Index

AA, see acrylic acid
AAEM, see acetoacetoxyethyl methacrylate
ablative coatings, 473
abrasion resistance, 58–59, 65, 433, 440, 443, 466
abrasive particle blasting, 90
absorption of radiation, 404–406
attenuation of, 405
film thickness, effect of, 405
photobleaching, 405
substrate, effect of, 406
acetaldehyde, 136
acetoacetate cross-linking systems, 241–242
acetoacetoxyethyl methacrylate (AAEM), 241
acetoacetylated resins, 240, 241, 244
acetylene black pigment, 301
acid etch, 424, 425
acid number, 121
acid precursors, 157, 201
acid rain, 67, 112, 453
acrolein, 301
acrylic(s), 14, 362
acrylic acid (AA), 126
acrylic latexes, 78, 182–184, 371, 412
acrylic/polyurethane blends and hybrid
dispersions, 183–184
acrylic powder coatings, 389
acrylic resins, see also thermoplastic acrylic
(TPA) resins
functionality of, 117
high solids, 39, 117–119
thermosetting, 116–120
activation energy (Ea), 21–22
for viscous flow, 36
activity coefficient in solvent mixtures, 253
acrylics, 407
acylphosphine oxides, 407
addition–fragmentation chain transfer
(AFTR) monomers, 410, 417
addition polymerization, 13
additive color mixing, 281
additives, 4
ADH, see adipic dihydrazide
adhesion, 89
adsorption effect on adhesion, 89
on pigment surfaces, 209, 296, 308, 310, 313, 323, 325
aldehydes, 205
alkyl alcohols, 246
alkyd coatings, 433, 472
alkyd gloss enamels, 459–460
alkyd resins
alkyd emulsions, 219–220
autooxidizable polyurethane dispersions, 225
epoxy esters, 225–226
high solids oxidizing alkyls, 217–218
modified alkyls, 223–224	nonoxidizing alkyls, 220
oxidizing alkyls
dibasic acid selection, 216–217
monobasic acid selection, 215–216
terephthalic acid, 216
polyol selection, 216
synthetic procedures
fatty acid process, 221
monoglyceride process, 220–221
process variations, 222–223
uralkyds, 224–225
water-reducible alkyls, 218–219
alkyl phenol ethoxylates (APEs), 127
alkyls, 385
alternating copolymers, definition of, 6
aluminum, 1, 46, 47, 55, 56, 83, 90–92, 94,
100, 102–112, 115, 158, 230, 233,
234, 238, 241, 252, 253, 263, 275,
283, 299, 301, 302, 304, 305, 328,
346, 352, 359, 361, 368, 375, 376,
381, 388, 391, 400, 401, 416, 419–421,
423, 424, 427–432, 435, 436, 439,
443, 452, 468, 471, 475, 476, 485
atmospheric corrosion, 68
atomic force microscopy, 427
atomic layer deposition (ALD), 427
atomic layer epitaxy (ALE), 427
atomic layer growth, 427
atomic layer reaction, 427
atomic layer self-assembly, 427
atomic layer selectivity, 427
atomic resolution X-ray photoelectron spectroscopy (ARXPS), 427
atomic spectroscopy, 427
atomic structure, 427
atomic transition, 427
atomic vibration, 427
atomic weight, 427
atomic X-ray photoelectron spectroscopy (AXPS), 427
atomic X-ray photoelectron spectroscopy (AXP), 427
atomic X-ray photoelectron spectroscopy (AXPSM), 427
atomic X-ray photoelectron spectroscopy (AXPSM), 427
atomic X-ray photoelectron spectroscopy (AXPS), 427
atomic X-ray photoelectron spectroscopy (AXP), 427
atomic X-ray photoelectron spectroscopy (AXP), 427
atomic X-ray photoelectron spectroscopy (AXPS), 427
atomic X-ray photoelectron spectroscopy (AXPSM), 427
aluminum flakes, 423
aluminum oxide (nano-size), 443
aluminum pigments
leaching, 301
in metallic colors, 301
nonleaching, 274, 301
aluminum silicate pigments, 230, 302, 305, 452
aluminum trihydrate, 439
amidoamines, 196
amine adducts of epoxy resins, 195
aminoplast resins, see amino resins
3-aminopropyltrimethoxysilane, 94, 184, 232
amino resins
urea-formaldehyde resins, 161
glycoluril-formaldehyde resins, 161–162
melamine-formaldehyde (MF) resins
class II resins, 155
class I resins, 154–155
etherrification reaction, 152–153
methylolation reaction, 152
MF-polyol reactions, 155–161
self-condensation reactions, 153–154
poly(meth)acrylamide-formaldehyde resins, 162
urea-formaldehyde resins, 161
ammonium fluoride, 182
anionic polymerizations, 16
anionic electrodeposition coatings, 375–376
anionic polymers, 375–376
anodic electrodeposition coatings, 375–376
anionic polyurethane dispersions (PUDs), 443
aqueous media dispersion, 313–315
aqueous dispersions, 125
aqueous media dispersion, 313–315
aqueous polyurethane dispersions (PUDs), 366, 370
architectural and industrial maintenance
(AIM) coatings, 264
architectural coatings
exterior house paints and primers, 450–455
flat and semigloss interior paints, 455–459
gloss enamels, 459–462
alkyd gloss enamels, 459–460
latex gloss enamels, 460–462
online and in-store computerized systems, 449
Arrhenius equation, 21
associative thickeners, 454, 461
atmospheric photochemical effects, 260–262
atomic force microscopy (AFM), 26, 76, 84
atomization, 334, 338
atom transfer radical polymerization (ATRP), 16, 314
attapulgite clay (fuller’s earth), 303
attenuated total reflectance spectroscopy (ATR), 82
Auger electron spectroscopy (AES), 92
autodeposition coatings, 383
automobile refinish paints, 474–477
acrylic refinishing lacquer, 476
dual thermal/UV cure clear coats, 477
fast-reacting gel coatings, 477
lacquer and enamel, 475–476
loV, 476
OEM coating, 475
technical challenges, 475
thermosetting hydroxy-functional acrylic resins, 475
VOC emissions, 475, 477
waterborne base coats, 476
automotive coatings, for original equipment manufacturer (OEM), 419–427
base coats, 423–424
aluminum flakes, 423
color retention, 423
color travel, 423
minimal light scattering, 423
popping and improved appearance, 424
solventborne base coat binders, 423
water-dispersible carboxymethylcellulose acetylatebulyrate, 423
clear coats, 424–426
corrosion protection, 419
