Contents

Preface xvii
About the Authors xxi
Acknowledgements xxiii
Introduction xxv

1 Marx Generators and Marx-Like Circuits 1
 1.1 Operational Principles of Simple Marxes 1
 1.1.1 Marx Charge Cycle 3
 1.1.2 Marx Erection 4
 1.1.2.1 Switch Preionization by Ultraviolet Radiation 5
 1.1.2.2 Switch Overvoltages in an Ideal Marx 5
 1.1.3 Marx Discharge Cycle 6
 1.1.3.1 No Fire 7
 1.1.3.2 Equivalent Circuit Parameters During Discharge 7
 1.1.4 Load Effects on the Marx Discharge 10
 1.1.4.1 Capacitive Loads 10
 1.1.4.2 A Marx Charging a Resistive Load 14
 1.2 Impulse Generators 15
 1.2.1 Exact Solutions 15
 1.2.2 Approximate Solutions 18
 1.2.3 Distributed Front Resistors 19
 1.3 Effects of Stray Capacitance on Marx Operation 19
 1.3.1 Voltage Division by Stray Capacitance 20
 1.3.2 Exploiting Stray Capacitance: The Wave Erection Marx 22
 1.3.3 The Effects of Interstage Coupling Capacitance 23
 1.4 Enhanced Triggering Techniques 26
 1.4.1 Capacitive Back-Coupling 26
 1.4.2 Resistive Back-Coupling 27
 1.4.3 Capacitive and Resistively Coupled Marx 28
 1.4.4 The Maxwell Marx 30
1.5 Examples of Complex Marx Generators 31
1.5.1 Hermes I and II 31
1.5.2 PBFA and Z 32
1.5.3 Aurora 33
1.6 Marx Generator Variations 33
1.6.1 Marx/PFN with Resistive Load 35
1.6.2 Helical Line Marx Generator 38
1.7 Other Design Considerations 39
1.7.1 Charging Voltage and Number of Stages 39
1.7.2 Insulation System 40
1.7.3 Marx Capacitors 41
1.7.4 Marx Spark Gaps 41
1.7.5 Marx Resistors 42
1.7.6 Marx Initiation 42
1.7.7 Repetitive Operation 44
1.7.8 Circuit Modeling 45
1.8 Marx-Like Voltage-Multiplying Circuits 45
1.8.1 The Spiral Generator 46
1.8.2 Time Isolation Line Voltage Multiplier 48
1.8.3 The LC Inversion Generator 49
1.9 Design Examples 54
References 57

