Acceptable risk, 179, 202
Accountability, 88
Acheson, David C., 165
Actual failure, 35
Adams County (Colorado), 109, 110, 119
Aerospace industry. See also NASA
Challenger disaster, see Space Shuttle
Challenger disaster
DOD contracts with, 2
Mariner 1 space probe, 223
Space Shuttle Program, 22, 167–169, 175–176
Airborne Express, DIA operations of, 119–120
Airbus:
A380 case, 94, 250–255
customer confidence in, 255
and VLCT study, 251
Aircraft failures:
Airbus A380 case, 94, 250–255
Boeing 787 Dreamliner battery, 94, 245–250
Air France, 251
Air Freight Association, 119
Air India, 249
Airlines. See also Aircraft failures; individual airlines
costs per enplaned passenger, 131–132
deregulation of, 102–103
enplaned passengers by airline, 108
reservation system problems, 17
servicing DIA, 118
serving Denver (June 1994), 105
Airline Deregulation Act of 1978, 102
Airports:
Cleveland Hopkins, 132
Dallas–Ft. Worth, 103
Denver International, see Denver International Airport
Front Range, 109–110, 117, 120
hub, 125, 126
Stapleton International, 102–108, 117, 119, 122, 125
Aldrich, Arnold, 181–184, 200–202, 207
Allen, Fran, 218
All Nippon Airways (ANA), 246–250
American Airlines reservation system, 17
American Productivity and Quality Center (APQC), 8
ANA (All Nippon Airways), 246–250
Andersen Consulting, FoxMeyer ERP program and, 42, 235–237
Anderson, Thomas, 237
APMs (assistant project managers), 27–28
Apollo-Saturn 204 fire, 210
Apple Computer, Copland operating system of, 219–220
APQC (American Productivity and Quality Center), 8
Armstrong, Neil A., 165
Arup, 240, 273
Arup, Ove, 272
Ashworth, Harry Ingham, 272
Askin, Robert, 271
Assistant project managers (APMs), 27–28
Assumptions, revalidation of, 46–47
AT&T, 53
Audits:
  project health checks vs., 276–277
  responsibility for, 99
Audit phase (project recovery), 296–298
The Australian Ballet, 265, 266
Authority:
  for decision making, 90–91
  and project politics, 162
  for scope changes, 264

B

BA, see British Airways
Backbiting, 282
BAE Automated Systems:
  and causes of DIA project delays, 130
  design/build of DIA system, 118
  and speed of DIA project, 122–123
Baggage-handling systems (conventional), 114
Baggage-handling system (DIA), 23
  “bad days” for, 132–133
  BAE for design/build of, 118
  BAE’s problems with, 122–123
  and changing business case, 49–50
  design of, 114–115
  failure of, 128–130
  ineffective decision making for, 142–153
  initial problems with, 121–122
  personnel required for, 124
  United’s recommendation for, 113
Baldacci, John, 229, 232
Bank of America, Fontainebleau Las Vegas project and, 50
Barclays Bank PLC, 68
Bechtel Corporation, 120
Beggs, James, 175, 212
Beliefs about projects, see Collective belief
Bennahum, David, 58, 70–71, 73
Bent-pipe architecture, 54
Bertiger, Bary, 53, 55, 56, 68
Bertiger, Karen, 53
Best practices, 39
Biczak, Laureen, 233
“Big Dig” (Boston) cost overruns, 24
Blame, 297

Board of directors:
  as exit champion, 97
  for Iridium Project, 66
  as stakeholders, 89
Boeing:
  customer confidence in, 255
  787 Dreamliner battery, 94, 245–250
  Iridium operation by, 81
  Secure Border Initiative Network project, 221–222
  as Teledesic Project backer, 80
  and VLCT study, 251
Boffey, Phil, 213
Boisjoly, Roger, 184–185, 196–198, 209, 213
Boston, “Big Dig” cost overruns, 24
Boundaries, defining, 259–261
Braniff, 103
British Airways (BA), 239, 240, 242, 243
Brown, Robert, 237
Bugs, software, 222–224
Burlington Air Express, 120
Business boundary, 259–261
Business case:
  for Iridium, 61
  for long-term projects, 48
  reviewing, 278, 279
  validity of, 45
Business case failure, 45–85
  due to changing stakeholders, 45
  examples of, 48–52
  and innovation management, 47–48
  Iridium case study, 52–84
  lessons learned about, 84–85
  and revalidation of assumptions, 46–47
Business knowledge, scope creep and need for, 263
Business scope creep, causes of, 261–263
Byers, Stephen, 240