electrodeposition coating formulation, 421–422
factory repair procedures, 426–427
paint process, 420–421
paint shop, 419
paint process, 420–421
primers, 422
US market, 419
autophoretic coating, 383
autoxidation and cross-linking, 206–209
autoxidizable polyurethane dispersions, 225
azelaic acid (AzA), 145
azeotropic behavior, 254
azobisisobutyronitrile (AIBN), 14
azo initiators, 116
backscattering of infrared, 321
bactericides, 314, 453
ball mills, 305, 317–318
barium borosilicate, 303
barium metaphosphate, 109
barium phosphosilicate, 109, 303
barium sulfate (barytes), 303
barrier coating systems, see maintenance paints
barytes, 303
base coats, 76, 98, 353, 421
bead mills, 318
Beer–Lambert law, 271, 404
Bénard cells, 351
bentonite clay pigment, 303, 347, 365
benzil, 15
benzimidazolone orange, 299
benzoguanamine, 151
benzoguanamine-formaldehyde resins, 161
benzoic acid, 215–216
benzoin, 393
benzoin ethers, 406
benzophenones, 70, 407
benzothiazylthiolsuccinic acid, 109
benzotriazoles, 70
benzyl peroxyde (BPO), 14, 119, 201, 223, 224, 239
benzyldimethylamine, 195
benzylidene malonates, 70
benzyltrimethylammonium chloride, 200
beverage cans, 199, 235, 369, 429, 431
bicyclic orthoesters, 473
bidirectional reflectance distribution function (BRDF), 285, 286
bimolecular (type II/PI2) photoinitiators, 407
binder, definition of, 13
binder index, 325
Bingham bodies, 30
biocides, 303, 453, 473
based antifouling coatings, 473
biopolymers, 6
bis(trimethoxysilyl)amine, 443, 476
bisdodecyldiphenylphenyliodonium hexafluoroantimonate, 413
bis-(methyl isobutyl ketone) ketimine of ethylenediamine, 27, 221
bismuth salts, 378
bismuth tris(2-ethyl hexanoate), 181
bisphenol A (BPA), 23, 54, 69, 89, 188–191, 358
butyoxymethylated, 199
bisphenol F, 191–192
bis-(2,4, 6-trimethylbenzoyl)-phosphine oxide (BAPO), 407
bis-triocyrtol oxide (TOTO), 378
biurets, 164, 172
black hiding, 274
black pigments, 300–301
bleeding, 299
blistering, 77–79, 112, 359, 450
blister tests, 97
block copolymers, 6, 12, 369
blocked acids, 157
blocked amines, 181, 194, 243
blocked catalysts, 21, 201
blocked isocyanates, 176–181, 378, 388–389
blocking groups, 178–180
catalysis of deblocking, 180–181
deblocking pathways and kinetics, 176–178
FTIR analysis, 177
Isothermal thermogravimetric analysis (TGA), 177
thermal thermogravimetric analysis (TGA), 177
unblocking temperatures, 177
blocked reactants, 21, 23
bloom gloss, 286–287
blooming, 129
blown oils, 210
blue pigments, 294, 300, 320
blushing, 196–197
bodied oils, 210
 bond line readout, 350
boron trifluoride etherate, 201
 bounce back, 332, 333
BPO, see benzoyl peroxide
 branched polymers, definition of, 7
BRDF, see bidirectional reflectance distribution function
brittle–ductile transition temperature, 133
bronze pigments, 301
brush application, 29, 331–332, 338, 344, 459
brush drag, 331–332
brush marks, 275, 331, 459
bubble viscometers, 34–35
bubbling, 353–354
burnishing, 59, 290
butyl benzyl phthalate, 476
 butylphosphoric acid, 158
2‐butyl‐2‐ethyl‐1,3‐propanediol (BEPD), 144
butyloctylphthalate, 476
burning, 44, 115
carbon black, 74, 274, 294, 300, 472
carbon diox ide
blushing, of epoxy–amine coatings, 196–197
supercritical, 363
carbon nanotubes, 305
carboxylic acid, esterification of, 18
carboxylic acid-functional acrylic resins, 120
carboxylic acid-terminated polyesters, 141
carboxymethyl cellulose acetobutyrate, 423
car dose tests, 60, 61
Cassie–Baxter state, 481
Casson equation, 31
castor oil, 32
catalysis
autodissolution and cross-linking of drying oils, 208–209
general acid catalysis, 153
MF-polyol reactions, 157–158
specific acid catalysis, 153
catalytic chain transfer polymerization (CCTP), 17, 314, 369
cathodic delamination, 107–108
cationic electrodeposition coatings, 376–378
cationic polymerization, 353, 404, 413–414
cationic UV cure coatings, 412–413
excimer lamps, use of, 413
photosensitizers for, 412
photosensitization of, 412
vehicles for, 413
coating paints, 296, 457
cellulose acetylbutyrate (CAB), 238
cellulose derivatives, 237
acetylbutyrate, 238
nitrocellulose, 237–238
C enamel, 430
cetyl alcohol, 173
chain transfer, 15–16, 131
chain transfer agents, 14, 15, 119
chalking, 69, 74, 290, 294
charge repulsion, 128, 129, 308
chemical pretreatments, 90–92
chipping/stone, 277, 296
chlorinated ethylene/vinyl acetate copolymers, 236
chlorinated polyolefin (CPO), 236, 445
chlorinated resins, 75
chlorinated rubber, 236
chlorinated solvents, 247
chloromethyl/methylisothiazolone, 453
chlo rolesteric pigments, 302
chloline chloride, 387
chroma, 277
chromate pigments, 108, 303
chromate ion effect on corrosion, 108
chromate pigments, 108, 303
chromat i city values, 279
chromic acid, 104, 446
CIE color system
chromaticity values, 279
CIEDE 2000 color difference, 280
CIELAB color difference, 280
CIE 1976 LAB equations, 283
color matching functions, 276, 281–283
color space, 279
complementary dominant wave length, 279
dominant wave length, 279
luminance, 279
purity, 279
purple line, 279
spectrum locus, 279
standard human observer, 276
tristimulus values, 279
citric acid, 234
clay pigments, 365, 456
clear coats, 4, 98, 120, 193, 237, 424
cogulation of latexes, 128
coalescing agents, 325, 458, 462
coalescing solvents, 25
coating solids, definition of, 4
cobalt naphthenate, 239
cobwebbing, 44, 115
cobwebbing, 44, 115
co-condensation reactions, 156
coconut oil, 220, 361, 439
coefficient of friction, 59, 61, 236, 431
cohesive energy density, 248
cohesive failure, 63, 97, 445, 451
cohesive strength, 26, 96, 224, 445
coil coating, 79, 117, 157, 431–433