2 Pulse Transformers 63
2.1 Tesla Transformers 63
2.1.1 Equivalent Circuit and Design Equations 64
2.1.2 Double Resonance and Waveforms 65
2.1.3 Off Resonance and Waveforms 66
2.1.4 Triple Resonance and Waveforms 67
2.1.5 No Load and Waveforms 68
2.1.6 Construction and Configurations 69
2.2 Transmission Line Transformers 71
2.2.1 Tapered Transmission Line 71
2.2.1.1 Pulse Distortion 71
2.2.1.2 The Theory of Small Reflections 72
2.2.1.3 Gain of a Tapered Transmission Line Transformer 77
2.2.1.4 The Exponential Tapered Transmission Line 77
2.3 Magnetic Induction 79
2.3.1 Linear Pulse Transformers 81
2.3.2 Induction Cells 81
2.3.3 Linear Transformer Drivers 83
2.3.3.1 Operating Principles 85
4.1.3.2 Delay Time 160
4.1.3.3 Rise Time (t_r) 163
4.1.3.4 Burst-Mode Repetitively Pulsed Spark Gaps 164
4.1.3.5 Shot Life 166
4.1.3.6 Electrode Erosion 167
4.1.4 Current Sharing in Spark Gaps 172
4.1.4.1 Parallel Operation 172
4.1.4.2 Multichanneling Operation 173
4.1.5 Triggered Spark Gaps 177
4.1.5.1 Operation of Triggered Spark Gaps 177
4.1.5.2 Types of Triggered Switches 179
4.1.6 Specialized Spark Gap Geometries 195
4.1.6.1 Rail Gaps 195
4.1.6.2 Corona-Stabilized Switches 197
4.1.6.3 Ultra-Wideband Spark Gaps 199
4.1.7 Materials Used in Spark Gaps 201
4.1.7.1 Switching Media 201
4.1.7.2 Electrode Materials 203
4.1.7.3 Housing Materials 204
4.2 Gas Discharge Switches 204
4.2.1 The Pseudospark Switch 204
4.2.1.1 Trigger Discharge Techniques 206
4.2.1.2 Pseudospark Switch Configurations 207
4.2.2 Thyratrons 209
4.2.3 Ignitrons 213
4.2.4 Krytrons 214
4.2.5 Radioisotope-Aided Miniature Spark Gap 216
4.3 Solid Dielectric Switches 216
4.4 Magnetic Switches 217
4.4.1 The Hysteresis Curve 218
4.4.2 Magnetic Core Size 220
4.5 Solid-State Switches 221
4.5.1 Thyristor-Based Switches 223
4.5.1.1 Silicon-Controlled Rectifier 223
4.5.1.2 Reverse Switch-On Dynister 226
4.5.1.3 Gate Turn-Off Thyristor 226
4.5.1.4 MOS Controlled Thyristor 227
4.5.1.5 MOS Turn-Off Thyristor 228
4.5.1.6 Emitter Turn-Off Thyristor 229
4.5.1.7 Integrated Gate-Commuted Thyristor 230
4.5.2 Transistor-Based Switches 230
4.5.2.1 Insulated Gate Bipolar Transistor 230
5 Opening Switches 251

5.1 Typical Circuits 251
5.2 Equivalent Circuit 253
5.3 Opening Switch Parameters 254
5.3.1 Conduction Time 255
5.3.2 Trigger Source for Closure 255
5.3.3 Trigger Source for Opening 256
5.3.4 Opening Time 256
5.3.5 Dielectric Strength Recovery Rate 256
5.4 Opening Switch Configurations 256
5.4.1 Exploding Fuse 257
5.4.1.1 Exploding Conductor Phenomenon 258
5.4.1.2 Switch Energy Dissipation in the Switch 260
5.4.1.3 Time for Vaporization 261
5.4.1.4 Energy for Vaporization 262
5.4.1.5 Optimum Fuse Length 263
5.4.1.6 Fuse Assembly Construction 263
5.4.1.7 Multistage Switching 265
5.4.1.8 Performances of Fuse Switches 267
5.4.2 Electron Beam-Controlled Switch 267
5.4.2.1 Electron Number Density (\(n_e\)) 269
5.4.2.2 Discharge Resistivity (\(\rho\)) 271
5.4.2.3 Switching Time Behavior 271
5.4.2.4 Efficiency of EBCS 274
5.4.2.5 Discharge Instabilities 276
5.4.2.6 Switch Dielectric 277
5.4.2.7 Switch Dimensions 278
5.4.3 Vacuum Arc Switch 280
5.4.3.1 Mechanical Breaker 280
5.4.3.2 Magnetic Vacuum Breaker 282
5.4.3.3 Mechanical Magnetic Vacuum Breaker 283
5.4.4 Explosive Switch 284
5.4.5 Explosive Plasma Switch 286
5.4.6 Plasma Erosion Switch 286
5.4.7 Dense Plasma Focus 287
5.4.8 Plasma Implosion Switch 289
5.4.9 Reflex Switch 290
5.4.10 Crossed Field Tube 291
Contents

