Index

a
aboveground biomass 8, 21, 33, 57, 301–302
aboveground biomass (AGB) 8, 17–23, 58, 71
absorption 174–177, 254
accuracy 13, 16, 25, 41–44, 69–70, 90–91, 93
assessment 63, 65, 152
Advanced Along Track Scanning Radiometer (AATSR) 252, 269
Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) 10, 255
Advanced Scatterometer (ASCAT) 258
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 10, 255
Advanced Synthetic Aperture Radar (ASAR) 16
Advanced Very High Resolution Radiometer (AVHRR) 58–59, 257–258, 269
aerial photography 145, 152, 163
afforestation 7, 13
Africa 57, 247, 304
African-Caribbean-Pacific Observatory 81
agricultural drought 286, 288
land 24
land use 80, 117
agriculture 179, 266, 289
Aichi Biodiversity Targets 57
air pollution 77
temperature 294
airborne imagery 164
Airborne Laser Scanning (ALS) 36
Airborne Processing Library (APL) 164
Airborne Research and Survey Facility (ARSF) 163
AIRSAR 40
AISA Eagle 163, 186
Alaska 34
albedo 1, 87, 117
Alfalfa 126–127, 132
algal blooms 173, 182–183, 303
algorithm 105
allometry 7, 16–19, 25
Almaz-1 148
along-track interferometry 211
ALOS-2 9–10, 21, 25, 60–61, 71, 80, 82
alpha angle 149
alpine region 212, 218
Alps 3, 209
alternate sequential filtering (ASF) 101–102
altitude 23
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazonia</td>
<td>10</td>
</tr>
<tr>
<td>anisotropy</td>
<td>149</td>
</tr>
<tr>
<td>Annex 1 habitats</td>
<td>144</td>
</tr>
<tr>
<td>apparent optical properties (AOPs)</td>
<td>176</td>
</tr>
<tr>
<td>Aqua</td>
<td>10</td>
</tr>
<tr>
<td>aquatic</td>
<td></td>
</tr>
<tr>
<td>- food chain</td>
<td>173</td>
</tr>
<tr>
<td>- vegetation</td>
<td>266</td>
</tr>
<tr>
<td>- vegetation mapping</td>
<td>170</td>
</tr>
<tr>
<td>archaeological sites</td>
<td>198</td>
</tr>
<tr>
<td>area overlap</td>
<td>232</td>
</tr>
<tr>
<td>Area Under the Receiver Operator Curve</td>
<td>(AUC) 21</td>
</tr>
<tr>
<td>Argentine Space Agency</td>
<td>80</td>
</tr>
<tr>
<td>ASD portable spectroradiometer</td>
<td>161, 166–167</td>
</tr>
<tr>
<td>Asian Wetland Inventory</td>
<td>252</td>
</tr>
<tr>
<td>aspen</td>
<td>34</td>
</tr>
<tr>
<td>Astrium</td>
<td>148</td>
</tr>
<tr>
<td>Astrium Airborne Demonstrator</td>
<td>148</td>
</tr>
<tr>
<td>atmospheric correction</td>
<td>121, 164, 180</td>
</tr>
<tr>
<td>attenuation</td>
<td>40</td>
</tr>
<tr>
<td>attribution</td>
<td>228</td>
</tr>
<tr>
<td>Automated Water Extraction Index</td>
<td>(AWEI) 254</td>
</tr>
<tr>
<td>automatic identification system (AIS)</td>
<td>77</td>
</tr>
<tr>
<td>azimuth</td>
<td>211</td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td>backscatter</td>
<td>11, 24, 38, 40, 44–47, 63, 146, 148, 176–177</td>
</tr>
<tr>
<td>Balaton Limnological Institute (BLI)</td>
<td>180</td>
</tr>
<tr>
<td>bands</td>
<td>258</td>
</tr>
<tr>
<td>- in radar remote sensing</td>
<td>148</td>
</tr>
<tr>
<td>bare soil</td>
<td>131</td>
</tr>
<tr>
<td>Barrax</td>
<td>117, 119–120, 126, 130, 302</td>
</tr>
<tr>
<td>barrier islands</td>
<td>144</td>
</tr>
<tr>
<td>baseline</td>
<td>42</td>
</tr>
<tr>
<td>BEAM toolbox</td>
<td>181</td>
</tr>
<tr>
<td>bidirectional reflectance distribution</td>
<td></td>
</tr>
<tr>
<td>- function (BRDF)</td>
<td>36, 121</td>
</tr>
<tr>
<td>- reflectance factor (BRF)</td>
<td>117, 122</td>
</tr>
<tr>
<td>biodiversity</td>
<td>34, 57, 144–145, 159, 253, 272</td>
</tr>
<tr>
<td>- strategy</td>
<td>251</td>
</tr>
<tr>
<td>BIOMASAR algorithm</td>
<td>40, 43</td>
</tr>
<tr>
<td>biomass</td>
<td>7–8, 16–17, 19–20, 23–25, 33–35, 38, 40, 43–47, 173, 301</td>
</tr>
<tr>
<td>- estimation</td>
<td>36–39, 41</td>
</tr>
<tr>
<td>BIOMASS mission</td>
<td>10–11, 21, 24–26, 47, 60, 71, 81–82, 271, 301</td>
</tr>
<tr>
<td>bio-optical modelling</td>
<td>177</td>
</tr>
<tr>
<td>biophysical parameters</td>
<td>17–18, 33, 117, 119, 121, 123</td>
</tr>
<tr>
<td>bloom onset</td>
<td>174</td>
</tr>
<tr>
<td>blue green algae</td>
<td>173</td>
</tr>
<tr>
<td>boreal</td>
<td>9</td>
</tr>
<tr>
<td>- forest</td>
<td>33–35, 37, 39, 45, 71</td>
</tr>
<tr>
<td>Boreal Lake (BL)</td>
<td>181</td>
</tr>
<tr>
<td>borehole extensometers</td>
<td>199</td>
</tr>
<tr>
<td>botanical survey</td>
<td>168</td>
</tr>
<tr>
<td>Bozsai Bay</td>
<td>161, 168</td>
</tr>
<tr>
<td>Bragg surface scatter</td>
<td>149</td>
</tr>
<tr>
<td>bridges</td>
<td>198, 201</td>
</tr>
<tr>
<td>building(s)</td>
<td>201, 234, 259</td>
</tr>
<tr>
<td>- detection</td>
<td>107</td>
</tr>
<tr>
<td>- tops</td>
<td>112</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>247, 249–250, 253, 260, 304</td>
</tr>
<tr>
<td>burnt area</td>
<td>1</td>
</tr>
<tr>
<td>burnt class</td>
<td>93</td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Cameroon</td>
<td>62</td>
</tr>
<tr>
<td>Canada</td>
<td>34, 46</td>
</tr>
<tr>
<td>canopy</td>
<td></td>
</tr>
<tr>
<td>- closure</td>
<td>9</td>
</tr>
<tr>
<td>- gaps</td>
<td>40</td>
</tr>
<tr>
<td>- height</td>
<td>11, 17–18, 122, 301–302</td>
</tr>
<tr>
<td>- parameters</td>
<td>129</td>
</tr>
<tr>
<td>- reflectance model</td>
<td>118, 121</td>
</tr>
<tr>
<td>- scatter (Pv)</td>
<td>148</td>
</tr>
<tr>
<td>- structure</td>
<td>9</td>
</tr>
<tr>
<td>capacity building</td>
<td>187</td>
</tr>
<tr>
<td>CARABAS-II</td>
<td>41</td>
</tr>
<tr>
<td>carbon</td>
<td>7, 173</td>
</tr>
<tr>
<td>- cycle</td>
<td>7</td>
</tr>
<tr>
<td>- dioxide</td>
<td>8</td>
</tr>
<tr>
<td>- management</td>
<td>144</td>
</tr>
<tr>
<td>- sink</td>
<td>35, 249</td>
</tr>
<tr>
<td>- stocks</td>
<td>13, 71</td>
</tr>
</tbody>
</table>
Index