advantages and limitations, 434–435
aluminum, 432
backer coatings, 432
coating lines, 431–432
color matching, 434
detergent washing and rinsing, 431
near-infrared curing, 432
organosol and plastisol coatings, 433
peak metal temperature (PMT), 432
polyester/MF binders, 433
polyvinylidene fluoride (PVDF) resin coatings, 433
powder coatings, 433
pre-cleaning, 431
reverse roll coating, 431
silicone modified polyesters and acrylic resins, 433
cold rolled steel, 100
color and appearance
color matching, 281–285
color mixing, 281–282
color systems, 277–281
gloss, 286–292
hiding, 274–275
light, 267–268
light-object interactions, 270–274
light source, object and observer, interactions of, 277
color blindness, 276
color chips, 277, 296
color difference equations, 280, 283
color matching
baking schedule, 283
color properties, 282
color rendering, 285–286
cost, 283
film thickness and substrate, 282–283
functions, 276
gloss and texture, 282
information requirements, 282–283
instrumental, 283–285
light sources, 282
metamerism, 282
tolerance, 283
visual, 283–284
color mixing, 281–282
compatibility, 42, 238
complementary dominant wavelength, 279
computer color matching, 284
condensation polymerization, 17
conductivity, 259
cone and plate rheometers, 33
conical mandrel test, 65
contact angle, 87, 88, 481, 482
contact angle hysteresis, 482
container coatings, 428–431
draw-redraw (DRD) cans, 429
exterior can coatings, 430–431
flavor requirements, 428
interior can linings, 429–430
side striping, 428
three-piece and two-piece cans, 428
toxicity considerations, 428
controlled depletion polymer coatings (CDPs), 473
controlled radical polymerization (CRP), 16–17, 119, 313, 425–426
conventional solids coatings, 363
conversion coatings, 90–92
copolymer, 6
copper, 86, 473
corona, 397
corrosion
effect of pH, 100
effect of salts, 100
eff ects of oxygen, 100
inhibiting pigments, 303, 380, 436
inhibition, 103
protection by coatings, 99–113
covalent adaptable networks, 403, 417
CPO, see chlorinated polyolefin
CPVC, see critical pigment volume concentration
cracking, 57, 58, 77, 450
cratering, 348–351
crawling, 348–351
crazing, 95, 446
creep experiments, 50
cresols, 203, 430, 466
critical film thickness for popping, 354
critical micelle concentration (CMC), 128
critical pigment volume concentration (CPVC), 96, 106, 308, 323, 359
determination of, 324–325
factors controlling, 323–324
film porosity, 329–330
of latex coatings (LCPVC), 325–326
vs. film properties and PVC, 326–329
critical pressure, 337
critical relative humidity (CRH), 254, 256
critical temperature, 364, 432
crockmeter, 60
cross‐link density (XLD) measurement

dewetting, 158
density

densification, 57
dendritic polymers, 7
dendritic polyesters, 147
delamination, 77, 107–108
dendritic polymers, 7
densification, 57
density

effect on floating, 351
effect on flooding, 351
effect on oil absorption, 312
effect on sagging, 351
of solvents, 259
dewetting, 158
diacetone acrylamide, 138
diallyl phthalate, 330
diarylide yellow pigments, 298, 299
diarylodonium salts, 412, 413
diatomaceous earth, 303, 312
diazabicyclo[2.2.2]octane (DABCO), 167
dibutyltin diacetate, 168
dibutyltin dilaurate (DBTDL), 167, 235
dibutyltin maleate, 75
dibutyltin methoxide, 170
dibutyltin oxide, 217, 377
dicyclopentadiene (DICY), 386, 387
dicyclopentadienyl (DPP), 211, 484
diels‐Alder reaction, 75, 211
diethanolamine, 183, 225, 388
diethylamine, 207, 342
dimethyl adipate, 207, 342
dimethylchlorosilane, 228
dimethyldiethanolamine (MDEA), 225
dimethyldimethoxysilane, 230
dimethylglutarate, 207, 342
dimethylhexahydrophthalic anhydride, 201
dimethyldimethoxyxilane, 230
dimethyl glycolate, 207, 342
2,5-dimethyl-2,5-hexanediol, 235
dimethylisopropylamine, 315
dimethyl isosorbide, 210, 219, 378
dimethyl maleate, 379
dimethyl succinate, 201, 342, 360
dimethyl terephthalate, 211, 312
dimethylhexane dicarboxylate (DMHDA), 239
dinonylnaphthalenedisulfonic acid (DNNDSA), 158
dioctyl phthalate, 220
dip coating, 338–339
dip coated, 341
dip coating, 340, 341
dip coating, 338–339
dipropylene glycol monomethyl ether, 225
dipropylene glycol dimethyl ether, 26
dipropylene glycol dianhydroglucose, 457
dipropylene glycol dimethyl ether, 26
dipropylene glycol dimethyl ether, 26
dipropylene glycol diethyl ether, 26
direct impact test, 65
direct pull test, 97
direct roll coating, 339, 431
dirt pickup, 355
dispersion of pigments
in aqueous media, 313–315
degree of, 320
equipment and processes, 315–320
evaluation of, 320–321
nonaqueous mill bases, formulation of, 311–313
in organic media, 307–311
in powder coatings, 395
distinctness-of-image (DOI), 286, 287, 291, 292
divinylbenzene, 135, 296, 302
divinyl ethers, 413
DMA, see dynamic mechanical analysis
DMPA, see 2,2-Dimethylolpropionic acid
dodecylbenzenesulfonic acid (DDBSA), 88, 158
dodecyl mercaptan, 137
dominant wavelength, 279
door skins, 442
drawn and wall ironed (DWI or D&W), 429, 430
draw–redraw (DRD) cans, 429, 430
driers, 208, 209, 372, 460
drip marks, 346–348
dry abrasive blasting, 465
dry film, 451
dry hiding, 457, 461
drying, 23
drying oils
autoxidation and cross‐linking, 206
catalysis of autoxidation and cross‐linking, 208–209
compositions, 205–206
conjugated drying oils, 209
nonconjugated drying oils, 206–208
synthetic and modified drying oils, 209–211
DSC, see differential scanning calorimetry
ductility, 434, 447
DWI, 429, 430
dyes, 293
dynamic mechanical analysis (DMA), 52–57, 392, 393
dynamic surface tension, 343, 461
e-coat, see electrodeposition coatings
edge coverage, 378, 380, 401
effect pigments, 275