5.4.11 Miscellaneous 293
5.5 Design Example 294
 References 295

6 Multigigawatt to Multiterawatt Systems 303
 6.1 Capacitive Storage 305
 6.1.1 Primary Capacitor Storage 305
 6.1.2 Primary–Intermediate Capacitor Storage 306
 6.1.3 Primary–Intermediate–Fast Capacitor Storage 307
 6.1.3.1 Fast Marx Generator 308
 6.1.4 Parallel Operation of Marx Generators 308
 6.1.5 Pulse Forming Line Requirements for Optimum Performance 309
 6.1.5.1 Peak Power Delivery into a Matched Load 309
 6.1.5.2 Low-Impedance PFLs 310
 6.1.5.3 Pulse Time Compression 310
 6.2 Inductive Storage Systems 311
 6.2.1 Primary Inductor Storage 311
 6.2.2 Cascaded Inductor Storage 311
 6.3 Magnetic Pulse Compression 313
 6.4 Inductive Voltage Adder 315
 6.5 Induction Linac Techniques 317
 6.5.1 Magnetic Core Induction Linacs 317
 6.5.2 Pulsed Line Induction Linacs 319
 6.5.3 Autoaccelerator Induction Linac 322
 6.6 Design Examples 323
 References 328

7 Energy Storage in Capacitor Banks 331
 7.1 Basic Equations 331
 7.1.1 Case 1: Lossless, Undamped Circuit $\xi = 0$ 333
 7.1.2 Case 2: Overdamped Circuit $\xi > 1$ 334
 7.1.3 Case 3: Underdamped Circuit $\xi < 1$ 336
 7.1.4 Case 4: Critically Damped Circuit $\xi = 1$ 336
 7.1.5 Comparison of Circuit Responses 337
 7.2 Capacitor Bank Circuit Topology 338
 7.2.1 Equivalent Circuit of a Low-Energy Capacitor Bank 339
 7.2.2 Equivalent Circuit of a High-Energy Capacitor Bank 340
 7.3 Charging Supply 342
 7.3.1 Constant Voltage (Resistive) Charging 342
 7.3.2 Constant Current Charging 344
 7.3.3 Constant Power Charging 345
 7.4 Components of a Capacitor Bank 345
 7.4.1 Energy Storage Capacitor 346
 7.4.1.1 Capacitor Parameters 347
7.4.1.2 Test Methods 349
7.4.1.3 Pulse Repetition Frequency 349
7.4.1.4 Recent Advances 349
7.4.2 Trigger Pulse Generator 350
7.4.3 Transmission Lines 352
7.4.3.1 Coaxial Cables 353
7.4.3.2 Sandwich Lines 355
7.4.4 Power Feed 356
7.5 Safety 357
7.6 Typical Capacitor Bank Configurations 361
7.7 Example Problems 363
References 366

8 Electrical Breakdown in Gases 369
8.1 Kinetic Theory of Gases 369
8.1.1 The Kinetic Theory of Neutral Gases 370
8.1.1.1 Maxwell–Boltzmann Distribution of Velocities 371
8.1.1.2 Mean Free Path 373
8.1.2 The Kinetic Theory of Ionized Gases 377
8.1.2.1 Energy Gained from the Electric Field 378
8.1.2.2 Elastic Collisions 378
8.1.2.3 Inelastic Collisions 379
8.1.2.4 Total Collisional Cross Section 383
8.2 Early Experiments in Electrical Breakdown 384
8.2.1 Paschen’s Law 384
8.2.2 Townsend’s Experiments 385
8.2.2.1 Region I: The Ionization-Free Region 386
8.2.2.2 Region II: The Townsend First Ionization Region 386
8.2.2.3 Region III: Townsend Second Ionization Region 387
8.2.3 Paschen’s Law Revisited 387
8.2.4 The Electron Avalanche 391
8.3 Mechanisms of Spark Formation 393
8.3.1 The Townsend Discharge 394
8.3.1.1 Multiple Secondary Mechanisms 396
8.3.1.2 Generalized Townsend Breakdown Criterion 398
8.3.1.3 Townsend Criterion in Nonuniform Geometries 399
8.3.1.4 Modifications for Electronegative Gases 400
8.3.2 Theory of the Streamer Mechanism 400
8.3.2.1 Criterion for Streamer Onset 401
8.3.2.2 The Electric Field Along the Avalanche 406
8.3.2.3 A Qualitative Description of Streamer Formation 407
8.3.2.4 Streamer Criterion in Nonuniform Electric Fields 410
8.3.2.5 The Overvolted Streamer 411
8.3.2.6 Pedersen’s Criterion 412
8.4 The Corona Discharge 413
8.5 Pseudospark Discharges 415
8.5.1 The Prebreakdown Regime 415
8.5.2 Breakdown Regime 416
8.6 Breakdown Behavior of Gaseous SF$_6$ 417
8.6.1 Electrode Material 418
8.6.2 Surface Area and Surface Finish 418
8.6.3 Gap Spacing and High Pressures 419
8.6.4 Insulating Spacer 420
8.6.5 Contamination by Conducting Particles 420
8.7 Intershields for Optimal Use of Insulation 421
8.7.1 Cylindrical Geometry 421
8.7.1.1 Two-Electrode Concentric Cylinders 422
8.7.1.2 Cylindrical Geometry with an Intershield 423
8.7.1.3 Intershield Effectiveness 426
8.7.2 Spherical Geometry 426
8.7.2.1 Two Concentric Spheres 426
8.7.2.2 A Spherical Geometry with an Intershield 426
8.8 Design Examples 427
References 433