Carex 163
carotenes 175
Case 2 Regional (C2R) 181
Case 1 waters 175
Case 2 waters 175
CBER 10
cellular automata 227, 237
Central Africa 58–59, 61–62, 81
Central African Mapping Project (CAMP) 59
Central African Republic 62
cereal yield 285, 294
change detection 101, 103, 210, 255
errors 113
map 110–111
change vector analysis (CVA) 101, 257
channel networks 153
chlorophyll 136
absorption 165
concentration 117, 121–124, 126, 129–131, 183, 254
content 303
fluorescence peak 181
retrieval 182
chlorophyll-a 3, 181, 184, 187, 303
CHRIS/Proba 119–121, 123–126, 128–132, 136
civil
protection 210
security 303
classification 42, 61, 63, 77–78, 87–88, 90, 93, 107, 145, 149, 163, 168–169, 223, 228, 230, 235–236, 255
accuracy 96
clear-cut detection 42
climate
adaptation 3
change 33–35, 57, 143, 173, 251, 273, 285, 304
conditions 249
modelling 117
system 7
Climate Change Initiative (CCI) 251
Closest Feature Vector (CFV) 80
Closing By Reconstruction (CBR) 107
cloud cover 9, 58–59, 63, 80, 179–180, 196, 269, 271
Cloude-Pottier (CP) decomposition 148
clouds 87
coastal
ecosystems 145
hazards 143
vegetation 252
zone 143, 178
zone management 145, 154
coastline 146
erosion 198
coefficient of beam attenuation 176
coherence 41–44, 47, 203, 205, 302
co-kriging 19
coloured dissolved organic matter (CDOM) 174, 303
Combined Drought Index (CDI) 272
complex Wishart distribution 150
computer vision 223, 238, 304
computing time 226
conditional image object 114
confusion matrix 70, 90, 150
Congo
Basin 17, 57, 61, 69, 71, 302
rainforest 95
river 62
coniferous tree species 34
Connected Component (CC) analysis 113
contextual information 101–102
Convention for Biological Diversity (CBD) 57
Copernicus 1, 3, 16, 25, 33, 71, 77–79, 95, 159, 173–174, 186, 195, 238, 252, 301, 303
co-polarized 61
co-registration 102
CORINE 1
Corine land cover (CLC) 79, 251, 301
corner reflector 149
cornfield 126, 128
Corona 256–257
Cosmo-Skymed 10, 60, 80, 83, 95, 196–198, 201, 271
cost 13
function 118, 126
covariance matrix 119
creeks 148
crop(s) 3, 289, 294
damage 286, 295
development 121
decision making 287
decision tree 89–90
decorrelation 201
deforestation 7–8, 12–13, 57, 81, 260
deforestation inventory 160
Democratic Republic of Congo (DRC) 58, 62, 81, 84, 86–87, 90–91, 94
Denmark 294
dense forest 41
developing countries 13, 17
dielectric
constant 61
properties 36
difference image (Xo) 109
difference vector image 106
differential evolution (DE) 226, 232
differential GPS 210
Differential InSAR (DInSAR) 200, 202, 205, 303
differential interferogram 203
differential interferometric SAR 303
Differential SAR interferometry 3, 200, 211
diffuse scattering 259
digital elevation model (DEM) 21, 200, 213
Digital Surface Model (DSM) 152
Digital Terrain Model (DTM) 18, 43
dilation 107
dimensionality 118, 227
dipoles 149
direct scattering 40
Disaster Monitoring Constellation (DMC) 10, 255
discriminative models 223
displacement
map 215–217
measurements 203
monitoring 219
phase 214
Distelhorn 212, 215, 217
disturbance 34–35, 71
double-bounce 259, 264
effect 146
scatter 148–149
downscaling 255
drought 3, 144, 247, 272, 287, 294, 304
evaluation 253
detection 285
index 286, 292
mitigation 266–267
monitoring 286
severity 292
vulnerability assessment 288
dry
matter 122
season 84
Dry Matter Productivity (DMP) 1
Earth Observation Land Data Assimilation System (EO-LDAS) 117, 119, 122, 124–125, 128, 131–132, 136–137, 302
earthquakes 78
eCognition 103–105
ecological modelling 159
ecophysiological status 160
ecosystem(s) 33
monitoring 159
services 144, 301
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEA</td>
<td>79</td>
</tr>
<tr>
<td>eigenvalue</td>
<td>149</td>
</tr>
<tr>
<td>eigenvector</td>
<td>108, 149</td>
</tr>
<tr>
<td>electromagnetic</td>
<td></td>
</tr>
<tr>
<td>spectrum</td>
<td>174</td>
</tr>
<tr>
<td>waves</td>
<td>9</td>
</tr>
<tr>
<td>embayments</td>
<td>144</td>
</tr>
<tr>
<td>emergencies</td>
<td>302</td>
</tr>
<tr>
<td>Emergency Management Services</td>
<td>238</td>
</tr>
<tr>
<td>emergency response</td>
<td>95</td>
</tr>
<tr>
<td>empirical discrepancy methods</td>
<td>231</td>
</tr>
<tr>
<td>Enhanced Vegetation Index (EVI)</td>
<td>254</td>
</tr>
<tr>
<td>entropy</td>
