Exposure–Response Modeling Approach to Assess Multiple Continuous and Categorical Endpoints in Immunology Drug Development 125

Chuanpu Hu and Honghui Zhou

6.1 Introduction 125
6.2 Latent Variable Indirect Response Models 126
6.3 Residual Correlation Modeling Between a Continuous and a Categorical Endpoint 128

6.3.1 Application Example: Ustekinumab in Psoriatic Arthritis (PsA) 129
6.3.1.1 Population PK Modeling of Ustekinumab in PsA 130
6.3.1.2 E–R Modeling of Ustekinumab in PsA 130
6.3.1.3 Application Example Summary of Ustekinumab in PsA 134
6.4 Structural Correlation Modeling Between a Continuous Endpoint and a Categorical Endpoint 134

6.4.1 Application Example: Rheumatoid Arthritis 134
6.4.1.1 Population PK Modeling of mAb X in Rheumatoid Arthritis 135
6.4.1.2 E–R Modeling of mAb X in Rheumatoid Arthritis 135
6.4.1.3 Application Example Summary 144
6.5 Conclusion 145
6.5 References 145

7 Modeling Approaches to Characterize Target-Mediated Pharmacokinetics and Pharmacodynamics for Therapeutic Proteins 149

Leonid Gibiansky and Ekaterina Gibiansky

7.1 Introduction 149
7.2 Target-Mediated Drug Disposition Model 150
7.3 Data and Practical Considerations 152
7.4 What to Expect from the Concentration–Time Course 154
7.5 Approximations of the TMDD Model 157

7.5.1 Quasi-Steady-State and Rapid Binding Approximations 157
7.5.2 Michaelis–Menten Approximation 160
7.5.3 Wagner Equation 161
7.5.4 Irreversible Binding Approximation 162
7.5.5 Hierarchy of TMDD Model Approximations 163
7.5.6 Relationship Between the QSS Approximation and the Indirect Response Models 164
7.5.7 Two-Target TMDD Model and Approximations: Soluble and Membrane Targets 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.8</td>
<td>Latest Developments</td>
<td>166</td>
</tr>
<tr>
<td>7.6</td>
<td>Identifiability of Model Parameters</td>
<td>166</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>168</td>
</tr>
<tr>
<td>8</td>
<td>Tutorial: Numerical (NONMEM) Implementation of the Target-Mediated Drug Disposition Model</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Leonid Gibiansky and Ekaterina Gibiansky</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>8.2</td>
<td>Notations and Data</td>
<td>174</td>
</tr>
<tr>
<td>8.3</td>
<td>NONMEM Code for TMDD Model and Approximations</td>
<td>174</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Full TMDD Model</td>
<td>174</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Quasi-Steady-State and Rapid Binding Approximations</td>
<td>176</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Michaelis–Menten Approximation</td>
<td>178</td>
</tr>
<tr>
<td>8.4</td>
<td>How to Select Correct Approximation</td>
<td>179</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Bottom Up Approach</td>
<td>179</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Approach Based on Biological Considerations</td>
<td>180</td>
</tr>
<tr>
<td>8.5</td>
<td>Numerical Implementation</td>
<td>181</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Choice of ADVAN Subroutines</td>
<td>181</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Parallel Computing</td>
<td>181</td>
</tr>
<tr>
<td>8.6</td>
<td>Summary</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>182</td>
</tr>
<tr>
<td>9</td>
<td>Translational Considerations in Developing Bispecific Antibodies: What Can We Learn from Quantitative Pharmacology?</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Pradeep B. Lukka, Santosh Wagh, and Bernd Meibohm</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>187</td>
</tr>
<tr>
<td>9.2</td>
<td>Quantitative Pharmacokinetic Considerations of BsAbs</td>
<td>187</td>
</tr>
<tr>
<td>9.3</td>
<td>Preclinical Considerations</td>
<td>189</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Antibody Properties</td>
<td>189</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Selection of a BsAb Format</td>
<td>190</td>
</tr>
<tr>
<td>9.3.3</td>
<td>In vitro Models</td>
<td>190</td>
</tr>
<tr>
<td>9.3.4</td>
<td>In vivo Models</td>
<td>191</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Catumaxomab</td>
<td>192</td>
</tr>
<tr>
<td>9.3.6</td>
<td>Emicizumab</td>
<td>193</td>
</tr>
<tr>
<td>9.3.7</td>
<td>Blinatumomab</td>
<td>194</td>
</tr>
<tr>
<td>9.3.8</td>
<td>Anti TfR/BACE1</td>
<td>194</td>
</tr>
<tr>
<td>9.4</td>
<td>Translational Considerations</td>
<td>196</td>
</tr>
<tr>
<td>9.5</td>
<td>Immunogenicity</td>
<td>197</td>
</tr>
<tr>
<td>9.6</td>
<td>Clinical Development of BsAbs</td>
<td>198</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Catumaxomab</td>
<td>198</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Emicizumab</td>
<td>199</td>
</tr>
</tbody>
</table>
10 Application of Pharmacometrics and Systems Pharmacology to Current and Emerging Biologics in Inflammatory Bowel Diseases