C

CAB (Civil Aeronautics Board), 102
Cahill, Joseph, 267
California DMV project failure, 218–219
Canada gun registration system, 220
Canadian Association of Chiefs of Police, 220
Canadian Police Association, 220
Cancelling projects, 98–101
   and collective belief, 63
   criteria for, 99
   difficulty in, 94–96, 293
   “exit ramps” for, 98
   sooner rather than later, 219
Capability maturity model (CMM), 70
Carr, Martin, 269
Causes of failure, 19–44
   due to unknown technology, 23–24
   project governance, 93
   and project size, 24–25
   root causes, 290–291
   schedule failure, 22–23
   scope creep, 261–263
   software projects, 224–225
   typical, 20–21
CBOE (Chicago Board Options Exchange), 224
CBOT (Chicago Board of Trade), 223
Cell phones, 284
Cell technology, 53–54
Census Bureau handheld computers project, 222
Chaffee, Roger, 210
Chain-of-command reporting structure, 209–210
Challenger disaster, see Space Shuttle Challenger disaster
Challenger Revealed (Richard C. Cook), 211
Champion:
   exit, 64, 97–98
   project, 97
Chaney, Chris, 53
Change control boards, 257
Chaos Report (Standish Group), 13–14, 26, 28
Charter, project, 46, 162
Chase Securities Inc., 68
Chicago Board of Trade (CBOT), 223
Chicago Board Options Exchange (CBOE), 224
Civil Aeronautics Board (CAB), 102
Claircom Communications Group Inc., 73, 76
Cleveland Hopkins airport, 132
CMM (capability maturity model), 70
CNSI, 226–232
Cole, Christopher, 235
Collective belief:
   about Iridium Project, 63, 96
   and canceling projects, 63–64
   defined, 63, 96
   and governance failures, 96
Comair Airlines, 17
Committee on Present Danger, 212
Communications. See also Satellite communication systems
   and project politics, 161–162
   and Space Shuttle Challenger disaster, 209–210
Competing constraints, 6–8
Comsat, 54
Configuration management, 257
Constraints:
   competing, 6–8
   customer acceptance, 3–4
   primary (triple), 1, 3–4
   prioritization of, 6
   secondary, 4–6
   in Space Shuttle Challenger disaster, 176–178
   in Space Shuttle Program, 167–168
Continental Airlines:
   agreement with Denver on DIA use, 118
   bankruptcy filing by, 116
   and building of DIA, 102–104, 111, 113, 115–116
   cost of DIA delay, 121
   downsizing by, 125–127
   flights in/out of Denver, 121, 124
Cook, Bill, 213
Cook, Richard, 186–187, 211
Copland operating system (Apple), 219–220
Corporate governance, project governance vs., 88–89. See also Governance
Cost(s):
   for Denver International Airport, 115
   in earned value measurement system, 2
   estimates of, 3, 31
   importance of other constraints vs., 2–3
   for Iridium Project, 65
   as metric, 274
   of recovery, 290
   and scope creep, 258–259
   in triple constraints, 1–2
   true, 32
Cost management, 7
Covert, Eugene E., 165
Credibility, 285–286
Creep, 220
feature, 258
scope, see Scope creep
Cremer, Lothar, 269, 270
Critical failure factors, improper, 25
Critical success factors, focus on, 25
Culture, of project team, 301
Customer acceptance (customer satisfaction), as
constraint, 3–4, 8
Customer confidence, 255