<td>149</td>
</tr>
<tr>
<td>ENVI</td>
<td>164</td>
</tr>
<tr>
<td>Environment Agency (EA)</td>
<td>145</td>
</tr>
<tr>
<td>epistatic links</td>
<td>236</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>62</td>
</tr>
<tr>
<td>equivalent leaf water</td>
<td>122</td>
</tr>
<tr>
<td>erectophile</td>
<td>126, 130</td>
</tr>
<tr>
<td>erosion</td>
<td>107, 143</td>
</tr>
<tr>
<td>error matrix</td>
<td>168–169</td>
</tr>
<tr>
<td>ERS-1</td>
<td>41–44, 59, 77, 196–197, 201–202, 271</td>
</tr>
<tr>
<td>Essential Climate Variable (ECV)</td>
<td>8</td>
</tr>
<tr>
<td>Essex</td>
<td>145</td>
</tr>
<tr>
<td>estimation error</td>
<td>40–41</td>
</tr>
<tr>
<td>estuaries</td>
<td>145</td>
</tr>
<tr>
<td>Europe</td>
<td>18, 34, 159–160, 179, 285, 296, 304</td>
</tr>
<tr>
<td>European Commission</td>
<td>2, 81</td>
</tr>
<tr>
<td>European Facility for Airborne Research (EUFAR)</td>
<td>163</td>
</tr>
<tr>
<td>European Space Agency (ESA)</td>
<td>11, 59, 120, 174, 177, 196, 247, 252, 301</td>
</tr>
<tr>
<td>European Union (EU)</td>
<td>143–144, 186, 251, 285, 294</td>
</tr>
<tr>
<td>eutrophic</td>
<td>179</td>
</tr>
<tr>
<td>eutrophication</td>
<td>173, 180</td>
</tr>
<tr>
<td>Eutrophic Lake (EUL)</td>
<td>181</td>
</tr>
<tr>
<td>evapotranspiration</td>
<td>144, 286</td>
</tr>
<tr>
<td>Experimental-SAR (E-SAR)</td>
<td>39, 41, 80, 148</td>
</tr>
<tr>
<td>expert knowledge</td>
<td>105</td>
</tr>
<tr>
<td>system classifier</td>
<td>223</td>
</tr>
<tr>
<td>systems</td>
<td>227</td>
</tr>
<tr>
<td>extreme events</td>
<td>144–145</td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>false alarms</td>
<td>112–113</td>
</tr>
<tr>
<td>Famine Early Warning System Network</td>
<td>81</td>
</tr>
<tr>
<td>Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)</td>
<td>164</td>
</tr>
<tr>
<td>field</td>
<td></td>
</tr>
<tr>
<td>campaign</td>
<td>120, 150</td>
</tr>
<tr>
<td>spectroscopy</td>
<td>159, 303</td>
</tr>
<tr>
<td>filtering</td>
<td>107</td>
</tr>
<tr>
<td>Finland</td>
<td>163</td>
</tr>
<tr>
<td>fire</td>
<td>1, 35</td>
</tr>
<tr>
<td>severity</td>
<td>287</td>
</tr>
<tr>
<td>fitness</td>
<td></td>
</tr>
<tr>
<td>evaluation</td>
<td>226</td>
</tr>
<tr>
<td>function</td>
<td>226–227</td>
</tr>
<tr>
<td>score</td>
<td>224</td>
</tr>
<tr>
<td>traces</td>
<td>226</td>
</tr>
<tr>
<td>Floating Algae Index (FAI)</td>
<td>258</td>
</tr>
<tr>
<td>flood(s)</td>
<td>143</td>
</tr>
<tr>
<td>detection</td>
<td>273</td>
</tr>
<tr>
<td>mitigation</td>
<td>144</td>
</tr>
<tr>
<td>monitoring</td>
<td>146</td>
</tr>
<tr>
<td>flooded forests</td>
<td>250</td>
</tr>
<tr>
<td>flooding</td>
<td>69, 79, 198, 250, 264, 295</td>
</tr>
<tr>
<td>floodplains</td>
<td>272</td>
</tr>
<tr>
<td>fluorescence</td>
<td>175, 177</td>
</tr>
<tr>
<td>fluorescence line height (FLH)</td>
<td>181–183, 187, 303</td>
</tr>
<tr>
<td>fluvial processes</td>
<td>210</td>
</tr>
<tr>
<td>Food and Agriculture Organization (FAO)</td>
<td>13, 58, 81, 251</td>
</tr>
<tr>
<td>footprint</td>
<td>11, 19, 24–25, 36</td>
</tr>
<tr>
<td>forest(s)</td>
<td>7–8, 24</td>
</tr>
<tr>
<td>area</td>
<td>12–13, 16</td>
</tr>
<tr>
<td>area change</td>
<td>21</td>
</tr>
<tr>
<td>area mask</td>
<td>24</td>
</tr>
<tr>
<td>biomass</td>
<td>25, 33, 36</td>
</tr>
<tr>
<td>biomes</td>
<td>17</td>
</tr>
<tr>
<td>canopy</td>
<td>38</td>
</tr>
<tr>
<td>carbon</td>
<td>16</td>
</tr>
</tbody>
</table>
forest(s) (cont’d)
 change 61
 definition 12
 degradation 8, 12, 57
 fires 34
 gain 15, 68
 height 41, 43
 inventory 13, 17, 21, 23, 58
 loss 15, 68
 mapping 57, 61, 117
 monitoring 301
 probability map 21–24
 resource inventory 13
 services 13
 stand density 35
 state 13
 structure 44, 302
forest cover 13, 58–59, 61
 change 16
 mapping 301
forest/non-forest
 areas 13, 24, 58, 61, 66–67, 70
 map 301
Forest Resources Assessment (FRA) 58
Formosat 257
Fractal Net Evolution Approach (FNEA) 104
Fraction of Absorbed Photosynthetically Actively Radiation (FAPAR) 1, 16, 117
Fraction of green Vegetation Cover (FCOVER) 16
France 40–41, 294
Freeman-Durden (FD) decomposition 148
Free University of Berlin Water processor (FUB-WeW) 181
frequency(ies) 60, 78, 148
fringe 215
F-SAR 80
fusion
 procedure 105
 process 104
fuzzy 108