Sihem Ait-Oudhia, Yi Ting (Kayla) Lien, Sumit Basu, Lawrence Lesko, and Stephan Schmidt

10.1 Introduction 209
10.1.1 Pathophysiology of IBD 210
10.1.2 Current Advances in Biomarkers for IBD 212
10.1.2.1 C-reactive Protein (CRP) 213
10.1.2.2 Fecal Calprotectin 213
10.1.2.3 Atypical Perinuclear Antineutrophil Cytoplasmic Antibodies (pANCA) 214
10.1.2.4 Anti-outer Membrane Porin C (OmpC) 214
10.1.2.5 Other Mediators of Inflammation 214
10.2 Pharmacological Approaches for the Treatment of IBD 215
10.2.1 Biologics for the Treatment of IBD 216
10.2.1.1 Tumor Necrosis Factor Alpha (TNF-α) Inhibition 216
10.2.1.2 Side-Effects of Anti-TNF-α Agents 220
10.2.2 Emerging Therapeutic Options for Inflammatory Bowel Disease 220
10.2.2.1 Anti-adhesion (Anti-integrin) Molecules 220
10.2.2.2 Anti-ICAM-1 Therapy 221
10.2.2.3 Anti-IL-6R Antibodies 221
10.2.2.4 Immunostimulators 222
10.2.2.5 T-cell–Directed Therapies 222
10.2.2.6 Fontolizumab 223
10.2.2.7 Ustekinumab 223
10.2.2.8 Inhibitors of T-cell Proliferation 223
10.3 Mathematical Models in IBD 224
10.3.1 Infliximab 225
10.3.2 Adalimumab 226
10.3.3 Certolizumab Pegol 226
10.3.4 Vedolizumab 227
10.3.5 Challenges in Systems PK/PD Modeling of mAbs in IBD 227
10.4 Role of FDA in the Drug Development of Biologics in the Treatment of IBD 228
10.5 Summary 231
References 231

11 Pharmacokinetics-Based Dosing for Therapeutic Monoclonal Antibodies in Inflammatory Bowel Disease 243
Niels Vande Casteele and William J. Sandborn
11.1 Inflammatory Bowel Disease 243
11.2 Population Pharmacokinetics 244
11.3 Exposure–Response 246
11.4 Exposure-Based Dosing Strategies 247
11.5 Discussion 249
References 251

12 Pharmacokinetics-Based Dosing Strategies for Therapeutic Proteins in Inflammatory Bowel Disease 255
Diane R. Mould, Richard N. Upton, and Jessica Wojciechowski
12.1 Introduction 255
12.2 The Need for Understanding and Controlling Variability in Exposure 256
12.3 History of Dose Individualization 258
12.4 Bayesian Methods for Dose Individualization 260
12.5 Clinical Need for Improved Dosing with mAbs 265
12.6 Expectations for Bayesian Adaptive Dosing 268
12.6.1 What Bayesian Systems Can Achieve 268
12.6.2 Limitations of Adaptive Dosing and Bayesian Systems 274
12.7 Summary and Conclusions 277
References 278