D
Dallas–Ft. Worth airport, 103
Dashboards, corporate governance, 89. See also
Metrics
Davis, David, 63, 97–98
DCVs (destination-coded vehicles), for Denver
International Airport, 113–114
Death spiral, 294–295
Debt financing:
  for Denver International Airport, 116, 122,
     124, 131
  for Iridium, 67–69
Decision making:
  authority for, 90–91
  and Challenger disaster, 22, 210
  common mistakes in, 22–23
  on DIA baggage-handling system,
     142–153
  on DIA design, 112
  on DIA project, 22–23, 49
  by governance committees, 90–91
  governance framework for, 88, 90–93
  on innovation projects, 48
  on project rescue/recovery/termination, 302,
     303
  on recovering projects, 302–303
  by stakeholders, 45
Defense industry contracts, 2. See also
  Department of Defense (DOD)
Degrees of failure, 13–16
Delta III project (FoxMeyer Drugs), 235–239
Denver International Airport (DIA), 101–153
  airline costs per enplaned passenger, 131–132
  airline deregulation, 102–103
  background, 101–102
  baggage-handling system, 23, 49–50,
     113–115, 118, 121–124, 128–130,
     132–133, 142–153
  changing business case, 49–52
  cost overruns, 24
  costs for, 122, 123, 127, 129
  decision making for, 22–23, 49
  design, 111–112
  enplaned passenger market, 108–109
  and Front Range Airport, 109–110
  improper campaign contributions from,
     124
  jokes about “DIA” abbreviation, 138–139
  land selection, 109
  Municipal Bond Prospectus, 133–137
  need for DIA, 103–108
  principal benefits of, 111
  project management, 112–114
  risk analysis, 115
  scope definition for, 259
  timeline, 115–133
Department of Defense (DOD):
  and changes in project stakeholders, 45
  contracts with, 2
Department of Homeland Security (DHS)
  virtual fence project, 221–222
Dependencies, scope creep and, 261
Destination-coded vehicles (DCVs), for Denver
International Airport, 113–114
Details, 284–285
Development risks, for Iridium Project, 62
DHS (Department of Homeland Security)
  virtual fence project, 221–222
DIA, see Denver International Airport
Disney:
  project constraints at, 6
  safety at, 245
DMV projects (California and Washington),
   218–219
DOD, see Department of Defense
Dreamliner (Boeing 787) battery, 94, 245–250
Due diligence, 283
Failure, 12–13
  categories of, 16–17
  complete vs. partial, 14–15
  defining, 1–2
  definitions of, 292
  degrees of, 13–16
due to improper critical failure factors, 25
to establish tracking metrics, 26
  estimating, 31–32
  facts about, 19
  from improper team member selection, 27–29
  from lack of sufficient tools, 38–39
  lessons learned about, 43–44
  from management mistakes, 37–38
  and motivation to fail, 41–42
  in planning, 34–36
  pre- vs. postimplementation, 16–17
to recognize early warning signs, 26
  in risk management, 36
  root causes of, 290–291
  in staffing, 32–34
  of success, 39–41
  and tradeoff risks, 42–43
  and uncertain rewards, 29–31
Fannie Mae, 16
Farmer, E. H., 269
Farrelly, Elizabeth, 271
FBI:
  Sentinel project, 221
  Virtual Case File, 221
Feature creep (featuritis), 258
Federal Aviation Administration (FAA), 246–248, 250
Federal Express:
cargo operations of, 117
operations at DIA, 119–120
Feynman, Richard P., 165, 180, 187
Financial risks, for Iridium Project, 62, 63
Financing:
  for Denver International Airport, 116, 122, 124, 131
  and duration of projects, 57
  for Iridium, 57, 67–69
  project, 67
  risk with, 57
Firearm registration system (Canada), 220
Flaherty, Molly Austin, 129
Flanigan, Kevin, 231–233
Flower, Joe, 57
Fontainebleau Las Vegas business case changes, 50–52
Forgeard, Noël, 252
FoxMeyer Drugs ERP implementation, 42, 234–239
escalation of project, 236
factors in failure of, 236–238
and new technology adoption, 238–239
project risks, 235–236
Frame, J. Davidson, 228
Freddie Mac, 16
Front Range Airport, 109–110, 117, 120
Fuller-O’Brien Company, 172–173
G
Galvin, Christopher, 56, 61
Galvin, Robert, 56, 57, 61, 63, 80
Gates, Bill, 80
General Electric, Iridium Project and, 64
General Motors, methodologies at, 39
Geosynchronous satellites, 54
Gercenstein, Mark, 61
Glaysher, Robert, 200
Globalstar system, 66–68
Goldman Sachs & Co., 67
Goossens, Eugene, 267
Governance:
as decision-making framework, 88, 90–93
defined, 88
failure of, see Project governance failures
and project slowdown, 87–88
project vs. corporate, 88–89
Governance committees, 91–92
collective belief spearheaded by, 96
decision making by, 90–91, 302, 303
for large/complex projects, 24–25
and project politics, 158, 162
project rescue/recovery/termination decisions of, 302, 303
and validity of business case, 45
GP Express, 126
Graham, William, 212, 213
Grant, Roy, 72–73
Great Wall Industry Corporation (China), 66
Greiner Engineering, 112
Grissom, Gus, 210
Gun registration system (Canada), 220
H
Hall, Peter, 269, 270
Handheld computers (Census Bureau), 222
Hansen, James R., 211
Harris Corp., 222
Health checks, see Project health checks
Health Insurance Portability and Accountability Act of 1996 (HIPAA), 226–227, 230
Heathrow Terminal 5 (London), 239–243
Heiss, Klaus, 167
Hersman, Deborah, 248–249
“Hidden” business case, in Iridium Project, 61
Hillis, Durrell, 56
HIPAA (Health Insurance Portability and Accountability Act of 1996), 226–227, 230
Hitchings, Craig, 226, 230–232
Hoare, H. R. “Sam,” 270
Högnaes AB, 266
Hollings, Fritz, 213, 214
Hotz, Robert B., 165, 182, 183
Housing bubble, 50
Huerta, Michael, 246–247
Hughes, Davis, 271, 272
Hughes Aircraft Co., 64
I
Iberia Airlines, 239
IBM:
7030 (Stretch) project, 217–218
and Pentium chip limitations, 223
Icahn, Carl, 51
ICO Global Communications, 78–79
Influence, project politics and, 162–163
Information technology projects, see IT projects;
Software project failures
Information Technology Upgrade Project, 221
Innovation:
  managing, 47–48
  requirements for, 47
  vendors and speed of, 95–96
Intel, 223
Intellectual property:
  from Iridium Project, 61, 68, 80
  of project management, 41
International Airlines Group, 239
Iridium NEXT, 83
Iridium Project, 52–84
  ascent of project, 72–74
  change in CEO, 69
  changing business case, 49
  collective belief, 63–64, 96
  cost of, 67
  debt financing, 67–69
  descent of project, 74–78
  executive support, 55–56
  failure of, 79–84
  “hidden” business case, 61
  industry-wide impact of project, 78–79
IPO, 71
Iridium system, 58–59
marketing of, 71–72
M-Star project, 68–69
project infancy years, 64–66
project initiation, 59–61
project launch, 56–58
project management, 69–70
risk management, 61–63
satellite launches, 70–71
strategic partners for, 64–66
success and failure of, 51
value constraint for, 11
Iridium Satellite Corporation, 81
IT projects. See also Software project failures
  causes of failure in, 20
  design freezes with, 24
  failure in phases of, 19
  postimplementation failure of, 16
  project management methodologies for, 38–39
size of, 24
  types of failures of, 13–14