g
Gabon 62
GAMMA Portable Radar Interferometer (GPRI) 217
gelbstoff 174
genetic
 algorithms 224, 232
 programming 227, 237
geodetic survey 210
Geographic object-based image analysis (GEOBIA) 223, 228, 234, 236, 238, 304
Geographic Object Novelty Detector (Geo-ND) 231
geo hazards 195
Geoland 2 271
generic distortion 205
gemorphological
 features 148
 processes 209, 212, 219, 303
geomorphology 153
Geoscience Laser Altimeter System (GLAS) 18–19, 24–25, 36, 58
geostatistical methods 35
Geo-Wiki 16, 25
German Aerospace Center (DLR) 80
Germany 96, 294
gilvin 174
glacier(s) 153, 212
 movement 198, 210
Global Biomass Information System 25, 301
global biomass monitoring 20
Global Ecosystem Dynamics Investigation (GEDI) 10–11, 36
Global Environment Monitoring Index (GEMI) 254
global forest monitoring 36
 programmes 14
Global Forest Watch 15
Global Lakes Sentinel Services (GLaSS) 186
Global Navigation Satellite System (GNSS) 164
Global Rainforest Mapping Project (GRFM) 59
Global Remote Sensing Survey (RSS) 13
Global soil moisture 290
GLOBIOMASS 301
GlobCover 15–16, 250
GloboLakes 186–187, 252, 269
GlobWetland 252, 271
Google Earth 63
Google Earth Engine 15
Gower Peninsula 146–147
GPS 165, 199
Gram-Schmidt spectral sharpening 102
granularity 227
graphical user interface (GUI) 105
greenland 251
greenhouse gas
concentrations 34
modelling 34
greenhouse gas emissions (GHG) 7–8, 57
ground
data 17
displacement 200–201
truth 101
ground-based
methods 35
radar interferometry 209–210, 212, 217, 303
ground motion 195
monitoring 198
ground-to-volume ratio 41, 43
groundwater 249, 287
Group on Earth Observations (GEO) 187
growing season 294–295
growing stock volume (GSV) 33–34