13 Quantitative Pharmacology Approach to Select Optimal Dose and Study the Important Factors in Determining Disposition of Therapeutic Monoclonal Antibody in Pediatric Subjects – Some Considerations 285
Deni Hardiansyah and Chee M. Ng
13.1 Introduction 285
13.2 Pharmacokinetics of Therapeutic Monoclonal Antibody in Pediatric Population 289
13.3 Quantitative Pharmacology Considerations to Select Optimal Pediatric Dose of mAbs Based on Adult PK Studies 291
13.4 Using mPBPK Model to Study the Effects of FcRn Developmental Pharmacology on the PK of mAbs in Pediatric Subjects 299
References 307
14 Quantitative Pharmacology Assessment Strategy
Therapeutic Proteins in Pediatric Subjects – Challenges and Opportunities 315
Jeremiah D. Momper, Andrew Mulberg, Nitin Mehrotra, Dan Turner, William Faubion, Laurie Conklin, Karim Azer, and Marla C. Dubinsky
14.1 Introduction 315
14.2 Extrapolation of Efficacy 315
14.2.1 Disease and Response Similarity Between Adults and Children With UC and CD 316
14.3 Initiation of Pediatric Trials 321
14.4 Trial Design Considerations 322
14.4.1 Dose Selection 322
14.4.2 Exposure–Response Analysis 322
14.4.2.1 Infliximab for UC 323
14.4.2.2 Adalimumab for CD 323
14.4.3 Therapeutic Drug Monitoring 324
14.4.4 Adaptive Designs 326
14.4.5 Advantages and Disadvantages of Using External/Historical Controls 327
14.4.6 Real-World Evidence 327
14.4.7 Quantitative Systems Pharmacology 328
14.4.8 Clinical Trial Simulation 329
14.5 Challenges in Pediatric Trials for First-in-Class vs. Follow-on Drug-in-Class 330
References 331

15 Case Examples of Using Quantitative Pharmacology in Developing Therapeutic Proteins for Plaque Psoriasis – Guselkumab 337
Zhenling Yao, Yaowei Zhu, Chuanpu Hu, Yang Chen, Shu Li, Bruce Randazzo, Zhenhua Xu, Amarnath Sharma, and Honghui Zhou
15.1 Introduction 337
15.1.1 Pathogenesis of Plaque Psoriasis 337
15.1.2 Current Treatment Paradigms for Psoriasis 338
15.2 Understanding of Exposure–Response (ER) Relationship of Guselkumab in Psoriasis 339
15.2.1 Phase 1 Study (PSO1001) 339
15.2.2 Phase 2 Study (X-PLORE) 339
15.2.3 Phase 3 Studies (VOYAGE 1 and 2) 340
15.2.4 Methodologies Used in Dose–Response and Exposure–Response Analyses 341
15.2.4.1 Dose–Response Analyses 341
15.2.4.2 Correlational Quantitative Analyses 341
15.2.4.3 Landmark Modeling Analyses 341
15.2.4.4 Longitudinal Modeling Analyses 341
15.2.4.5 Model-Based Simulations 342
15.3 Dose Selection for Guselkumab in Psoriasis 342
15.3.1 Step 1: Exposure–Response Analyses Using Data from Phase 1 (PSO1001) to Design Phase 2 (X-PLORE) 342
15.3.1.1 Dose–Response Analyses in Phase 1 (PSO1001, Part 2) 342
15.3.1.2 Exposure–Response Modeling Analyses in Phase 1 (PSO1001, Part 2) 342
15.3.2 Step 2: Exposure–Response Analyses Using Data from Phase 2 (X-PLORE) to Design Phase 3 (VOYAGE 1 and 2) 343
15.3.2.1 Dose–Response Analysis in Phase 2 (X-PLORE) 343
15.3.2.2 Correlational Quantitative Analysis in Phase 2 (X-PLORE) 344
15.3.2.3 Model-Based Exposure–Response Analyses in Phase 2 (X-PLORE) 346
15.3.3 Step 3: Exposure–Response Analyses Using Data from Phase 3 (VOYAGE 1 and 2) to Confirm the ER Relationship Established from Phase 2 and Provide Dose Recommendations 346
15.3.3.1 Correlational Quantitative Analysis in Phase 3 (VOYAGE 1 and 2) 347
15.3.3.2 Landmark Modeling Analysis in Phase 3 (VOYAGE 1 and 2) 348
15.3.3.3 Longitudinal Modeling Analysis in Phase 3 (VOYAGE 1 and 2) 355
15.3.4 Step 4: Model-Based Simulations to Support Dose Recommendations 355
15.3.4.1 Simulation of Alternative Doses to Support To-Be Marketed Dose 355
15.3.4.2 Simulation of Covariate Effect to Evaluate the Needs for Dose Adjustment in Subgroups 356
15.3.4.3 Guselkumab Dose Recommendations 356
15.4 Quantitative Pharmacology in Post-submission Support 358
15.5 Conclusion 359
References 360