J
Japan Airlines (JAL), 246, 247, 249
Japan Transport Safety Board (JTSB), 249
Jarvis, Gregory Bruce, 164
Johnson, Lyndon, 210
Jones, Capers, 26
Jones, Peter, 268–269
JTSB (Japan Transport Safety Board), 249

K
Keane, 228
Keel, Alton G., Jr., 166
Khrunichev Space Center (Russia), 66
Kidd, William, 53
Kilminster, Joe, 189–191, 199
Knape, Weldon, 82
Knight-Ridder Viewtron service, 218
Kutyna, Donald J., 165, 196, 198, 201

L
LaHood, Ray, 246
LAMP (License Application Mitigation Project), 219
LAN Airlines, 249
Lanphear, Harry, 232
Layoffs, 285
Leisure entertainment projects:
  Fontainebleau Las Vegas, 50–52
  and housing bubble, 50
Leopold, Raymond, 55
LEO (low Earth-orbiting) satellites, 54–55
Lessons learned:
  about business case failure, 84–85
  about defining success and failure, 5
  about governance failures, 153–154
  about project health checks, 286–287
  about project politics, 214–215
  about recovering failed projects, 304–307
  about safety, 255–256
  about scope creep, 273–274
  about software project failures, 243
  about success and failure, 43–44
  from Maine’s Medicaid project, 233–234
  and real failures, 98
License Application Mitigation Project (LAMP), 219
Lighthall, Frederick F., 211
Littlemore, D. S., 269, 270
Lloyd, Carmen, 82
Lockheed, Iridium Project and, 64, 66
Logplan, 123
London Heathrow Terminal 5, 239–243
London Stock Exchange, 16
Lopatosky, Jim, 232–233
Loral Corporation:
- Globalstar system, 66, 67
- and satellite systems competition, 64
Loral Qualcomm Satellite Services, Inc., 65
LOT Polish Airlines, 250
Low Earth-orbiting (LEO) satellites, 54–55
Lucas, William, 187
Lufthansa, 23
Lund, Bob, 177, 192, 194, 199, 209