efflux caps, 35–36
elastically effective network chain, 54
elastic deformation, 48
electrochemical impedance spectroscopy (EIS), 111
electrode lamps, 404
electrodeless lamps, 404
electrodeposition coatings (e-coat)
advantages and disadvantages, 381–382
anionic, 375–376
anodic, 374
application, 380–381
autodeposition coatings, 383
cationic, 376–378
critical requirement, 375
electrodeposition proper, 374
electroosmosis, 374
electrophoresis, 374
syneresis process, 374
variables, effect of, 379–380
electrolysis, 374, 376
electromotive series, 102, 103
electron beam (EB) cure coatings, 403, 415
electron spin resonance spectroscopy (ESR), 83
electroosmosis, 374
electrophoresis, 374, 378, 380
electropolymization, 102
electrostatic fluidized beds, 396, 399
powder coatings, 399
electrostatic spraying
bell electrostatic spray equipment, 335
corona, 397
disk electrostatic spray equipment, 336
electrostatic spray(ing) (cont'd)
“dry-on-dry” powder coating, 399
Faraday cage effect, 398
film thickness, 398
particle size and distribution, 398
production equipment, 397
shaping air, 335
triboelectric charging, 399
water-washed spray booths, 398
wrap around effect, 335
elongation-at-break, 52, 55, 59, 62, 444
embrittlement, 57, 84, 220
EMMAQUA exposure, 80
emulsion coatings, 371–372
emulsion polymerization
miniemulsion, microemulsion, and suspension polymerizations, 132
monomer-starved conditions, 126
physical circumstances, 125
pop-bottle process, 126
raw materials, 126–129
reactor design and rate of agitation, 125
semicontinuous batch process, 126
sequential polymerization, 132
small-scale batch process, 126
variables, 130–132
e enamel hold out, 329
capsulation, 23
e energy of vaporization, 248
tenctropic repulsion, 128–129, 308
tenropy of mixing, 364
environmental etching, 76, 160, 424
environmentally sensing coatings, 485
epichlorohydrin (ECH), 188
epoxidized linseed oil, 201
epoxy binder, 386–387
epoxy e-coats, 427
epoxy equivalent weight (EEW), 190
epoxy esters, 225–226, 362
epoxy-functional acrylics, 120
epoxy phosphates, 202, 358, 465
epoxy powder coatings, 385
epoxy resins
amine cross-linked epoxy resins, 194–197
bisphenol A epoxy resins, 188–191, 362
cross-linking agents, 199–201
erosible coatings, 473
esterification, 18, 142–143, 200, 222
esters, hydrolytic stability of, 143
estrogen mimic, 430
ethanamine, 183, 376
ethoxylethoxyethyl acrylate, 410
ethoxylatedundecyl alcohol, 136
ethylene/ acrylic acid copolymer, 391
ethyleneglycol dimethacrylate
(EGDMA), 116
ethylene/ propylene rubber, primer for, 445
ethylenediacrylate copolymer, 236, 445
2-ethylhexyl acrylate, 410
2-ethylhexyl benzoate, 462
ethyl linolate, 208, 209
ethylsilane, 234
ethyltriphenylphosphonium acetate, 192
evaporation of solvents
coating films, 254–256
high solids coatings, 256
humidity effect, 254
mixed solvents, 253–254
relative rates, 251–253
single solvents, 251
waterborne coatings, volatile loss, 255–257
evacuometer, shell thin film, 253
eximer lamps, 404, 413
excited state quenchers, 70–71
quenching volume, 70
exempt solvents, 175, 225, 262–263, 360, 476
experimental design, 177
explosive hazards, 400
extensional flow, 43–44
exterior can coatings, 430–431
exterior durability
accelerated laboratory weathering devices, 80–82
accelerated outdoor exposure, 79–80
chlorinated resin degradation, 75
coating changes, during weathering, 82–84
hydrolytic degradation, 75–77
natural weathering, 78–79
photoinitiated oxidative degradation, 67–70
photostabilization, 70–75
service life prediction, 84
exterior house paints, 450–455
extruders, 320, 395
falling sand abrasion test, 65
fall out from spraying, 332
Faraday cage effect, 336, 398, 399, 401
fat edge, 350
fatty acid-modified polyurethane dispersions, 225
ferric hydroxide, 101, 107
ferric phosphate, 90
ferrous hydroxide, 100, 101
filiform corrosion, 102, 107
film defects
bubbling and popping, 353–354
crawling, cratering and related defects, 348–351
dirt pickup, 355
floating and flooding, 351–352
foaming, 354–355
leveling, 344–346
sagging and drip marks, 346–348
surface tension, 342–344
wrinkling, 352–353
film formation
by coalescence of polymer particles, 24–27
by cross-linking, 20–24
by solvent evaporation, 19–20
film rupture, 380
film thickness, 56
fire retardancy, 472
flame spray, 399–400
flammability, solvents, 258–259
flash points, 258, 259
flash rusting, 470
flat gloss, 286
flat interior paints, 455–459
flattening pigments, 303
flavor, 428
flexibility, 11–12, 65, 161
floating, 351–352
floculation, 128
floculation, 399
floculation gradient technique, 321
flooding, 351, 352
flop index, 274
color flop, 423
flow coating, 339
flow window, 392, 393
fluidized beds, powder coatings, 399
fluorescent light, 268, 434, 456
fluorinated ethylene propylene copolymer (FEP), 236
fluorinated polymers, 236–237
fluorinated resins, 363
fluorinated urethane coatings, 472
fluoropolymers, 391
foaming, 354–355
formability, 65
fountain roll coating, 339
Fox equation, 12
fracture mechanics, 57–58
Fresnel reflector weathering devices, 80
EMMAQUA, 80
FRECKLE, 80
Sun-10, 352
free radical-initiated UV cure coating, 406–412
oxygen inhibition of, 408–409
photoinitiators for, 406–408
vehicles for, 409–411
waterborne, 411–412
free volume, 11, 20, 23, 25, 36, 105, 254, 255, 392
freeze-thaw stability, 129, 183, 458, 462
freezing point depression, 9, 483
Fresnel equations, 269
Fresnel reflectors, 80
friction, effect on abrasion resistance, 59
frosting, 453
FT Raman analysis, 208
fumaric acid, 238, 239, 390
functional coatings
antimicrobial coatings, 304, 485