16 Vedolizumab—A Case Example of Using Quantitative Pharmacology in Developing Therapeutic Biologics in Inflammatory Bowel Disease 363
Maria Rosario, Nathanael L. Dirks, Diane R. Mould, Catherine Scholz, Timothy Wyant, Asit Parikh, and Irving Fox
Abbreviations 363
16.1 Introduction 364
16.2 Dose Selection for Adult Patients in Phase 3 Trials 365
16.3 Pharmacokinetic Profile of Vedolizumab 366
16.4 Population Pharmacokinetics in Phase 1 and 2 Trials 368
16.5 Comparison of Simulated vs. Measured Vedolizumab Trough Concentrations 372
16.6 Population Pharmacokinetics in Phase 3 Trials 372
16.7 Dose Selection for Pediatric Populations 374
16.8 Exposure–Response Analysis 376
16.9 Logistic Regression Analyses 378
16.10 Exposure–Response: Causal Inferences 381
16.11 Conclusion 384
Disclosure 384
References 384

17 Case Examples of Using Quantitative Pharmacology in Developing Therapeutic Proteins in Systemic Lupus Erythematosus – Belimumab 389
Herbert Struemper
17.1 Introduction 389
17.2 Overview of Supporting Data and Methods 390
17.3 Body Size Characterizations and Impact on Switching from Weight Proportional to Fixed Dosing 390
17.4 The Yin and Yang of FcRn – Opposing Effect of Albumin and IgG on mAb Clearance 392
17.5 Lost in Filtration – Renal Contributions to mAb Clearance 395
17.6 Conclusion 397
References 398

18 Case Examples of Using Quantitative Pharmacology in Developing Therapeutic Proteins in Multiple Sclerosis – Peginterferon Beta-1a, Daclizumab Beta, Natalizumab 401
Xiao Hu, Yaming Hang, Lei Diao, Kumar K. Muralidharan, and Ivan Nestorov
18.1 Introduction 401
18.2 Application of Quantitative Clinical Pharmacology for Dosing Regimen Recommendation of Peginterferon Beta-1a 403
18.2.1 Background of Peginterferon Beta-1a 403
18.2.2 Peginterferon Beta-1a Population PK Model 404
18.2.3 AUC-Gd+ Lesion Count Model for Peginterferon Beta-1a 404
18.2.4 AUC-T2 Lesion Count Model for Peginterferon Beta-1a 407
18.2.5 AUC–ARR Model for Peginterferon Beta-1a 408
18.2.6 Label Recommendation 413
18.3 Population PK/PD Analyses of Daclizumab Beta and Phase 3 Dose Selection 414
18.3.1 Daclizumab Beta Population PK Model 414
18.3.2 PK/PD Model 415
18.3.3 Simulation in Support of Phase 3 Dose Selection 418
18.4 Model-Based Approach for the Clinical Development of Subcutaneous Natalizumab 419
18.4.1 Pharmacokinetic Model of Natalizumab 421
18.4.2 Natalizumab Pharmacodynamic Model 422
18.4.3 Simulation for Natalizumab SC Dose Selection 423
18.5 Summary 431
References 431

Index 437