INDEX

A
absorber, 209
activity coefficients, 76
 binary parameters, 74
 calculation of experimental, 79
 infinite dilution, 83
 plotting, 83, 84
 regression, 73, 78, 83, 86
 air-cooled heat exchangers, 117
 algorithms, 51, 79, 81, 156, 168
 aligning graphics, 13
 Antoine Equation, 23
 ASME method, 202
 Compr, 112
 MCompr, 113
 Aspen Plus Databanks, 11, 12, 21, 102, 174
 Aspen Plus Reference manual, 3, 4
 Aspen Plus Start Page, 2–4
 azeotropes, 166
 effect of pressure, 207, 211
 estimation by Unifac, 167
 azeotropic distillation, 202–206
 heterogeneous, 51, 214
 liquid-liquid equilibrium (LLE), 86, 207
 homogeneous, 166, 210
 heuristics, 184

B
Barker’s method, 79
data browser, 17
batch distillation, 174
batch extraction, 107, 179
batch reactor, 145
BatchSep block, 174
 basic setup, 176
 controllers, 176
 media Ch. 11, BatchSepExample
 operating step setup, 177
 targets, 175
binary parameters, 76
 Aspen Plus supplied, 177, 179, 186, 202, 207
 estimation, 33, 222
blocks
 Batchsep, 174
 Compr, 112
 Decant, 105
 Distl, 165
 DSTWU, 162
blocks (Continued)
Dupl, 40
Extract, 164
Flash2, 100
Flash3, 104
Fsplt, 36
Heater, 118
Heatx, 133
Mcompr, 113
Mheatx, 126
Mixer, 35–37
Mult, 42, 43
Pipe, 114
Pipeline, 114
Pump, 111
Radfrac, 168
RBatch, 143
RCSTR, 135
Requil, 127
RGibbs, 135
Rplug, 143
Rstoic, 132
Ryield, 133
Sep, 38
Sep2, 39
Ssplit, 37

C
calculator function, 85
media Ch. 5, mixer5c
Chain Rule, 228
chemical reactors
chemical equilibrium, 137
extent of reaction, 132
free energy minimization, 78, 107
kinetics
adsorption term, 141
Equilibrium Class, 139
Generalized LHHW, 142
Langmuir-Hinshellwood-Hougen-Watson Class, 142
Power Law, 138
Requil, 127
RGibbs, 135
Rplug, 143
Rstoic, 123
Ryield, 126
component specification, 5
Compr Block, 112
isentropic efficiency, 112
mechanical efficiency, 113
media Ch. 8, compressor
polytropic efficiency, 112
specifications, 113
turbine, 113
constraints, 80, 197–199
continuous stirred tank reactor, 135
control panel, 17, 19, 67, 189, 230
convergence, 48
Broyden’s method, 51
default method, 49
direct iteration method, 49
heuristics, 51
Newton’s method, 51, 80
Tear streams, 47
Wegstein’s method, 49–50
custom units, 15

D
data acquisition, 91
data banks, 10, 14
binary parameter data sources, 77, 90
primary data banks, 22–25
decant block, 99
batch extraction, 100–101
Gibbs free energy minimization, 100
key component, 100
media Ch. 7, DecanterExample
DEHEMA, 90
degrees of freedom, 15–16, 155–156, 173, 209
design specification, 63
media Ch. 5, mixer5d
direct iteration, 48–50
distillation, 145
algorithms, 168
design problem, 156
rigorous models, 165
distillation train, 53, 238
Distl block, 165
media Ch. 10, DistlExample
DSTWU block, 162
media Ch. 11, DSTWUEExample
Dupl block, 40
media Ch. 3, DuplicatorExample

electrolytes, 242
equilibria, 244
media Ch. 16, example3
reactions, 248
wizard, 246
energy integration, 208
bottoms-feed heat exchange, 208
media Ch. 14, exampleOne
shared condenser/reboiler, 208–209
entrainment, 103
design specification, 223
menu, 229
optimization, 235
reiniatlization, 232
simulation, 148
spec groups, 225
synchronization, 228
equation oriented simulation, 221
Index

