Index

A
addiction (drugs and substances), 19, 223–4, 296–8
 craving and drug seeking behavior, 55, 223–4
 deep brain stimulation, 296–8
 repetitive transcranial magnetic stimulation, 223–4
adolescents, ECT, 69–70
adverse effects see safety considerations
affect, core, 16–18
affective disorders see mood disorders
afferent stimulation and M1, 201
afferent vagal nerve fibers and pathways, 309–11, 327
 mood regulation and, 322
alfentanil in ECT, 99
allesthesia, 16
alpha frontal activity and epidural prefrontal cortical stimulation, 264
alternating current stimulation, transcranial (tACS), 240–2
Alzheimer’s disease, deep brain stimulation, 300
AMPA receptors, 46–8
 long-term depression and, 51
 long-term potentiation and, 48
anesthesia
 ECT, 96–100, 138
 magnetic seizure therapy, 127–8
 depth monitoring, 138
anhedonia, 18–21
 in depression, functional neuroanatomy, 20–1
 direct brain modulation, 22–3
 in pathophysiology, 19–20
animal models/studies
 anxiety, 314
 depression, 313–4
 ECT, 110
 vagal nerve stimulation, 314
epilepsy, and vagal nerve stimulation, 313–14, 317–18
Parkinson’s disease, 23, 33, 36–7, 40, 111
schizophrenia, 299
 stroke, 245
see also primates
anorexia nervosa, deep brain stimulation, 298–9
antidepressant drugs
 ECT combined with, 94–5
 ECT vs., 68, 111–12
 transcranial direct current stimulation and/or, 52, 247
 in treatment-resistant depression, 258
 antidepressant effects of stimulation see depression
 antiepileptic drugs (AEDs), 306, 319–22
 antimuscarinics, antidepressant effects of, 112
 antipsychotics agents, 69
 anxiety disorders
 rat models, 314
 repetitive transcranial magnetic stimulation, 220–1
 appetite
 disorders of (eating disorders), 19–20, 298–9
 regulation and dysregulation, 298
 ataxia and cerebellum–M1 interactions, 200
 auditory cues in randomized trials of magnetic seizure therapy, 132
 auditory perception, transcranial direct current stimulation
 effects, 242
 autism, 320
 self-injury, 70
 axonal discharge/firing see discharge/firing
B
barbiturates
 catatonia treatment, 112
 in ECT, 96, 98
basal ganglia, 29–43
anatomy, 30–2
computational models, 37–40
midbrain critics of, 39
pathophysiology and disorders, 29, 31–2, 35–7
therapy, 40
physiology, 33–5
bifocal transcranial magnetic stimulation, 6, 191–204, 206
M1–cerebellum interactions and, 199–201
M1–dorsal premotor cortex interactions and, 195–6
stroke and, 196
M1–M1 interhemispheric interactions and, 192–5
bimanual practice and, 194, 196
neurological disorders and, 194
M1–peripheral nervous system and, 201
M1–posterior parietal cortex and, 197–8
M1–M1 Supplementary/Presupplementary Motor Area Interactions and, 198–9
M1–ventral premotor cortex interactions and, 196
Paired associative stimulation, 201–4
bifrontal ECT, 4, 64, 85, 87–8, 111
bimanual practice and M1–M1 interhemispheric interactions, 194, 196
binge eating, 19–20
Bini, Lucio, 62–4, 107
BioControl Medical Ltd. FitNeS device, 326
biphasic transcranial magnetic stimulation, 166, 168–71, 181
bipolar disorder
ECT, 68–9
epidural prefrontal cortical stimulation, 261
repetitive transcranial magnetic stimulation, 218
bipolar stimulation in deep brain stimulation, 275
bispectral index monitoring of depth of anesthesia in high-dose magnetic seizure therapy, 138
bitemporal ECT, 4, 68–9, 73, 83–95
BDNF see brain-derived neurotrophic factor
BOLD signal
connectivity and, 5–6
transcranial direct current stimulation, 237, 241
transcranial magnetic stimulation, 204–5, 222
M1 and, 157, 204
vagal nerve stimulation in depression, 315–6
brain
connectivity see connectivity
ECT effects, 108–11
structural, 76
functional imaging see functional neuroimaging
imaging see neuroimaging
stroke-related damage see stroke
brain-derived neurotrophic factor (BDNF)
ECT effects on, 108, 115
ketamine effects on, 112
val66met polymorphism, 203
brainstem, afferent vagal pathways and projections, 309
to cerebrum and limbic system, 312
Brainsway
Deep TMS system, 166
H-coils, 175, 215, 220
Brodmann area 9 and 46 see frontal cortex, mid-lateral
Brodmann area 10 see frontopolar region
Brodmann area 25 see cingulate cortex
C
caffeine (intravenous) in ECT, 99
Cajal, Santiago Ramón y, 2
calcium
long-term depression and, 51
long-term potentiation and, 48
repetitive transcranial magnetic stimulation and, 53
transcranial direct current stimulation and, 236
cap coils in magnetic seizure therapy, 129, 134–5
capsule, ventral (VC), deep brain stimulation
depression, 8, 295–6
obsessive-compulsive disorder, 290–1
cardiac innervation by vagus nerve, 308–9
cardiovascular response in magnetic seizure therapy, 127, 139
catatonia, 107, 112, 116
Cerbomed NEMOS™, 326–7
cerebellum (CB)–M1 interactions, 199–202
cerebrum
brainstem afferent vagal projections, 312
cortex, ECT and inhibition of activity (in catatonia), 113
interhemispheric interactions see interhemispheric interactions
recording in magnetic seizure therapy vs. ECT, 133–4
Cerletti, Ugo, 62–4, 107
children, ECT, 69–70
cingulate cortex/zone
rostral posterior, 23
subcallosal (SCC incl. subgenual/Brodmann area 25), deep brain stimulation
anorexia nervosa, 299
depression, 8, 110, 265–6, 294–5
circular coils
magnetic seizure therapy, 129, 134–6, 142
transcranial magnetic stimulation, 152, 171–2, 174–5, 181
closed-loop deep brain stimulation, 8, 29, 40
closed-loop model (D1/D2; direct/indirect model) of basal ganglia, 31–2, 36–7, 40
“cloverleaf” coil design, 173
clozapine, 69
cognitive control network (CCN), 110
cognitive effects and outcomes (incl. adverse/side effects)
ECT, 3, 74–5, 113, 139–40
charge effects, 113
electrode placement effects, 86–8, 113
reducing adverse effects, 83–105
magnetic seizure therapy, 137–40
transcranial direct current stimulation, 242–4
coils
magnetic seizure therapy, 129–30
transcranial magnetic stimulation, 152, 171–5
efficiency and cooling, 178
functional MRI and, 180–1
positioning, 176–8
in sham conditions, 179
see also specific coil types
Columbia University Primate Cognitive Battery, 137
Columbia University trials
ECT (CU Consortium ECT trials), 88–90
magnetic seizure therapy (and University of Texas Southwestern Medical Center), 125
commissures, anterior and posterior, electrode lead placement in deep brain stimulation and the, 277–9
complications see safety considerations
computational models
basal ganglia, 37–40
electrode lead placement in deep brain stimulation and the, 277–9
electrical see electroconvulsive therapy
future (incl. newer techniques/alternatives to ECT), 61, 76–8
history see history
magnetic see magnetic seizure therapy
corticospinal neurons/axons in transcranial magnetic stimulation, 153, 170
corticostriatal-thalamiccortical (CSTC) loops and obsessive-compulsive disorder, 289, 291, 293
cranial electrical stimulation, 241