9 Electrical Breakdown in Solids, Liquids, and Vacuum 439
9.1 Solids 439
9.1.1 Breakdown Mechanisms in Solids 440
9.1.1.1 Intrinsic Breakdown 440
9.1.1.2 Thermal Breakdown 442
9.1.1.3 Electromechanical Breakdown 444
9.1.1.4 Partial Discharges 445
9.1.1.5 Electrical Trees 447
9.1.2 Methods of Improving Solid Insulator Performance 449
9.1.2.1 Insulation in Energy Storage Capacitors 449
9.1.2.2 Surge Voltage Distribution in a Tesla Transformer 449
9.1.2.3 Surface Flashover in Standoff Insulators 450
9.1.2.4 General Care for Fabrication and Assembly 452
9.2 Liquids 452
9.2.1 Breakdown Mechanisms in Liquids 452
9.2.1.1 Particle Alignment 452
9.2.1.2 Electronic Breakdown 453
9.2.1.3 Streamers in Bubbles 453
9.2.2 Mechanisms of Bubble Formation 455
9.2.2.1 Krasucki’s Hypothesis 455
9.2.2.2 Kao’s Hypothesis 455
9.2.2.3 Sharbaugh and Watson Hypothesis 456
9.2.3 Breakdown Features of Water 457
9.2.3.1 Dependence of Breakdown Strength on Pulse Duration 457
9.2.3.2 Dependence of Breakdown Voltage on Polarity 457
9.2.3.3 Electric Field Intensification 457
9.2.4 Methods of Improving Liquid Dielectric Performance 457
9.2.4.1 New Compositions 458
9.2.4.2 Addition of Electron Scavengers 458
9.2.4.3 Liquid Mixtures 458
9.2.4.4 Impregnation 458
9.2.4.5 Purification 459
9.3 Vacuum 459
9.3.1 Vacuum Breakdown Mechanisms 459
9.3.1.1 ABCD Mechanism 460
9.3.1.2 Field Emission-Initiated Breakdown 460
9.3.1.3 Microparticle-Initiated Breakdown 462
9.3.1.4 Plasma Flare-Initiated Breakdown 463
9.3.2 Improving Vacuum Insulation Performance 464
9.3.2.1 Conditioning 464
9.3.2.2 Surface Treatment and Coatings 467
9.3.3 Triple-Point Junction Modifications 467
9.3.4 Vacuum Magnetic Insulation 468
9.3.5 Surface Flashover Across Solids in Vacuum 471
9.3.5.1 Secondary Electron Emission from Dielectric Surfaces 471
9.3.5.2 Saturated Secondary Electron Emission Avalanche 473
9.4 Composite Dielectrics 479
9.5 Design Examples 481
References 486