M
McAuliffe, S. Christa, 164, 165, 212, 214
McCaw, Craig, 79, 80
McDonald, Alan, 191, 192, 195–196, 211, 213
McDonnell Douglas Corp., Iridium Project and, 66
McNair, Ronald Erwin, 164
McNerney, James, 246
Maine Medicaid Claims System, 225–234
- early warnings of failure for, 230–232
- overview, 225–227
- seeds of failure for, 228–230
- takeover by XWave, 232–233
Malaysia Airlines, 253
Management mistakes, failure due to, 37–38, 291
Management personnel, as stakeholders, 89
Mandalay Resort Group, 50
Mariner 1 space probe, 223
MarkAir, 127
Market conditions, 51, 52
Marketing, for Iridium Project, 62–63, 71
Marshall Space Flight Center, 178, 209–210
Mason, Jerald, 199
MCI Worldcom, 223
Measurement techniques, 2. See also Metrics advances in, 8
and competing constraints, 7
Media:
- NASA criticized by, 205
- organizations’ interfaces with, 210
- and virtual fence project, 222
Medicaid project, see Maine Medicaid Claims System
Methodologies. See also specific methodologies,
e.g.: Enterprise project management methodologies (EPMs)
- for innovation projects, 48
- for IT projects, 38–39
Metrics, 2
- and competing constraints, 7
- corporate governance dashboards, 89
cost, 274
- fixation on, 275
time, 274
- tracking, failure to establish, 26
Microsoft Windows, 219
Military contracts:
- with Department of Defense, 2
- of NASA, 212
Mitchell, John, 56, 57, 64, 65
Mitre Corp., 222
MKE (Morrison-Knudsen Engineering), 112
Mondale, Leo, 57, 78
Mondale, Walter, 212
Moody’s Investors Service, Inc., 116
Moore (NASA Deputy Administrator), 180
Morale, 38, 298
Morgan, Barbara, 213
Morgenstern, Oskar, 167
Morrison-Knudsen Engineering (MKE), 112
Morton-Thiokol, Inc. (MTI). See also Space Shuttle Challenger disaster
- and aftermath of accident, 210, 212, 213
- and Challenger launch decision, 192–199
- and Commission findings, 206
- and communication failure, 209
- O-ring concerns of engineers at, 178
- paperwork requirements for, 177
- solid rocket boosters, 169
- teleconferencing with, 176
and understanding of O-ring problem, 187
and waivers, 179
Motivation to fail, 41–42
Motorola, 11, 52, 53, 58. See also Iridium Project
General Systems Sector, 69
intellectual property of, 61, 80
Iridium elements built by, 66
and Iridium funding, 64, 68, 79
lawsuits against, 82–83
M-Star project, 68–69
on possible Iridium bankruptcy, 77
reputation of, 61, 74
Mott MacDonald, 240
M-Star project, 68–69
MTI, see Morton-Thiokol, Inc.
Mulloy, Larry, 178, 179, 192, 193, 196, 202, 213
Municipal Bond Prospectus (DIA), 133–137

N

NASA. See also Space Shuttle Challenger disaster
and Apollo-Saturn 204 test, 210
culture of, 202
flight readiness review teams at, 177
internal investigation teams at, 165
launch constraints of, 179–180
media’s criticism of, 205
military purposes of, 212
Space Shuttle Program, 22, 167–169,
175–176
strategic plans of, 166–167
Nasdaq computer system, 223–224
National Transportation Safety Board (NTSB),
248–249
Navarra, Anthony, 65
Navarro, Anthony, 79
Negotiation phase (project recovery), 300
Nicholas, Jack, 226, 232
Nixon, Richard, 166–167
Nowacki, Edward J., 64–65
NTSB (National Transportation Safety Board),
248–249

O

Oliver, Dave, 81
Onizuka, Ellison S., 164
Opera Australia, 265, 266
Operating system (OS) projects, 219–220
Optimistic planning failure, 34–36
Organizational structure (of projects), 92
OS (operating system) projects, 219–220
Ove Arup and Partners, 268–269
Overworked staff, 281
Ownership of project, 280

P

Pascall and Watson, 240
Peat Marwick, 102
Pena, Federico, 102, 124
Penn National Gaming, 51
Pentium chips (Intel), 223
Perceived failure, 35, 36
Performance, as success criterion, 3
Pessimistic planning failure, 34–36
Peterson, Kenneth, 55
Pinnacle, 235, 238
Planned failure, 41–42
Planning mistakes, failure due to, 34–36, 291
Plaza Hotel & Casino, 51
PMBOK® Guide (PMI), 6–8
and business case failure, 85
and causes of failure, 43–44
definition of project in, 9
and governance failures, 154
and project health checks, 286
and project politics, 214–215
and project recovery, 307
and safety issues, 256
and scope creep, 274
and software failures, 243
and success/failure, 18
PMI (Project Management Institute), 6
PMO (project management office), 100
PMT (project management team), for Denver
International Airport, 112–114
Politics:
and Canada’s gun registration system, 220
project, see Project politics
Political risk, 156
Portfolio review boards, 98
Postimplementation failure, 15–16, 19, 41–42
Power, project politics and, 162–163
Powers (Marshall Space Flight Center employee), 209
Preimplementation failure, 15, 41–42
Pressures on projects, 87–88
Primavera Project Planner, 70
Prioritization of constraints, 6
Pritzker Price, 267
Professional sports, 289
Profit margin, preserving, 283
Progressive planning, 261
Project champions, 97
Project charter, 46, 162
Project financing, 67
Project formulation phase, failures occurring in, 19
Project governance:
  as cause of failure, 93
  as cause of troubled projects, 298
  corporate governance vs., 88–89
  defining, 88
Project governance failures, 87–154
  collective belief, 96
  common causes of, 93
  decision-making authority, 90–91
  defining project governance, 88
Denver International Airport case studies, 101–153
  difficulty in terminating projects, 94–96
  exit champion, 97–98
  governance frameworks, 91–93
  lessons learned about, 153–154
  and project vs. corporate governance, 88–89
  roles and responsibilities, 90
  when to cancel projects, 98–101
Project health checks, 275–287
  audits vs., 276–277
  benefits of, 277–278
  consultants conducting, 294
  lessons learned about, 286–287
  life-cycle phases for, 278–279
  misconceptions about, 278
  need for, 275–276
  personnel conducting, 278
  project management failure warning signs in, 279–286
Project implementation phase, failures occurring in, 19
Project initiation:
  assumptions made in, 46
  defining scope in, 259
  Iridium, 59–61
Project launch (Iridium), 56–58
Project management:
  assistant project managers’ understanding of, 27–28
  critical mistake in, 46
  for Denver International Airport, 112–114
  early days of, 2
  excellence in, 12
  intellectual property of, 41
  for Iridium Project, 69–70
  success in, 39
  uncertain rewards for, 29–31
  warning signs of failure in, 279–286
Project Management Institute (PMI), 6. See also PMBOK® Guide
Project management methodologies, 38–39
Project management office (PMO), 100
Project management team (PMT), for Denver International Airport, 112–114
Project office, 27
Project plans, 284
Project politics, 155–215
  and effective communications, 161–162
  and governance committee, 158
  identifying friends and foes, 159
  lessons learned about, 214–215
  managing, 163
  as political risk, 156
  power and influence, 162–163
  reasons for, 156–157
  responding to, 159–161
  situations likely to involve, 157–158
Space Shuttle Challenger disaster, 163–214
Project recovery:
  process of, see Recovering failed projects
  project rescue vs., 302, 303
Worksheet for, 304–306
Project rescue:
  decision making about, 302
  project recovery vs., 302, 303
Project size:
  as cause of failure, 24–25
  and risk, 24–25, 156
Project sponsor:
  and canceling projects, 64
  collective belief spearheaded by, 96
  essential input from, 46
  governance by, 91. See also Project governance failures
  and pressures on projects, 87
Proposals, 280–281