INDEX
339
crown coil, magnetic seizure therapy, 142
cuff technique
ECT, 65
magnetic seizure therapy, 128
current see electrical current; transcranial direct current stimulation
D
closed loop, 8, 29, 40
compared with other brain stimulation techniques, 265–6
fundamentals, 275–7
mood/affective disorders, 22–3
depression, 8, 22–3, 258, 265–6, 293–6
neurological disorders, 271–87
Parkinson’s disease, 7–8, 22, 40, 271–2, 275–7, 292
psychiatric disorders, 289–304
mood disorders see subheading above
safety, 274–5
Deep TMS system, 166
default mode network (DMN), 110
d’Elia placement of ECT electrodes, 64, 85
dementia and ECT, 71
dendritic outgrowth and ECT, 108
depersonalization disorder, 221
depression (severe/major), 83–121, 293–6, 322–5
anhedonia in, functional neuroanatomy, 20–1
deep brain stimulation, 8, 22–3, 258, 265–6, 293–6
drug therapy see antidepressant drugs
ECT, 67–8, 83–121
elderly, 70
improving efficacy, 83–105
maintenance, 72–3
mechanisms of action, 107–21
transcranial magnetic stimulation compared with, 216
epidural cortical stimulation see epidural cortical stimulation in epilepsy following vagal nerve stimulation, improvement, 320
magnetic seizure therapy see magnetic seizure therapy options for treatment of treatment-resistant depression, 257–8
paired associative stimulation plasticity in, 204
pathophysiology, 19, 87, 293, 311
transcranial direct current stimulation, 52, 246–7
sertraline and/or, 52, 247
transcranial magnetic stimulation, 213–20
vagal nerve stimulation, 8, 258, 282–5, 327
animal studies, 313–14
future directions, 327
safety considerations/side effects, 322–6
depth in transcranial magnetic stimulation increasing, 174–5
tradeoff with focality, 175
direct current stimulation see transcranial direct current stimulation