- **Equations of state**, 73
 - Parameters, 74–78
- **Equilibrium data types**, 79
- **Excess free energy**, 76
- **Execution sequence**, 191
- **Extract block**, 173
 - Media Ch. 11, ExtractionExample
- **Extractive distillation**, 211–212
 - Effect of solvent concentration, 213
 - Solvent selection, 212
- **Flash2 block**, 104
 - Entrainment, 102–103
 - Media Ch. 7, Flash2Example
 - Specifications, 101
- **Flash3 block**, 104
 - Descriptive equations, 104
 - Key component, 105
 - Media Ch. 7, Flash3Example
- **Flash curve**, 25, 165
- **Flowtran**, 1
- **Fortran**, 58–60
 - Accessible variable, 61
 - Association of flowsheet variable with a Fortran variable, 62
 - Defining a Fortran variable, 62
 - Interpreted Fortran language rules, 58–60
 - Media Ch. 5, mixer5d
- **Fsplit block**, 35
- **Fugacity**, 73–74, 100, 105, 135
- **Gilliland correlation**, 163
- **Gmehling, J.**, 77
- **Graphic user interface (GUI)**, 13
- **Heater block**, 118
 - Media Ch. 9, heaters
 - Modeling a heat exchanger, 119–120
- **Heat stream**, 94, 118, 119–120, 126
- **Heatx block**, 122
 - Detailed design, 124, 128
 - EDR browser, 125
 - Exchanger Design and Rating (EDR), 117–125
 - Media, ch. 9, B3shellandtube
 - Options, 122, 123
- **Henry's law**, 74
- **Infinite dilution**, 31, 83
- **Initial values**, 53, 76, 83, 230
- **Joback's method**, 29
- **K**
 - \(k_{ij} \) parameter, 75
- **L**
 - **Linear least squares**, 78, 86
 - **Line search**, 227
 - **Liquid-liquid equilibrium**, 74, 79
 - **Mixed binary and ternary data**, 86
- **M**
 - **Manipulator blocks**, 40
 - **Material balance only calculations**, 14, 52
 - **Mathematics of regression**, 80
 - **Maximum likelihood**, 79, 80, 82, 86
 - **McCabe-Thiele method**, 156–160
 - **Minimum number of stages**, 159, 163, 198
 - **Minimum reflux ratio**, 158, 162, 163
 - **Side streams**, 150, 152–154
 - **Mcompr block**, 113
 - Media Ch. 8, mcompr
 - **Mheatx block**, 118
 - Media Ch. 9, mheatxexample
 - Zone analysis, 126–127
 - **Mixer block**, 37
 - Media Ch. 5, mixer5
 - **Mixing rules for equation of state**, 75
 - **Model execution**, 17
 - **Model palette**, 35
 - **Mult block example**, 42
 - **Mutual solubility**, 86
- **N**
 - **Navigation pane**, 6
 - **Newton-Raphson method**, 80
 - **Next function**, 6
 - **NIST TDE**, 91
 - **On-line data**, 91
 - **No heat balance**, 36
 - **Nonlinear equations**, 70
 - **NRTL (Renon) equation**, 77
 - **C parameter rules**, 82
 - **Numerical derivatives**, 49
- **O**
 - **Objective functions**, 79, 82, 197–198
 - **Fortran example**, 200
 - **Object manager**, 17, 25, 50, 171
 - **Onken, U.**, 77
 - **Optimization**, 197
 - **Algorithms**, 198
 - **Constraints**, 197
 - **Range**, 197
 - **Media Ch. 13, ExampleOne**
 - **Setup**, 199–201
P