Q
Qantas airline, 251, 253–254
Qatar Airways, 250
Qualcomm Satellite Services, Inc., 65

R
Randolph Products, 173
Raytheon Corp., Iridium project and, 64, 66
Reagan, Ronald, 178, 205, 210–214
Recovering failed projects, 289–307
  audit phase, 296–298
  decision for, 302, 303
  and definitions of failure, 292
  early warning signs of trouble, 292–293
  execution phase, 301–302
  facts about troubled projects, 289–290
  lessons learned about, 304–307
  life-cycle phases of, 295
  negotiation phase, 300
  and recovery vs. rescue of projects, 302, 303
  restart phase, 300–301
  root causes of failure, 290–291
  selection of recovery project manager, 294–295
  tradeoff phase, 298–300
  understanding phase, 295–296
  Worksheet for, 304–306
Recovery project manager (RPM):
  and culture of project team, 301
  selection of, 294–295
  stakeholder negotiations by, 299–300
  understanding phase for, 295–296
Regulations, 219
Reinartz, Stanley, 202
Rescuing failed projects, recovering projects vs., 302, 303
Resnik, Judith Arlene, 164
Resource management, 282–283
Restart phase (project recovery), 300–301
Restraints, see Constraints
Revalidation of assumptions, in business case, 46–47
Rewards:
  failure due to uncertainty of, 29–31
  from project politics, 155
Richard Rogers Partnership, 240
Richardson, John, 75–77
Ride, Sally K., 165, 183, 199, 201
Risk(s):
  acceptable, 179, 202
  in airport contracts with tenants, 131
  for Denver International Airport project, 115
  for FoxMeyer project, 235–236
  for Iridium Project, 61–63
  with new technology adoption, 238
  political, 156
  with project financing, 57
  and project size, 24–25, 156
  in Space Shuttle Program, 175–176
  tradeoff, 42–43
Risk insurance, 130
Risk management:
  failure due to, 36
  with innovation projects, 47, 48
  with Iridium Project, 61–63
  in Space Shuttle Program, 175–176, 179, 211
Risk mitigation strategies, 46–47
Rockwell, 168, 169, 200
Rogers, William P., 165, 181, 190, 191, 200, 201, 212, 213
Rogers Cantel Mobile Communications, 73
Rolling wave planning, 261
Rolls-Royce plc, 254
Royer, Isabelle, 97
Royer, Linda Rubin, 122
RPM, see Recovery project manager
Rummel, Robert W., 165
Russell, Brian, 185