direct/indirect (D1/D2) model of basal ganglia, 31–2, 36–7, 40

discharge/firing (neuronal/axonal) in basal ganglia
patterns, 34–5
in hypo-/hyperdopaminergic states, 36
rates, 33–4
in hypo-/hyperdopaminergic states, 36
dopamine replacement therapy (DRT) in Parkinson’s disease, 29, 36–7, 40
dopaminergic system
D1/D2 (closed-loop; direct/indirect) model of basal ganglia, 31–2, 36–7, 40
hypo-/hypodopaminergic states, 35–7
midbrain, 39
double cone coils
magnetic seizure therapy, 128–131, 134–5, 142
transcranial magnetic stimulation, 152, 175

drive theories of motivation, 16
drug-seeking and craving see addiction
drug therapy (pharmacotherapy)
antidepressant see antidepressant drugs
dopamine replacement in Parkinson’s disease, 29, 36–7, 40
ECT with, 78, 94–5
in maintenance treatment, 72–3
seizure-inducing, 62–3
seizure-preventing (antiepileptic drugs; AEDs), 306, 319–22
see also specific drugs
dystonia
deep brain stimulation, 273, 275
focal see focal dystonia

E
E-field see electrical field
E03/E04/E05 studies of vagal nerve stimulation in epilepsy, 318, 320, 325
eating disorders, 19–20, 298–9
eccentric figure-of-8 coil, 174
EEG see electroencephalogram
efferent vagal nerve fibers, 308
side effects of vagal nerve stimulation relating to, 326
elderly, ECT, 70
dementia, 71
electrical current
deep brain stimulation, 275, 282
ECT, 85–7, 93, 115–6
magnetic seizure therapy, 123, 125, 142–3
transcranial magnetic stimulation, 152, 166, 169–70, 181
vagal nerve stimulation, 317
see also transcranial direct current stimulation
electrical field (E-field), 5
in ECT, 114, 116
head models see head models
in magnetic seizure therapy, 133–5
in transcranial direct current stimulation, 234, 239–40
in transcranial magnetic stimulation, 131, 135, 142, 144, 152, 165–71, 175, 177–9, 182
neural response models and, 176
electroconvulsive therapy (ECT), 1, 3–4, 61–107, 258
adverse effects, 3, 74–6, 139–40
cognitive see cognitive effects
clinical efficacy, 67–72
improving, 83–105
clinical role, 67–72
depression see depression
comparisons with other brain stimulation techniques, 265
epidural cortical stimulation, 265
magnetic seizure therapy, 133–8
transcranial magnetic stimulation, 216
drugs combined with see drug therapy
efficacy, improving, 83–105
electrical stimulus, 64–5, 85–6, 113–16
amplitude of pulse, 116
brief pulse, 64–5, 72–4, 85, 90, 115–17, 138
charge, 113–4
dosage, 85–93, 95, 97
frequency and duration of pulse, 116
parameters and their configuration, 89–93, 113–16
ultrabrief pulse, 3–4, 64–5, 71, 74–5, 90–2, 94, 115–7, 126, 258
waveforms, 73, 75, 83, 114–15, 136
width of pulse, 115
electrodes see electrodes in ECT
electrophysiology, 65–6
evolution of modern technique, 66–7
depictively administered (FEAST), 4, 61, 77–8, 114, 134–5, 143
dependent of treatment with, 93–4
hippocampus and, 108–10, 124, 135
maintenance, 72–3
unidirectional, 77