environmentally sensing coatings, 485
ice-phobic coatings, 483–484
self-healing coatings, 484–485
superhydrophobic and superhydrophilic coatings, 480–483
functional pigments
antifouling coatings, 303
flattening pigments, 303
infrared reflecting pigments, 304
viscosity modifiers, 303
furnace blacks, 301
furniture coatings, 184, 438, 440, 442
distressing of, 439
UV cure of, 442
waterborne, 441
fusion-bonded epoxy (FBE) coatings, 387
galvalume, 432, 433
galvanized steel, 92, 103, 409, 466
gas chromatography, 206, 264
gassing, 353
gelatin, 43, 116, 142, 231
gel coats, 239, 444
gel particle effect on viscosity, 61
gel permeation chromatography (GPC), 8
genotoxicity, 209
glass transition temperature, 10–11, 48–49
glaze ice, 483
gloss
 bloom, 286–287
 DOI, 286
 haze, 286
 luster, 286
 matte/ flat, 286
 measurement, 290–292
 sheen, 286
 specular, 286–290
gloss enamels, 459–462
gloss meters, 290, 291
gloss polyurethanes (HEUR), 42
 hydrophobically modified ethoxylated polyurethanes (HEUR), 42
 2-hydroxyalkylamide cross-linkers, 240
 2-hydroxybenzophenone, 71
 4-hydroxybutyl acrylate (HBA), 120
 hydroxethyl acrylate (HEA), 126
 hydroxethyl cellulose (HEC), 41, 129
 hydroxethyl methacrylate (HEMA), 126, 237
 hydrox-functional acrylic resins, 388
 hydrox-functional polyester resins, 388
 hydroxypropyl carbamate, 120, 160, 425
 2-hydroxypropyl methacrylate (HPMA), 116
 hyperbranched polyesters, 141
 hyperbranched polymers, 7
 hyperdispersants, 310, 311, 364
 hexahydrophthalic anhydride (HHPA), 145–146
 hexamethoxymethylmelamine (HMMM), 55, 154
 1,6-hexanediyl diisocyanate (HDI), 172
 hexamethylenimine, 152
 hiding, 274–275, 457, 461
 black hiding, 274
 definition, 4
 dry hiding, 457, 461
 wet hiding, 457
 white hiding, 274
 high density polyethylene (HDPE), 466
 high density polypropylene (HDPP), 466
 high flash aromatic naphthas, 246
 high performance liquid chromatography (HPLC), 155, 191, 205
 high solids coatings, 39, 117–119, 146–147, 217–218, 256, see also solventborne coatings
 high-speed disk (HSD) dispersers, 316–317
 high throughput experimentation, 177
 high volume, low pressure (HVLP) air guns, 333
 hindered amine light stabilizers, 72–73, 418
 hindered phenol stabilizers, 72
 homogeneous nucleation, 130
 homopolymer, 6
 Hook’s law, 47
 hopeite, 91, 378
 hot press powder coatings, 390
 hot sag, see oven sagging
 hot spray, 336–337, 347
 hue, 277, 280, 298
 humidity effect, solvents evaporation, 254
 hybrid free radical/cationic
 photopolymerization, 403, 413–414
 hybrid powder coatings, 387
 hydrazine, 182, 184, 244
 hydroblasting, 90, 465, 472
 hydrocarbon resins, 195, 474
 hydrochloric acid, reaction with epoxides, 198
 hydrodynamic chromatography, 131
 hydrodynamic volume, 38, 258
 hydrofluoric acid, 383
 hydrogen bonding, 38, 39, 55, 95, 103, 410
 hydrogen peroxide, 383
 hydrogen sulfide, 303, 430
 hydrolytic degradation, 75–77
 hydrolytic stability, 107, 133, 136, 143, 144, 149, 161, 170, 218, 226, 362, 377, 453, 457, 460, 467
 hydrophobically modified ethoxylated polyurethanes (HEUR), 42
 2-hydroxyalkylamide cross-linkers, 240
 2-hydroxybenzophenone, 71
 4-hydroxybutyl acrylate (HBA), 120
 hydroxethyl acrylate (HEA), 126
 hydroxethyl cellulose (HEC), 41, 129
 hydroxethyl methacrylate (HEMA), 126, 237
 hydrox-functional acrylic resins, 388
 hydrox-functional polyester resins, 388
 hydroxypropyl carbamate, 120, 160, 425
 2-hydroxypropyl methacrylate (HPMA), 116
 hyperbranched polyesters, 141
 hyperbranched polymers, 7
 hyperdispersants, 310, 311, 364
 ice-ophobic coatings, 483–484
 ICI viscosity test, 454
 illuminant, 267, 279, 281, 284
 imidazole, 190, 195, 393
 imidazole formation in polyamides, 196
 impact resistance, 217, 427, 447
 impact resistance tests, 54, 56, 65
 impedence, 94, 111, 199, 220, 234, 429
 incineration, 261, 262
 indentation tests, 64
 indoor lighting, 268
 infrared backscattering, 321
 infrared reflecting pigments, 304, 434
 infrared thermography, 113
 inhibitor, 22, 40, 103, 109, 170, 465
 initiation, 13–15, 119, 127, 130, 201, 404
 initiators, 14, 15, 69, 116, 119, 127, 407
 in-mold coating of plastics, 444, 446
 inorganic zinc-rich primers, 469
 instrumental color matching, 283–285
 intact coatings
 adhesion, 104–105
 critical factors, 103–104
 oxygen and water permeability, 105–107
 intercoat adhesion, 95
 interference pigments, 301–302, 423
 interior flat wall paints, 137, 449, 455, 457
 interior latex paints, advantages of, 455–456
 internal stresses, 56, 84, 89–90, 100
 intrinsic viscosity, 37, 38
 iodine value, 206, 207
 iron, 101–103, 236
 iron blue, 300
 iron oxide, 4, 106, 297–299, 315, 330, 455
 magnetic, 309
 micaceous, 106, 359, 466, 468
 red, 74, 299, 359
 transparent, 299, 314
 yellow, 297–299
 transparent, 297
 iron phosphate, 90
 iron phospide, 110, 434
 isocarbolic acid, 127
 isobornyl methacrylate, 37
 isobutyl acetate (IBAc), 255
 isocyanates
 aliphatic isocyanates, 171–173
 aromatic isocyanates, 170–171
 biuret formation, 164
 blocked, (see Blocked isocyanates)
 dimers (uretdiones), 165
 limitations of, 163
 reactions of, 164–165
 reaction with alcohols, 165–170
 kinetics of, 165–170
 uncatalyzed, 165–167
 catalyzed, 167–170
 trimers(isocyanurates), 165
 unstable carbamic acids, 164
 urethane formation, 164
 isoelectric point, 313
 isosindoline yellow pigment, 209
 isophorone, 60, 171, 247, 253
 isophorone diisocyanate (IPDI), 171, 219
 isophthalic acid (IPA), 145
 2-Isopropylthioxanthone, 407, 413
lithium silicate, 110, 233, 469
lithium ricinoleate, 220
lithium hydroxide, 220
litharge, PbO, 210, 220