S
Saarinen, Eero, 267
Safety, 245–256
  Airbus A380 problems, 250–255
  Boeing 787 Dreamliner battery problems, 245–250
  at Disney, 6
  importance of, 245
  lessons learned about, 255–256
  in NASA programs, 207
SAIC (Science Applications International Corp.), 221
Sainsbury:
  automated supply chain management project, 15–17
  warehouse automation, 220
Sales pitches, 281
SAP, FoxMeyer ERP program and, 42, 235–237
Satellite communication systems, 53–55. See also Iridium Project
  Globalstar, 66–68
  ICO Global Communications, 78–79
  M-Star, 68–69
  Qualcomm Satellite Services, Inc., 65
Satellite launches (Iridium), 70–71
SBInet (Secure Border Initiative Network), 221–222
Schaeffer, Glenn, 50
Schedule(s):
  estimating, 31
  for innovation projects, 48
  and scope creep, 258–259
  for space shuttle launch, 208–209
  and staff capabilities, 33–34
Schedule failure, 22–23
Schedule slack, 22
Scheduling systems (Iridium Project), 70
Science Applications International Corp. (SAIC), 221
Scobee, Francis R. (Dick), 164
Scope:
  defining, 221, 259
  importance of other constraints vs., 2–3
  in triple constraints, 1–2
Scope boundary, 259–261
Scope changes:
  business case altered by, 50
  for Denver International Airport, 49–50, 114
  Iridium control processes for, 70
  reasons for, 257
  scope creep vs., 257
  valid business purposes for, 263
Scope creep, 257–274
  causes of, 261–263
  downstream impact of, 261
  lessons learned about, 273–274
  minimizing, 263–263
  and need for business knowledge, 263
  reasons for encouraging, 258–259
  scope change vs., 257
  and scope definition, 259–261
  Sydney Opera House, 265–273
Scope definition, 259–261
SDI (Strategic Defense Initiative), 211, 212
Secondary constraints, 4–6
Secure Border Initiative Network (SBInet), 221–222
SEI (Software Engineering Institute), 70
Sentinel project (FBI), 221
Shareholders, as stakeholders, 89
Shediack, Patrick D., 280–283
SHL Systemhouse, 220
Shostek, Herschel, 53, 78
Singapore Airlines, 251
Smith, Gordon, 233
Smith, Michael John, 164
Sniping, 282
Software bugs, 222–224
Software Engineering Institute (SEI), 70
Software project failures, 217–243. See also IT projects
  Apple’s Copland operating system, 219–220
  bugs, 222–224
  Canada’s gun registration system, 220
  causes of, 224–225
  Census Bureau’s handheld units, 222
DMV projects (California and Washington), 218–219
FBI Virtual Case File, 221
FoxMeyer Drugs’ ERP implementation, 234–239
Homeland Security’s virtual fence, 221–222
IBM’s 7030 project, 217–218
Knight-Ridder’s Viewtron service, 218
lessons learned about, 243
London Heathrow Terminal 5, 239–243
Maine’s Medicaid project, 225–234
Sainsbury’s warehouse automation, 220
Southwest Airlines, 121
S&P (Standard and Poor’s), 116, 122
S&P 500, 223
Space Shuttle Challenger disaster, 163–214
accident description, 202–205
blowholes, 171–173
chain-of-command communication failure, 209–210
critical issues in, 189–191
decision making for project, 22
external tank, 175
ice problem, 199–202
and issues with Presidential Commission, 212–213
joint rotation, 173–174
launch liftoff sequence profile, 180–184
mission 51-L delay, 191–194
NASA and media coverage, 205
NASA politics and pressure, 167–169
O-ring erosion, 173
O-ring failure, 184–189
O-ring resilience, 174–175
paperwork constraints, 176–178
politics and O-ring performance, 178
potential cover-up, 211–213
Presidential Commission findings, 205–209, 211
Presidential Commission members, 165–166
risk identification procedures, 175–176
Senate hearing, 213–214
solid rocket boosters, 169–171
space transportation system background, 166–167
spare parts problem, 175
teleconferencing, 176, 194–199
waivers issued, 178–180
Space Shuttle Program, 22, 167–169, 175–176
Space transportation system, 166–167
Space X, 84
Sponsor, see Project sponsor
Sponsorship failures, see Project governance failures
Staffing failures, 32–34
Staiano, Edward, 69, 72–73, 75
Stakeholders:
changed, 45
defined, 89
perception of failure by, 292
in troubled projects, 298–300
Stakeholder mapping, 159–160
Stakeholder relations management:
and business case failure, 45
and office politics, 159–161
Standard and Poor’s (S&P) Corporation, 116, 122
Stapleton International Airport (Denver):
as air traffic bottleneck, 104
capacity of, 103
cargo carriers at, 117
costs for, 122
decision to replace, 102
departure tax at, 119
domestic passenger origin-destination markets from, 104, 107
enplaned passengers by airline, 108
landings capacity of, 106
revenue for DIA from, 122
United at, 125
Stein, Scott, 177
Strategic Defense Initiative (SDI), 211, 212
Strategic partners, for Iridium Project, 64–66
Success:
complete vs. partial, 14–15
defining, 1–2
different definitions of, 11
failure of, 39–41
future definitions of, 8–11
historical perspective on, 2–3
lessons learned about, 43–44
and project constraints, 3–8
and project size, 24–25
Success cube, 3–4
Sutter, Joseph F., 165, 189, 190
Sweat, Larry, 120
Sydney Opera House, 265–273
   construction history, 267–273
   opening of, 273
   performance venues and facilities, 266–267
   scope boundaries, 260
Sydney Symphony Orchestra, 265, 266
Sydney Theatre Company, 265, 266
Symonds, Ralph, 272