electrodes (electrode leads) in deep brain stimulation, placement, 277–82
electrodes (electrode leads) in ECT, placement, 73, 86–8, 113
bilateral (BL), 83–8, 113, 116
bifrontal, 4, 64, 85, 87–8, 111
bitemporal, 4, 68–9, 73, 83–95
unilateral/right unilateral (RUL), 3–4, 64, 69, 71, 76, 85–95, 110, 113–4, 116, 124
electrodes (electrode leads) in transcranial direct current stimulation, 236
focality and, 239–40
position, 233–4
in depression, 246–7

electroencephalogram (EEG)
in ECT, 65–6, 115
in magnetic seizure therapy, 127–8
in transcranial direct current stimulation, network effects, 237
in transcranial magnetic stimulation, 156–7, 179–80
connectivity studies, 205–6
electromagnetic forces in transcranial magnetic stimulation
functional MRI, 181
induction using, 4, 152
electrophysiological (neurophysiological) effects
ECT, 65–6, 115
magnetic seizure therapy, 135–9
see also electroencephalogram
dysregulation, 18–21
epidural prefrontal cortical stimulation and, 263
experience see experience
negative, M1–supplementary and presupplementary motor area, 198–9
ergy efficiency, transcranial magnetic stimulation devices, 169
epidural cortical stimulation (for depression and other psychiatric disorders), 257–69
basics, 259–60
compared with other brain stimulation techniques, 265–6
motor cortex (EmCS), 260
prefrontal cortex (EpCS), 257–63
epilepsy (and epileptic seizures), 317–22
deep brain stimulation, 274
vagal nerve stimulation, 7–8, 317–22, 327
animal studies, 313–14, 317–18
device, 306–8
future directions, 326–7
safety considerations/side effects, 318–21, 326
essential tremor, 8, 272–3, 275–6
ethical issues, 9
etomidate in ECT, 97–8
evoked potentials
motor see motor evoked potentials
transcranial magnetic stimulation (TEP), 156
experience (of emotions incl. pleasure), 15–16, 19, 21
lack of ability to, 23
extrapyramidal motor pathways, 30

F
feelings see emotions and feelings
figure-of-8 coil
magnetic seizure therapy, 129, 142
transcranial magnetic stimulation, 4, 5, 171–3, 175, 178–9, 181
repetitive, 221, 223–4
FitNeS, 326
focal dystonia, 200
hand, 194, 203–4, 222
focality (and focal methods of activation), 3–5
focal electrically administered seizure therapy (FEAST), 4, 61, 77–78, 114, 134–5, 143
individualized low amplitude seizure therapy, 153
magnetic seizure therapy, 133–5, 142
novel approaches, 143–4
transcranial direct current stimulation, increasing, 239–40
transcranial magnetic stimulation, 76–7, 173–4
tradeoff with depth, 175