h
habitat(s) 143, 145, 253
classification 150
map 151
Habitat Directive 144, 149
Hannigalp 217
height of ambiguity (HOA) 43
height of median energy (HOME) 18
High Resolution Layers (HRL) 2, 252, 271
high-resolution ranging scatterometer (HUTSCAT) 38
high resolution remote sensing 101
high-rise buildings 112–113
histogram 108
HJ-1C 82
Huanjing-1C 10
hue-saturation-value transformation (HSV) 254
humanitarian crisis 3, 78, 195
Hungary 160–161, 179, 303
hydroelectric power 288
hydrological models 253
hydrologic drought 288
hyper-saline conditions 144
hyperspectral 3, 118–120, 123, 136, 145, 159, 161, 163, 165, 168, 170, 175, 186
reflectance spectra 185
signatures 303
hypoxic conditions 173
Hyspiri 160

i
Iberian Peninsula 285, 294
ice debris 210
ICESat 21, 24, 36, 58
ICESat-2 10–11, 21
ICESat-GLAS 2
image
analysis 223
classification 149
object fusion 105
objects 107, 228
processing 227
imaging
radar 211
spectrometer 160
spectroscopy 170
incidence angle 63
Indian Remote Sensing satellites (IRS) 255
Inertial Measuring Unit (IMU) 164
information gain criteria 89, 91, 94–95
inherent optical properties (IOPs) 176
inland waters 175
Integrated coastal zone management (ICZM) 3, 143
interferogram 200, 203, 213, 215
interferometric phase 36, 41, 200, 215
Interferometric Point Target Analysis (IPTA) 201
Interferometric SAR configuration 200
interferometric synthetic aperture radar (InSAR) 41, 44, 47, 146, 153, 195, 199–200, 210, 218, 259, 303
height 43
methodologies 205
processing workflow 214
interferometry 78, 146, 209–210
International Charter on Space and Natural Disasters 302
International Charter “Space and Major Disasters,” 81
International Space Station (ISS) 11
intertidal flats 146
habitats 144–145
inundation 144, 252, 258, 295
inversion problems 37
technique 117–118
ionosphere 41
irrigation 117, 249, 260, 266, 304
Italian Space Agency (ASI) 80

Japan Aerospace Exploration Agency (JAXA) 15–16, 59, 62, 65, 196, 252, 301
Japanese Earth Resources Satellite (JERS-1) 38, 40, 42–43, 59–61, 196–197
Java 89
Joint Polar Satellite System (JPSS) 269

kappa coefficient 23
Keetch-Byram Drought Index 287
Kennaugh matrix 264
kinematics 303
Kis-Balaton Water Protection System (KBWPS) 180
k-means
clustering 108
thresholding 108
Wishart classification 146, 150–151
k-nearest neighbour (k-NN) 19
Kyoto and Carbon Initiative (K&C) 15–16, 59, 62, 65, 252, 302
Kyoto Protocol 7

Lake(s) 1, 173, 176, 249, 252, 260, 272
ecosystems 173
remote sensing 184, 187
Lake Balaton 3, 160, 162, 170, 173, 179, 183–186, 303
lakeshore vegetation 159, 163
land
displacement 203
subsidence 153, 195
use 24, 57, 78, 101, 250
use change 7–8
land cover 1, 16, 35, 57, 77–78, 90, 150, 250, 257, 259, 302
change detection 101
land cover change (LCC) 35
land cover classification system (LCCS) 16, 80–81, 85, 251
land deformation 3
monitoring 195, 199, 203
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 121
landslides 3, 78, 198, 212
land surface
displacement 209
temperature 1
Land Surface Water Index (LSWI) 258
land-water mask 258
larch 34
laser scanning 210
leaf
angle distribution 121–123
dry matter 121
layers 122
optical properties 122
radius 122
reflectance 165–166
spectra model 121
type 2
water equivalent 121
Leaf Area Index (LAI) 1, 9, 16, 121–123, 125–128, 130, 136, 254, 303
light detection and ranging (LiDAR) 2–3, 11, 18–19, 24, 33, 35–36, 41, 145, 199
lacustrine environment 160
lagoons 144
light use efficiency 166
limnology 160
linear regression 40, 46
Line of Sight (LOS) 200, 211, 217
livelihoods 260
Llanrhidian Marsh 146, 148
local incidence angle 63
logging 68
Lorey’s mean canopy height 18–19
Loughor Estuary 146
low-pass filter 213

m
machine learning 37, 88, 223, 227, 238, 257, 304
macrophytes 3, 146, 161, 165, 167–168, 170, 252
magnitude image (\(X_d\)) 106, 108–109, 114
Mali 249
mangrove forest 143
marine surveillance 78
Markov random field (MRF) 102
marsh 144
mass movements 213
mathematical morphology (MM) 107, 227, 234, 236
MATLAB 104
Matter Valley 212
MaxEnt 20–21
Maximum Chlorophyll Index (MCI) 181
maximum entropy 20, 25
Maximum likelihood algorithm 152, 257
Maximum Peak Height (MPH) 181
Mediterranean Wetlands Initiative (MedWet) 252
medium resolution imagery 257, 262, 266
Medium Resolution Imaging Spectrometer (MERIS) 16, 174, 177
MEDium-spectral Resolution Imaging Spectrometer (MERIS), 121 (AU: Please check whether the “MEDium-spectral Resolution Imaging Spectrometer (MERIS), Medium Resolution Imaging Spectrometer (MERIS), MERIS” keywords can be merged together)
bands 178
processing chain 187
time series 184
mesotrophic 179
metaheuristics 224, 226, 230, 235–236, 304
meteorological drought 286
meteorological satellites (Meteosat) 257
Mexico 21–24
microwave 59
bands 148
radiation 9
minimum Euclidian distance 108
Minimum Mapping Unit (MMU) 1
Minimum Noise Fraction (MNF) 165
mining 78, 198, 249
misregistration 102, 114
mixed pixels 122
time series 136, 267, 269
monsoon 266
morphological mapping 146
morphology 107, 143
mountain environment 209–210
mudflats 150, 153
Multi-angle Imaging Spectro-Radiometer (MISR) 120–121, 126–127, 131–132, 136, 303
multi-date segmentation 106
multi-frequency SAR 77–78, 80–81, 87, 95, 153, 302
multi-looking 213
multiple linear regression 41
multiple scattering 122
multi-scale image analysis 229
multispectral
bands 170
imagery 163
imaging 177
sensor(s) 132, 258
Multispectral Imager (MSI) 184, 303
multi-temporal
classification 255
filtering 42
SAR 146
mussel beds 146