liquid crystals, 55, 302
linear power feed addition, 134
linear polymers, 6
limiting viscosity number, 35
lignin, 73, 442
light sources, 282
light fastness, 297, 299
light‐emitting diodes (LEDs), 268, 404
light, 267–268
leveling, 289, 344–346
leaching, 224, 358, 459
light, 267–268
light‐emitting diodes (LEDs), 268, 404
light fastness, 297, 299
light sources, 282
lignin, 73, 442
limiting viscosity number, 35
linear polymers, 6
linear power feed addition, 134
linoleic acid, 205, 209, 215, 225
linolenic acid, 205–208, 215, 217
linseed oil, 4, 38, 193, 208, 211, 435
liquid crystals, 55, 302
litharge, PbO, 210, 220
lithium hydroxide, 220
lithium ricinoleate, 220
lithium silicate, 110, 233, 469
lithopone, 295
living radical polymerization, 16, 314
loose ends, 118
loss modulus, 53, 62, 64, 67
low gloss powder coatings, 391–394
low temperature loss peaks, 54
low volume, low pressure (LVLP) guns, 333
luminescence, 279
luster gloss, 286
macromolecular photoinitiators, 408
macromolecule, 6
macromonomers, 16
magnesium, 103, 110, 436
magnesium silicate, 302, 314
maintenance paints
barrier coating systems
2K polyurea coatings, 467
2K polyurethane coatings, 466–467
2K waterborne urethane coatings, 468
acrylic latex coatings, 133
mid‐coat systems, 466
polyvinylidene fluoride/acrylate copolymer latexes, 466
primers, 465–466
top coat systems, 466
passivating pigment containing primers, 470–471
surface preparation, 465, 471
VOC of, 465
zinc‐rich primers
inorganic and organic, 469
intermediate epoxy/polyamide coat, 470
miste coat, 469
polyurethane binders, 469
two‐coat applications, 468
waterborne zinc‐rich primers, 469
mated emulsion esters, 375
mated oil, 210
mated rosin, 439
maleic acid (MA), 235, 301, 478
maleic anhydride (MAnh), 120, 211, 218, 226, 314, 393, 445
mandrel bend test, 65
manganese driers, 208, 209
manganese bases, 196–197
mapping, 382
Marangoni effect, 343, 344, 349
marine coatings, 3, 471–474
offshore facilities, 474
offshore wind turbines, 474
waterline and interior, above the, 472–474
mar resistance, 59–61
mass spectroscopy, 9
MALDI‐ToF‐MS, 147–148
matte, 286
maximum incremental reactivity (MIR), 246
mechanical properties
abrasion resistance, 58–59
dynamic mechanical analysis (DMA), 52–57
empirical tests, 63–66
field exposure tests, 62–63
fracture mechanics, 57–58
glass transition temperature, 48–49
laboratory simulation tests, 63
scratch and mar resistance, 59–61
shear stress, 47
stress‐strain curves, 48
tensile deformation, 46
tensile force, 47
thermal mechanical analyzer (TMA), 62
two‐dimensional Poisson’s effects, 48
viscoelasticity, 49–52
media mills, 318, 320, 423
MEK double rub test, see methyl ethyl ketone (MEK) double rub test
MEKO, see methyl ethyl ketone oxide
melanine‐formaldehyde (MF) resins, 124, 151, 410
class II resins, 155
class I resins, 154–155
MF‐polyol reactions, 155–159
catalysis of, 157–158
kinetics and mechanism of, 158–159
MF resin reactions, 160–161
with carboxamides, 160
with carboxylic acid‐functional resins, 160
with malonate‐blocked isocyanates, 160–161
with urethanes, 160
package stability considerations, 159–160
self‐condensation reactions, 153–154
synthesis of, 151–153
etherification reaction, 152–153
methylolation reaction, 152
mercaptans, 15
mercaptan chain transfer agents, 15
mercury vapor UV lamps, 404
metal complexing agents, 72
metal decorating coatings, 427
metallic color coating, 275–276
metal marking, 61, 432
metals, corrosion of, 101–103
metamerism, 277, 278, 282
methacrylamide, 162
methacrylamidophenethylhexeneurea, 127, 471
methacrylated alkyds, 476
(meth)acrylated oligomers, 240
methacrylic acid (MAA), 126
3‐methacryloyloxypropyltrimethoxysilane (MPS), 232, 233
methyl acrylate (MA), 14
methyl ethyl ketone (MEK), 20, 38, 247
methyl ethyl ketone (MEK) double rub test, 66, 165, 177
methyl ethyl ketone oxime (MEKO), 209, 460
antiskinning, 209
methyl ethyl ketone (MEK) peroxide, 239
methyl isobutyl ketone (MIBK), 247
methyl linoleate, 211
methyl methacrylate (MMA), 14, 115
2‐methyl‐1‐methylene‐1,5‐dithiacyclooctane (MDTO), 411
methyl octylate, 208
methylphenylmethoxysilane, 230
methyl silicone resins, 230
methyltrimethoxysilane, 110
mixes, 302
micelles, 128
Michael addition reaction, 362
microclimates, 77
microgels, 135, 223, 347
formulators, 391–393
hybrid binders, 387
limitations, 400–401
low gloss powder coatings, 393–394
manufacture of, 394–395
polyester binders, 387–389
quality control, 396
silicon-containing binders, 389
thermosetting epoxy powder coatings, 385
UV cure and hot press powder coatings, 390
powder coil coating, 399
propylene glycol monobutyl ether (PGME), 454
propagation, 13, 16, 57, 68, 72, 83, 130, 410, 414–415
prohesion testing, 112
product coatings
primer surfacer, 421
product coatings
coil coating, 431–435
container coatings, 428–431
plastics, 444–448
wax coating, 438–441
UV cure furniture finishes, 443–444
waterborne wood finishes, 441–442
probe testing, 112
propagation, 13, 16, 75, 68, 72, 83, 130, 410, 411, 484
propylene glycol, 454
propylene glycol monobutyl ether (PGME), 26
propyleneimine adduct, 242
propylene oxide, 117, 239
propyleneimine adduct, 242
protection colloid, 129, 136, 457
PUDs, *see* aqueous polyurethane dispersions
pulverization, 394, 395
purity, 279
purity (color), 279
purple line, 279
PVC, *see* pigment volume concentration
2-Pyrrolidone, 178

Electrochemistry
electron beam (EB) cure, 403, 415
free radical photoinitiators, 406–408
macrostructure, 408
free-radical UV cure, 406–412
hybrid free radical/cationic
photoinitiator concentration, 404–406