10 Pulsed Voltage and Current Measurements 493
10.1 Pulsed Voltage Measurement 493
10.1.1 Spark Gaps 493
10.1.1.1 Peak Voltage of Pulses (>1 μs) 494
10.1.1.2 Peak Voltage of Pulses (<1 μs) 495
10.1.2 Crest Voltmeters 496
10.1.3 Voltage Dividers 498
10.1.3.1 Resistive Divider 498
10.1.3.2 Capacitive Dividers 507
10.1.4 Electro-optical Techniques 511
10.1.4.1 The Kerr Cell 511
10.1.4.2 The Pockels Cell 515
10.1.5 Reflection Attenuator 518
10.2 Pulsed Current Measurement 519
10.2.1 Current Viewing Resistor 519
 10.2.1.1 Energy Capacity 519
 10.2.1.2 Configurations 520
 10.2.1.3 Tolerance in Resistance 521
 10.2.1.4 Physical Dimensions 523
 10.2.1.5 Frequency Response 523

10.2.2 Rogowski Coil 523
 10.2.2.1 Voltage Induced in the Rogowski Coil 524
 10.2.2.2 Compensated Rogowski Coil 525
 10.2.2.3 Self-Integrating Rogowski Coil 527
 10.2.2.4 Construction 529

10.2.3 Inductive (B-dot) Probe 529

10.2.4 Current Transformer 530

10.2.5 Magneto-optic Current Transformer 530
 10.2.5.1 Basic Principles 531
 10.2.5.2 Intensity Relations for Single-Beam Detector 532
 10.2.5.3 Intensity Relations for Differential Split-Beam Detector 532
 10.2.5.4 Light Source 533
 10.2.5.5 Magneto-optic Sensor 533
 10.2.5.6 Frequency Response 533
 10.2.5.7 Device Configurations 533

10.3 Design Examples 535

References 538

11 Electromagnetic Interference and Noise Suppression 547

11.1 Interference Coupling Modes 547
 11.1.1 Coupling in Long Transmission Lines 548
 11.1.1.1 Capacitive Coupling 548
 11.1.1.2 Radiative Coupling 550
 11.1.1.3 Inductive Coupling 550
 11.1.2 Common Impedance Coupling 550
 11.1.3 Coupling of Short Transmission Lines over a Ground Plane 551
 11.1.3.1 Voltages Induced by Transients 553
 11.1.3.2 Modification of Inductances by the Ground Plane 556
 11.2 Noise Suppression Techniques 559
 11.2.1 Shielded Enclosure 559
 11.2.1.1 Absorption Loss (A) 561
 11.2.1.2 Reflection Loss (R) 561
 11.2.1.3 Correction Factor (β) 563
 11.2.1.4 Shielding Effectiveness for Plane Waves 563
 11.2.1.5 Shielding Effectiveness for High-Impedance E and Low-Impedance H Fields 564
 11.2.1.6 Typical Shielding Effectiveness of a Simple Practical Enclosure 565
11.2.1.7 Twisted Shielded Pair 565
11.2.2 Grounding and Ground Loops 566
11.2.2.1 Low-Impedance Bypass Path 567
11.2.2.2 Single-Point Grounding 568
11.2.2.3 Breaking Ground Loops with Optical Isolation 568
11.2.3 Power Line Filters 569
11.2.3.1 Types of Filters 569
11.2.3.2 Insertion Loss 570
11.2.4 Isolation Transformer 571
11.3 Well-Shielded Equipment Topology 572
11.3.1 High-Interference Immunity Measurement System 574
11.3.2 Immunity Technique for Free Field Measurements 575
11.4 Design Examples 575
References 581

12 EM Topology for Interference Control 585
12.1 Topological Design 586
12.1.1 Series Decomposition 587
12.1.2 Parallel Decomposition 588
12.2 Shield Penetrations 589
12.2.1 Necessity for Grounding 590
12.2.2 Grounding Conductors 591
12.2.3 Groundable Conductors 592
12.2.4 Insulated Conductors 592
12.3 Shield Apertures 595
12.4 Diffusive Penetration 597
12.4.1 Cavity Fields 599
12.4.1.1 Frequency Domain Solutions 600
12.4.1.2 Time Domain Solutions 601
12.4.2 Single Panel Entry 603
12.4.3 Voltages Induced by Diffusive Penetration 604
12.5 Design Examples 604
References 606

Index 609