n
nadir 257
National Centres for Environmental
Prediction (NCEP) reanalysis 121
national forest inventory 13, 17
National Oceanic and Atmospheric
Administration (NOAA) 257
National Vegetation Classification
(NVC) 144, 150
NATURA 2000 159
natural disasters 3, 195, 295, 302
natural forest 13
Natural Environment Research Council
(NERC) 163, 186
nature protection 159
NDVI time series 262
nearest neighbour interpolation 102
Netherlands 143
neural networks 19, 177, 180
Niger Delta 249
Niger river 249
nitrogen 173
non-wood forest products 13
normality 19
Normalized Difference Pond Index
(NDPI) 254
Normalized Difference Turbidity Index
(NDTI) 254
Normalized Difference Vegetation Index
(NDVI) 1, 9, 16, 87, 103, 152, 164, 254
Normalized Difference Water Index
(NDWI) 254
normalized radar cross-section 63
Norway 43
NovaSAR-S 81–82, 146, 148, 153, 303
nutrients 249

O
object based approaches 101, 103, 106, 113
object recognition 227
observational operator 122
Ocean and Land Colour Instrument
(OLCI) 184, 269, 272, 303
oil
eextraction 198
palm plantations 12–13
opening by reconstruction (OBR) 107
open water 266
Open Water Index (OWI) 258
Open Water Likelihood Algorithm
(OWL) 258
optical 8, 19, 33, 35, 87, 270
high resolution imagery 255
leveling 199
remote sensing 58–59
sensors 9
optically
active materials 254
active substances 174–178
complex lake 303
complex waters 175, 178
optimization 106
loop 230
problems 232, 236
optimized multi-date segmentation 104
oxygen levels 173

P
Palmer Drought Severity Index
(PDSI) 272, 287
panchromatic data 160
PanGeo 195
pan-sharpening 102
parallel computing 232
parameters 118
parameter tuning 229
parent process object (PPO) 105
parts-based models 223
passive microwave instruments 272
passive sensors 9
PAZ 10, 83, 271
pelagic 175
penetration 204
periglacial 210, 212
permafrost 210
Persistent Scatterer Interferometry
(PSI) 3, 201–202, 204–205, 211, 303
phase
 ambiguities 214
 cycle 215
 difference 200
 shift 264
Phased Array L-band Synthetic Aperture Radar (PALSAR) 9–10, 21, 23–25, 39–40, 59–63, 80–82, 84–85, 90, 93, 95, 196, 204, 259, 271, 301
phenology 1
phosphorous 173
Photochemical Reflectance Index (PRI) 164
photosynthesis 1, 16, 117
Phragmites 161, 163, 166–167
phycocyanin 175
phytoplankton 3, 173–174
 biomass 173–174, 179, 303
 bloom 178
 monitoring 180
pigments 174, 178
pine 34
pioneer zone 144, 153
pixel-based approach 102–103, 106, 113, 228
pixel size 15
plankton 254
planophile 126
plant
 growth 144
 species 160
plantations 13
Platthorn 212
Poland 102, 294–296, 304
polarimetric
 data 148
 decomposition 146
 interferometry 18, 47
 SAR 153, 260, 264, 271, 303
polarimetric interferometry SAR (PolInSAR) 41, 43, 47
polarimetry 38
polarization 40, 44, 302
polar monitoring 78
poplar 34
population-based metaheuristics 224
precipitation 272, 285, 294
Price Empirical Orthogonal Functions (EOF) 123
principal component analysis (PCA) 102, 108
a priori information 118, 123, 128
probability density function (PDF) 123
PROBA-V 10, 21, 25, 270
PROSPECT model 122
q
Quick Bird 102
Quikscatterometer data (QSCAT) 20
r
radar 33–35, 45, 211
 backscatter 9
 frequency 9
 interferometry techniques 212
 remote sensing 44
radargrammetry 36, 38, 47
Radarsat 10, 60, 82, 196–197, 259, 271
Radarsat Constellation Mission (RCM) 83, 271
radiance data 181
radiative transfer 177
model 117, 119, 121
radio detection and ranging (radar) 33
rainfall 71, 81, 85, 144, 295
Ramsar convention on wetlands 249, 252, 260
random
 forest regression 43
 forests 19–20
 search 226
random volume over ground (RVoG) 37
RapidEye 81, 84–85, 87, 96, 260–262, 265, 267
red-edge region 132
Reducing Emissions from Deforestation and Forest Degradation (REDD+) 2, 8, 57, 62
reed 3, 165–166
die-back 160, 168
Reference Weighted Jaccard (RWJ) 232
reflectance 9, 165, 167, 175, 177
Reflectance Line Height 181
reforestation 7
regression trees 41
regularization parameter 126, 136
relative error 11
Remote sensors, timeline 256
renewable water resources 248
repeat-pass 146, 200
reservoir 260, 272, 288
resolution 15, 78, 267, 270
revisit time 78
RISAT 83
Ritigraben 212, 215
river(s) 1, 295
discharge 272
rock glacier 210, 212, 218, 303
movement 217
Root Mean Square Error (RMSE) 11, 15, 24, 38, 43, 123
rule set development 236
Russia 34–35, 46