T
Tandem Computers, 219
Teacher in Space Project, 212, 213. See also Space Shuttle Challenger disaster
Team:
   failure from improper selection of, 27–29
   morale of, 38
   for recovering troubled projects, 297–298
   uncertain rewards for, 29–31
Team meetings, time taken from work for, 37
Technical scope creep, causes of, 261–263
Technology:
   new technologies adoption risk, 238
   satellite communication systems, 53–55
   unknown, failure due to, 23–24
Technology risks, 61–62, 238
Telecommunications, 59–60. See also Iridium Project
Teledesic Project, 80
Terminating projects, see Cancelling projects
Thales Alenia Space, 83
Thomas, Gene, 199–200
Thompson, Dick, 227–230, 232, 233
Time:
   in earned value measurement system, 2
   estimates of, 3
   importance of other constraints vs., 2–3
   as metric, 274
   in triple constraints, 1–2
Time management, 7
Time-robbers, 37
Todd, Lionel, 269, 270
Tools, failure from lack of, 38–39
Toyota Prius recall, 17
Tracking metrics, failure to establish, 26
Tradeoff phase (project recovery), 298–300
Tradeoff risks, failure and, 42–43
Triple constraints:
   and competing constraints, 6–8
   early modifications to, 3–4
   in earned value measurement system, 2
   and success vs. failure, 1
Troubled projects:
   facts about, 289–290
   possible outcomes for, 293
   recovering, see Recovering failed projects
taking over, 294
   warning signs of, 292–293
True cost, 32
Truth, Lies and O-rings (Alan J. McDonald and James R. Hansen), 211
TRW Inc., 64, 65
Tunnel between England and France, cost overruns with, 24

U
UHC (University HealthSystem Consortium), 236, 238
Unaddressed problems, 220
Understanding phase (project recovery), 295–296
United Airlines:
   agreement with Denver on DIA use, 116–118
   Boeing 787 battery problem, 246, 249
   and building of DIA, 102–104, 111, 113, 115
   and Continental’s downsizing, 125–127
   cost of DIA delay, 121
   and DIA baggage-handling system, 113, 114, 125
   DIA lawsuit, 120
   DIA lease agreement with, 49–50
   funding for DIA from, 122
   at hub airports, 125, 126
   operating costs in Denver, 121
United Express, 126
United Parcel Service (UPS):
   cargo operations of, 117
   operations at DIA, 119–120
United States Air Force, 167
University HealthSystem Consortium (UHC), 236, 238
Unknown technology, failure due to, 23–24
UPS, see United Parcel Service
U.S. West Communication Services, 118
Utzon, Jørn, 265, 267, 269–273

V

Validity:
of business case, 45
revalidation of business case assumptions, 46–47
tracking, 46
Value:
as constraint, 8–11
measuring, 9
of troubled projects, 297
VCF (Virtual Case File, FBI), 221
Very Large Commercial Transport (VLCT), 251–252
Viewtron service (Knight-Ridder), 218
Virtual Case File (VCF, FBI), 221
Virtual fence (Homeland Security), 221–222
VLCT (Very Large Commercial Transport), 251–252

W

Waddles, Jerry, 129
Waivers:
purpose of, 178
in space program, 178–180
Walker, Arthur B. C., Jr., 166, 182, 197
Warehouse automation (Sainsbury), 220
Warning signs:
of failure of success, 40
of Maine Medicaid system failure, 230–232
of playing politics, 161
of project management failure, 279–286
of troubled projects, 290, 292–293
Washington state DMV project failure, 219
WBS, see Work breakdown structure
Wear, L. O., 189
Webb, James, 210
Webb, Wellington, 102, 124, 129
Wheelon, Albert D., 166
White, Edward, 210
Williams, Jim, 55
Windolph, John, 71
Woltz Consulting, 236
Work breakdown structure (WBS):
for Denver International Airport, 123
for innovation projects, 48
for Iridium Project, 70
tradeoff options for, 298–299
Work culture, 37
Work ethic, 37
Wyke, Rebecca, 232

X

XWave, 232–233

Y

Yeager, Charles, 166
Young, John, 192