opportunity of, 405–406
pigmentation, effects of, 405, 414–415, 417
radiation sources, 404
wave-length distributions, 404
selected applications, 416
shrinkage, effect of, 417
step-growth polymerization, effect of, 411, 417
thiol-ene polymerization, 403, 411
vehicles for cationic UV cure, 413
vehicles for free-radical UV cure, 409–412
waterborne, 411–412
random copolymers, 6, 12
Raoult’s law, 253, 254
random free radicals, 26
radiation cure coatings
abstraction of radiation, 404–406
advantages and disadvantages, 416–418
anionic UV cure, 417
cationic photoinitiators, 412–413
cationic UV cure, 412–413
dual UV/thermal cure, 415–416

degradation, 75
fluorinated resins, 363
hydrocarbon resins, 195, 474
melamine-formaldehyde (MF) resins, 451
methyl silicone resins, 230
novolac epoxy resins, 192, 197, 385, 387, 465, 466
novolac phenolic resins, 192, 199, 203

Materials
stabilized dispersions, 309
resol phenolics, 76, 199, 200, 202–203, 383, 429, 430
retained solvent, 20, 255
retraction, 348–351
retroreflectivity, 477
reverse impact resistance, 65
reverse roll coating, 339, 340
reversible addition-fragmentation-chain
transfer (RAFT) polymerization, 16
rheology, 29, 423
rheometers, 33–34
ricinoleic acid, 205
rime ice, 483
roll coating, 339–340
roll tracking, 339
resin-modified phenolic resins, 203
rotating disk viscometers, 34
rotor/stator mixers, 219, 317
rubbing, 24, 66, 67, 311, 312, 320, 352, 432, 439, 440, 475, 476
rutile TiO2, 74
sagging, 346–348, 365, 382
salt spray (fog) test, 112, 195, 199, 224
sandblasting, 90, 465
sanding sealers, 439
sand mills, 318
saponification resistance, 92, 105, 107, 110, 181, 224, 240, 358, 368, 466
satin paint, 454
Scanlan equation, 54
scanning electron microscope (SEM), 92, 93, 234, 349
scanning probe microscopy, 26
scratch resistance, 59–61
seed latex, 131
self-condensation, 153–154
self-cross-linking paints, 26
self-healing coatings, 484–485
self-polishing polymer coatings
(SPCs), 473

SEM
see scanning electron microscope
semitransparent interior paints, 455–459
shear flow, 29–32
Bingham bodies, 30
Casson equation, 31
definition, 29
dilatant fluids, 30
kineamic viscosity, 29
Newtonian flow, 30
shar-induced order, 30
shear thinning, 30
simple shear viscosity, 29
thixotropic flow, 31–32
yield value, 30
shar-induced order, 30
shear stress, 29, 47
shear thickening, 30, 34, 461
shear viscosity, 32–42
sheet, 286
sheet molding compound (SMC), 446
shell-life, *see* package stability
shot mills, 318
shrinkage during film formation, 56, 74, 107, 290, 424
side stripers, 428
siding, 46, 55, 56, 77, 231, 283, 370, 433, 434, 442–443, 450–451
silanes, 232–233
silanol, 94, 228, 230, 231, 233, 425, 441, 477
silicon dioxide pigments, 302–303
silicone resins, 363
silicones
modified resins, 230
rubbers and resins, 229–230
structures, 228
siloxanes, 156, 228, 229, 240, 350, 355, 369, 447
silsesquioxanes, 228
simple shear viscosity, 29
simulated tests, 111
size exclusion chromatography (SEC), 8
skinning, 209, 460
slippery liquid infused porous surfaces (SLIPS), 482, 483
smart coatings, see functional coatings
SMA, 446
sodium benzoate, 470
sodium bicarbonate, 90, 136
sodium dichromate, 108
sodium dodecylbenzenesulfonate, 131
sodium formaldehyde sulfoxylate, 127
sodium hypochlorite, 446
sodium lauryl sulfate, 127
sodium nitrite, 470
sodium polyacrylate, 199
sodium sulfate, 127
sodium vinyl sulfonate, 136, 457
softening point, 62
sol–gel coatings, 233–234
solid amino resins, 389
solvency, 106, 130, 238, 297, 413
parameters, 247–248
three-dimensional solubility parameters, 248–250
solubilizing agent, 381
solvent(s), 3, 251–256
composition, 246–247
conductivity, 259
density, 259
emissions from coatings, 262–265
evaporation of, see evaporation of solvents
flammability, 258–259
physical properties, 247–250, 259
surface tension, 259
toxic hazards, 250–260
viscosity effects, 257–258
solventborne coatings
advantages, 357
low VOC, 363–365
motivations for, 357
primers
binders, 358–359
high solid primers, 359–360
penetration, 358
pigmentation, 359
saponification resistance, 358
top coats, 360–363
solventborne uralkyds, 443
solvent evaporation rates, 251–257
from coating films, 254–256
from high solids coatings, 256
from waterborne coatings, 256–257
humidity effect, 254
mixed solvents, 253–254
relative rates, 251–253
single solvents, 251
solvent free liquid coatings, 364
solvent recovery, 261, 262, 264, 357
solvent resistance, 138, 139, 156, 174, 216, 371, 467
solvent resistance test, 66
soya bean oil, 206, 207, 211, 214, 215, 217, 218
spacers, 457
sparking, 379
spar varnish, 203, 210, 474
spattering, 41, 43, 44, 332, 457
spectral power distribution (SPD), 267–268
specular gloss, 286–290
spectral reflectance, 269
spray application
airless spray guns, 333–335
air spray guns, 333, 334
baseline transfer efficiency, 333
bounce back, 332
disadvantage, 332
electrostatic spraying, 335–336
fall out, 332
formulation, of solvent mixtures, 337–338
hot spray, 336–337
overspray, 332
overspray disposal, 338
supercritical fluid spray, 337
transfer efficiency, 332–333
temperature conditioned spray, 65
steel ball mills, 301, 317
stearic acid, 205
standard human observer, 276
staged feed latex, 134
sward rocker, 92
stress–strain tests, 51
stress–strain curves, 48
Størmer viscometer, 36
stress and strain signals, 52
stress–strain tests, 51
t–triazines, 70
substrate, definition of, 1
subtractive color mixing, 281
succinic acid, 145
sulfonium salts, 412, 415
Sun–10 exposure, 80
sunflower oil, 219
sunlight, 67, 69, 79, 80, 82, 237, 247, 267, 270, 485