S
Sahel region 247, 253
Salicornia 144, 150
salt marsh 3, 143, 145, 148–149, 153, 303
ecology 144
mapping 154
Sample Supervised Search-Centric Approaches 223, 304
sand 153
Satélite Argentino de Observación Con Microondas (SAOCOM) 10, 60, 71, 80, 82, 95, 271
Satellite Pour l’Observation de la Terre (SPOT) 10, 21, 59, 163, 254–255, 257–258, 269, 271
saturation 11, 36, 41, 45, 302
savannah 249, 253
Scandinavia 294
scatterers 37, 205
scattering 174, 254
elements 61
mechanism 78, 148–149, 259
Scattering by Arbitrarily Inclined Leaves (SAIL) model 118
scatterometer 38, 258, 272
scene illumination 102
Sea and Land Surface Temperature Radiometer (SLSTR) 270
sea ice 78
sea level rise 198
search
derivative free methods 232
granularity 236
landscapes 225, 227
method 224, 236
search-centric sample supervised 229, 236
segment generation 232, 234
SEASAT 196
seasonal monitoring 267
SeaWifs 252
2-stream based models 118
sediment types 146
segmentation 69, 102, 104, 106–107, 223, 227–230, 234, 236
algorithm 237
evaluation 233
segmentation parameter tuning (SPT) 230
seismic event 195
semantic segmentation 223
semi-arid 247
Africa 3
regions 285, 304
semi-discrete model 118, 122
semi-empirical methods 37, 40, 46
senescent material 122
Sentinel-1 10, 33, 60, 71, 77–78, 80, 82, 95, 197, 259, 269, 272, 302
Sentinel-2 10, 21, 25, 96, 119, 136, 170, 174, 184, 252, 269, 271, 302–303
Sentinel-3 174, 184, 252, 269, 272, 302–303
Sentinel missions 247, 301
SeoSAR 83
sequential filtering 109
SEVIRI 257
sewage 173
shoreline 249, 253
shrub land 251
shuttle mission 40
Shuttle Radar Topography Mission (SRTM) 20–21, 43, 60, 258
Siberia 15, 35, 40, 42–43, 47, 301
signatures 176
siltation 260
similarity
 image 108–109, 112
 measure 114
single-bounce 259
singular value decomposition (SVD) 203, 214
SIR-C/X-SAR 40, 79
in situ data 43
in situ methods 16, 19, 38, 41
skills 2
slant range resolution 148
slope(s) 11, 23, 25, 42, 209
Small Baseline Subsets (SBAS) 201–202, 211
snow melt 266
soil
 brightness 122
 layers 287
 profile 291
 properties 290
 reflectance 123
 salinity 144
 spectral measurements 121
 types 17
 water deficit 291
 wetness 122
 Soil Adjusted Vegetation Index (SAVI) 254
soil moisture 38, 266, 272, 286, 289, 295
deficit 289
soil moisture deficit index (SMDI) 289, 291, 293
Soil Moisture Drought Index (SMDI) 287
soil organic carbon (SOC) 57
solar
 illumination 170
 radiation 117
Spain 117, 119–120, 126, 130, 302
Spartina 144, 150
spatial
 information 106
 regularization 118–119, 126, 128, 130, 137, 303
resolution 21, 131, 268
Spatial Temporal Unwrapping Network (STUN) 201
Special Sensor Microwave Imager (SSMI) 258, 289–290, 296
species distribution 58
speckle 150, 228
spectral
 bands 118, 121
 dimensionality 165
 homogeneity 132
 information 106
 measurements 170
 reflectances 117
 sharpening 102
 signature 119, 131, 178
 similarity image 106
 soil model 121
Spectral Angle Mapper (SAM) 106
Spectral Correlation Mapper (SCM) 106
spectral mixture analysis (SMA) 254
spectroradiometer 161
spits 144
spruce 34
stakeholders 16
Standardized Precipitation Index (SPI) 286–288
Standard Precipitation Index (SPI) 272
state variables 118
stem volume 33, 38, 41–42
stereo-photogrammetry 210
stereoscopic height 41
Stockholm 40
storms 144–145, 198
stream
 channels 210
 flow 288
Stripmap mode 213
structure monitoring 198
sub-pixel variability 24
sub-Saharan Africa 247, 250
subsidence 195, 198
succession 145
summer drought 296
sun azimuth angle (SAA) 121
sunflower 130–131
sun zenith angle (SZA) 121
Suomi NPP 269
supervised classification 152, 165
support vector machine (SVM) 43, 63, 68, 165, 169
surface
displacement mapping 210–211, 218
reflectance 126, 131, 262
roughness 78, 153
scatter 148–149, 264
velocity 209
water dynamics 266
Surface Water Ocean Topography (SWOT) 272
Surface Water Supply Index (SWSI) 287–288
suspended particulate matter (SPM) 174, 303
swamp forest 69
Swansea 146
Sweden 40–41, 43
Switzerland 209, 213, 303
Synthetic Aperture Radar (SAR) 2, 8, 11, 13, 18–19, 36, 39, 57–59, 77, 137, 143, 146, 148, 196, 205, 209, 247, 259, 301
frequency 46
interferometry 41, 44, 196, 198, 211, 213
missions 37, 197
remote sensing 71
satellites 60, 82
sensors 259, 270
systems 196
tomography 18, 36
Synthetic Aperture Radar Altimeter (SARA) 272
systematic sampling 13
Szigliget Bay 161, 165–166
taiga 34
Tandem-L 10, 60, 271
Tandem-X 10, 39, 43, 60, 80–81, 83, 90, 93, 95, 148, 196–198, 201–202, 213, 218, 259–260, 265, 303
terrestrial carbon pools 7–8, 34
sink 34
texture 36, 95, 105, 290
timber yield 301
time
regularization 119, 126–127, 136, 303
series 119, 136, 184, 247, 265, 269
series analysis 255, 262, 304
series data 266
topographic
mapping 211
phase 217
topography 63
Total Ozone Mapping Spectrometer (TOMS) 121
total scattering coefficient 176
tourism industry 179
tourists 179
Transdanubian region 179
tree
cover 2, 15, 24, 47, 58
height 12, 17, 41–42
trophic gradient 179
tropical 12
countries 8
forest 34, 57–58, 71
Tropical Ecosystem Environment Monitoring by Satellites (TREES) programme 58
Tropical Rainfall Measuring Mission (TRMM) 272
tropics 7
tsunamis 144
turbidity 254
2D linear regression 213
Typha 163