parameters pure component
 activity coefficients, 77
 Aspen Plus formulation, 76
 \(a_i \) or \(b_{ij} \) format, 76
 NRTL rules for \(c \) parameter, 82
 temperature dependency, 76
 two or four parameters, 79
 equation of state, 74
 scalar, 23
 temperature dependent, 24
 Peng-Robinson parameters, 75
 pipe block, 114
 media Ch. 8, pipeline
 pipeline and fittings, 111
 plotting facility, 17–19
 preconfigured plots, 20
 Poynting Correction, 74
 process flowsheet development, 183
 heuristics, 184
 styrene process
 184–185
 integration of rigorous models, 183
 media Ch. 12, Example Twelve-1
 media Ch. 12, Example Twelve-4b
 selection of a tear stream, 189
 sequence of calculations, 192
 property analysis, 9, 24
 property environment, 9
 property estimation, 9, 21, 29
 group contributions, 29, 32, 166
 molecule structure, 29, 31
 user defined component, 29–31
 property methods, 12, 33, 75
 prop-set, 26–29
 pump block, 111
 media Ch. 8, pumps
 pure component databanks, 22–24

Q

qualifiers, 26

R

RadFrac block, 168
 design specification, 168–169
 media Ch. 10, RadfracExample1
 NQ Curve specification, 171–173
 packing, 171–172
 reboiler wizard, 168
 thermosyphon reboiler options, 169
 tray design, 171–172
 vary form, 170

reactions for rigorous models, 138
 adsorption, 141–142
 reaction classes, 139
 equilibrium class, 139
 GLHHW class, 142
 LHHW, 141
 powerlaw, 139
 reactions entry, 140
 reactors, 132
 RBatch, 143
 media Ch. 10, RBatchExample1
 specifications, 145–148
 stop criteria, 145
 RCSTR, 140
 media Ch. 10, RCSTRExample1
 specifications, 140–141
 Requil block, 135
 media Ch. 10, RequilExample1
 stoichiometry, 135–136
 Rgibbs block, 135
 media Ch. 10, RgibbsExample1
 product options, 137
 specifications, 137
 Rplug block, 143
 media Ch. 10, RPlugExample1
 specification, 144
 Rstoic block, 132
 media Ch. 10, RstoicExample
 molar extent of reaction, 132
 Ryield, 133
 lumping/delumping, 134
 media Ch. 10, RyieldExample1
 relative yield, 134
 reboilers, 117, 200
 shared, 208–209
 specification, 168
 recycle stream, 16, 48, 193
 Redlich-Kwong (RK), 75
 regression, 73
 basic ideas, 78
 liquid-liquid equilibrium, 86
 vapor-liquid equilibrium, 83
 reinitialization, 50, 53, 232
 report options, 14
 reset, 17–18, 50
 retrieve parameter, 22
 ribbon, 4
 dynamic, 4
 environments, 4
 horizontal menu, 4
 run related icons, 17
 Rubin’s problem, 50
 run control, 18
 panel, 16, 190
 run type, 4

S

secant method, 65
 sensitivity function, 61–65
 media, Ch. 5, mixer5s
 Sep block, 38
 media, Ch. 3, DuplicatorExample
SEP2 block, 39
media, Ch. 3, DuplicatorExample
sequence of calculations, 49–52, 56, 66, 101, 122, 190–192
sequential modular simulation, 48, 125, 191
simple blocks, 37
simulation environment, 8, 13
Soave-Redlich-Kwong (SRK), 75
split fraction, 36–37
Split block, 37
standard state fugacity, 74
starting Aspen Plus, 4
starting values, 16, 48, 83, 183, 222
state variables, 15
stream duplicator, 35, 41
stream multiplier, 35, 40
stream report options, 18
stream specifications, 15
synchronization of EO equations, 228–232

T
tear streams, 16, 49–51
temperature, critical, 22, 29
third order equation of state, 74
tools menu, 57
transfer function, 68–69
tray design, 171–173
tray packing, 173
turbine, 111–112
T-x-y diagram, 28

U
Underwood’s method, 118
Unifac equation, 30, 32, 74, 77, 165
groups, 32
Uniquac equation, 77, 83
binary parameters, 79, 84, 174
data banks, 186
units, 15
user defined component wizard, 29

V
van Laar equation, 83, 86
vapor/feed specification, 225
vapor-liquid equilibrium, 73
vapor-liquid equilibrium
data types, 79
TPX, 79, 83
TPXY, 79, 80, 83, 85

W
Wegstein’s method, 49
Wilson equation, 76, 83
parameters, 102
versus Unifac, 167
Winn’s equation, 163