supercritical fluid spray, 337
superdurable polyester resins, 141
superhydrophobic and superhydrophilic coatings, 480–483
superhydrophobic surface, 480–482
supramolecular polymers, 7
surface tension, 342–344
classical method, 343
differential–driven flows, 343–344
dimensions, 342
dipolar groups, 342
gradient–driven flow, 343
of solvents, 259
organic liquids, 343
poly(dimethylsiloxane), 342
tears of wine, 343
of water, 367
surfactants, 127–129
alkenyl–functional surfactants, 129
anionic and nonionic surfactants, 127
hydroxyethyl cellulose (HEC), 129
micelles, 128
poly(vinyl alcohol) (PVA), 129
stabilization, 128
water sensitivity, 129
suspension polymerization, 130
Sward rocker, 64
swelling of cross–linked polymers, 94
synergism, 104–105
synergistic stabilization, 72
synthetic conjugated oils, 210
cross–link density calculation, 77
synthetic polymers, 6
sward rocker, 92
swelling of cross–linked polymers, 94
Taber Abraser test, 65
tacky process for epoxy resins, 188
talc, 61, 106, 468
T–bend test, 65
r–butylcarbodiimidoethyl methacrylate, 138
r–butylhydroperoxide, 127
telegraphing, 388, 348, 350, 382
temperature conditioned spray, see hot spray
tensile–at–break, 58
tensile deformation, 46
tensile force, 47
tensile tests, 47, 52, 58
terephthalic acid (TPA), 387
tetramethyloxymethylglycoluril (TMXGU), 469, 476
tetraisobutyl titanate, 220, 231
tetramethyloxymethylglycoluril (TMXGU), 151, 161, 427
tetramethylammonium octoate, 168
tetramethyloxanilidine (TMG), 244
tetramethyl–m–xylidene disiocyanate (TMXDI), 171, 388
tetraethoxysilane, 370
tetraethyl orthosilicate (TEOS), 110, 233,
342
Tetrahydropyran, 168
Tetraisopropyltitanate, 220, 231
Index

vinyl ethers, photopolymerization, 413
vinyl 2-ethylhexanoate, 137
vinyl-modified oils, 211
distilled, 211
vinyl pivalate, 137
vinyl tris(ethoxysilane), 139
vinyltrimethoxysilane, 120
viscoelasticity
creep and stress relaxation behavior, of polymer, 50
dispersed liquids, 40–42
metals and ionic solids, 49
stress relaxation, 50
time-dependent behavior, 50
time-temperature superposition, 52
WLF theory, 52
viscometers, 32–36
bubble, 34–35
capillary, 33
efflux cups, 35–36
paddle, 36
rheometers, 33–34
viscosity
definition of, 29
dispersed phase, effect on, 40–41
effect of polymer concentration, 37–39
solvent effects, 39
solvent-resin interactions, effect on, 38–39, 257–258
temperature dependence, 36–37
viscosity effects, solvents, 39
viscosity modifiers, 303
visual color matching, 283–284
vitrification, 23
volatile organic compounds (VOCs), 246, 260
determination, 262–264
emissions, 450
wash coats, 439
wash primers, 358
waterborne coatings
aqueous polyurethane dispersions (PUDs), 366
binders, 367
casein paints, 366
determination, 262–264
latex-based coatings, 369–371
latex-coated, 371–372
nonflammability, 366
organic solvent, 366
surfactants, 367
VOC emissions, 366
water-reducible coatings
abnormal pH behavior, 368
alkyls, 368
blocked isocyanate and MF resin crosslinking, 368
change of viscosity, 367
epoxy esters, 368
glass transition temperature, 379
low solids, 368
low viscosity polyisocyanates, 369
spraying and flash-off, 369
polyesters, 141
two-package (2K) urethane coatings, 369
vitrification, 23
volatility and base strength, 368
water thinning, 366
waterborne urethane coatings, 468
waterborne UV cure coatings, 411–412
waterborne zinc-rich primers, 469
water quality, 129
water-reducible alkyls, 368
water-reducible epoxy esters, 201–202, 368
water-reducible polyesters, 141
water-reducible thermosetting acrylic resins
abnormal pH effect, 122
acid number, 121
amines effects, 124
dilution behavior, 123
dispersion stability, 123
DMAE partitions, 122
hydroxyl-substituted amines, 123
2K waterborne urethane coatings, 124
melamine-formaldehyde resins, 124
viscosity dependence, 121
water-thinnable coatings, 149
wave guides, 416
wax, 59, 239, 393, 424, 429, 431, 432, 444, 460, 475
weathering
coating changes during, 82–84
deVICES, 80–82
natural weathering, 78–79
weight average molecular weight, 7, 8, 231
Wenzel state, 481
wet adhesion, 104
wetting, 4, 88, 307, 451
wet paint, 451
wet lapping, 454, 462
wet paint, 451
wetting, 4, 88, 307, 451
white hiding, 274
white lead, 4, 5, 273, 295
white pigments, 293–296
William-Landel-Ferry (WLF) equation, 19, 36
wire paints, 3, 361
WLF theory, 52
wood coatings
furniture
disadvantage, 440
distressing, 439
formaldehyde emissions, 440
frame and legs, 440
hybrid resin combinations, 441
melamine-formaldehyde (MF) resins, 440
moisture-curable urethane coatings, 440
purpose of filling, 439
sanding sealer, 439
self-healing coatings, 441
US furniture manufacturing, 438
panel, 438
panel, 438
determination, 262–264
two-package applications, 468
waterborne zinc-rich primers, 469
zinc stearate, 365, 439, 444
zinc sulfide, 295, 303
zinc tetroxychormate, 108
zinc yellow, 108, 109, 470, 471
zirconium complex with 2,4-pentanedione, 168–170
zinc iron phosphate, 109
zinc/manganese phosphate, 420
zinc molybdate, 109
zinc molybdenum phosphate, 109, 393, 420
zinc octanoate, 229–231
zinc oxide, 105, 110, 295, 303, 359, 453, 470
zinc phosphate, 90–93, 104, 109, 303, 375–376, 420
zinc-rich primers, 109–110, 469, 472
inorganic and organic, 469
intermediate epoxy/polyamide coat, 470
mist coat, 469
polyurethane binders, 469
two-coat applications, 468
waterborne zinc-rich primers, 469
zinc stearate, 365, 439, 444
zinc sulfide, 295, 303
zinc tetroxychormate, 108
zinc yellow, 108, 109, 470, 471
zirconium complex with 2,4-pentanedione, 168–170
zirconium driers, 208
Zn-Mn-Ni phosphate conversion coatings, 378