U
certainty(ies) 7, 20–22, 24, 42, 118–119, 123, 126, 129, 132, 136–137, 235
underground water 198
United Kingdom (UK) 294
United Nations (UN) 13
United Nations Framework Convention on Climate Change (UNFCCC) 7–8
unsupervised classification 150–151
unwrapped phase 203

V
vadose zone 296
validation 136
Van Zyl (VZ) decomposition 148
variable importance 91, 94–95
vegetation 122, 131
composition 170
cover 13
dynamics 266
mapping 148
phenology 1
properties 117
species identification 165
structure 17–18, 145
type 257, 264
water content 38
Vegetation Condition Index (VCI) 1, 272, 287–288
Vegetation Continuous Fields (VCF) 13, 15, 23–24, 40, 43
vegetation indices (VI) 21, 36, 117, 272
Vegetation Productivity Indicator (VPI) 1
velocity 215, 217
Very High Frequency (VHF) 41
very high resolution (VHR) imagery 223, 255
view azimuth angle (VAA) 121
viewing
angle 112
glometry 102

view zenith angle (VZA) 119, 121, 132
Visible/Infrared Imager Radiometer Suite (VIIRS) 269, 272
visual analysis 110
volcanic activities 198
volume
decorrelation 44
scatter 148–149
scattering function 176

W
Waikato Environment for Knowledge Analysis (Weka) 89
Wales 146, 148, 303
Warsaw 102
water
availability 3, 247, 250, 266, 272
balance 285
bodies 1, 249, 257
body detection 273
body mapping 255
classification 257
colour 174
column 175
coverage 264
covered surface area 263, 269
cycle 272
extent mapping 79
extraction 249
features 87
quality 144, 180, 266, 295
resource assessment 272
resources 247
scarcity 249
water cloud model (WCM) 37, 43
Water Framework Directive (WFD) 3
waterfront 167
water level(s) 1, 160
fluctuations 146
height 272
waterlogged soil 251
water stress index 247
wave action 144
waveform 11, 19
wavelength(s) 9, 59–61, 71, 146, 174, 177, 204, 302
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>West Africa</td>
<td>247, 253</td>
</tr>
<tr>
<td>wetland(s)</td>
<td>3, 146, 159–160, 198, 247, 249, 272–273</td>
</tr>
<tr>
<td>classification</td>
<td>250–251</td>
</tr>
<tr>
<td>definition</td>
<td>266</td>
</tr>
<tr>
<td>degradation</td>
<td>250</td>
</tr>
<tr>
<td>inventory project</td>
<td>252</td>
</tr>
<tr>
<td>mapping</td>
<td>304</td>
</tr>
<tr>
<td>monitoring</td>
<td>252, 258–260, 270–271</td>
</tr>
<tr>
<td>monitoring parameters</td>
<td>267</td>
</tr>
<tr>
<td>remote sensing</td>
<td>266</td>
</tr>
<tr>
<td>vegetation</td>
<td>254, 257</td>
</tr>
<tr>
<td>Wetlands of International Importance</td>
<td>249</td>
</tr>
<tr>
<td>wet season</td>
<td>84</td>
</tr>
<tr>
<td>wide-swath mode (WSM)</td>
<td>259</td>
</tr>
<tr>
<td>winter acquisitions</td>
<td>41</td>
</tr>
<tr>
<td>Wishart distribution</td>
<td>150</td>
</tr>
<tr>
<td>wood density</td>
<td>17</td>
</tr>
<tr>
<td>woody cover</td>
<td>90</td>
</tr>
<tr>
<td>woody vegetation encroachment</td>
<td>24</td>
</tr>
<tr>
<td>WorldView-3</td>
<td>160, 170</td>
</tr>
<tr>
<td>xanthophylls</td>
<td>175</td>
</tr>
<tr>
<td>y</td>
<td></td>
</tr>
<tr>
<td>yellow substance</td>
<td>174</td>
</tr>
<tr>
<td>Yucatan Peninsula</td>
<td>22–23</td>
</tr>
<tr>
<td>Zala River</td>
<td>179–181</td>
</tr>
<tr>
<td>zenith angles</td>
<td>123</td>
</tr>
</tbody>
</table>