see also bifocal transcranial magnetic stimulation
focused ultrasound, magnetic resonance guided focused, 160
frame application (stereotactic) in deep brain stimulation, 278
frontal cortex, 30
alpha activity, epidural prefrontal cortical stimulation and, 264
mid-lateral (Brodmann area 9 and 46), 259
epidural stimulation, 260–1
in transcranial magnetic stimulation, 138, 142, 157, 223
orbital, 142
frontal gyrus, right inferior, and action reprogramming, 199
frontal lobotomy, 7
frontopolar region (Brodmann area 10), 259
epidural cortical stimulation in depression and, 260–1, 263–4
functional connectivity see connectivity
functional neuroanatomy of anhedonia in depression, 20–1
functional neuroimaging
connectivity and, 6
ECT in depression, 110
magnetic seizure therapy in depression, 138
transcranial direct current stimulation, 237
transcranial magnetic stimulation, 157, 180–1
connectivity studies, 204–6
vagal nerve stimulation in epilepsy and depression, 315–17
see also specific modalities
G
GABA
ECT (in catatonia) and, 112–13
repetitive transcranial magnetic stimulation and, 53–4
transcranial direct current stimulation, 236–7
gait perturbations and M1–cerebellum connectivity, 200
genes, immediate early, ECT effects, 108
Giles de la Tourette syndrome, 220, 222, 273–4
globus pallidus (GP)
external segment (GPe), 31–2, 36–8, 278
discharge rates and patterns in abnormal dopaminergic states, 36
physiology, 25, 33–4
internal segment (GPI), 30, 32, 36–8, 40
deep brain stimulation, 40, 271–3, 276, 278, 280, 282
discharge rates and patterns in abnormal dopaminergic states, 36
physiology, 33–5
 glutamatergic system, 46–7, 55, 158, 235–7
NMDA receptors see NMDA receptors
subthalamic nucleus and, 31
grasping
M1–posterior parietal cortex and, 197
M1–ventral premotor cortex connections and, 196, 203
grip (and brain connectivity)
power, 196
precision, 196–7, 205
INDEX

H-coils, transcranial magnetic stimulation, 5, 152, 175, 215, 220, 223–4
half-sine waveforms, transcranial magnetic stimulation, 166, 169–70
hand dystonia, focal, 194, 203–4, 222
head models of electric field
 magnetic seizure therapy vs. ECT, 133–5
 transcranial magnetic stimulation, 176
headache, transcranial magnetic stimulation, 178
 see also migraine
heart, vagal innervation, 308–9
heating, transcranial magnetic stimulation devices, 169
Hebb, Donald, 2
Hebbian plasticity, 201–2
hedonic processing, 16–7, 23
hotspots, 17, 20
hemineglect and M1–posterior parietal cortex connectivity, 198
hemispheric interactions see interhemispheric interactions
hemorrhage (intracranial) risk in deep brain stimulation, 274–5
Hesed (H) coils, transcranial magnetic stimulation, 5, 152, 175, 215, 220, 223–4
high dose magnetic stimulation therapy (HD-MST), 132, 136, 138–140
coils, 129
 first in animal, 126
 first in human, 126
third and fourth generation, 127
hippocampus
 and ECT, 108–10, 124, 135
 and magnetic seizure therapy, 125, 135, 139, 142
 and vagal nerve stimulation
 and depression, 314
 and epilepsy, 313–14
history, 2–3
convulsive therapies, 62–3
 ECT, 62–3
 magnetic seizure therapy (MST), 125–6
 epidural cortical stimulation, 259
 invasive methods, 7–8
 transcranial magnetic stimulation, 151
hormones see neuroendocrine effects
hyperdopaminergic states, 35–7
hyperventilation during anesthesia for ECT, 100
hypodopaminergic states, 35–7
hypomania, deep brain stimulation-related, 292, 294, 296
hypothalamus
 deep brain stimulation, in obesity, 298
 ECT and hormones of ECT, 111
I
ictal EEG, magnetic seizure therapy, 135–8
iLAST (individualized low amplitude seizure therapy), 143–4
immediate early genes, ECT effects, 108
implantable pulse generators see pulse generators
individualized low amplitude seizure therapy (iLAST), 143–4
inform consent see consent
infralimbic region of prefrontal cortex, 55
input–output curves in transcranial magnetic stimulation, 170
insula cortex and vagal nerve stimulation, 310, 316–7
interdisciplinary (multidisciplinary) approach, movement disorders, 274
interhemispheric interactions (inhibition and facilitation), 154–5
 motor cortex, 154–5, 192–5, 202
intermediate nucleus, ventral (Vim), deep brain stimulation, 272–3, 275, 278, 280, 282
intracortical interactions within motor cortex, 155
intracranial hemorrhage risk in deep brain stimulation, 274–5
invasive brain stimulation, 255–304
development, 7–8
ionotropic glutamate receptors, 46
K
ketamine
 antidepressant effects, 111–12
 in ECT, 97–9
L
late positive potential and epidural prefrontal cortical stimulation, 263
learning, 16–18
 motor see motor training of pleasure, 19, 23
 reinforcement, 32, 37
transcranial direct current stimulation effects, 243–4
liking, 16–18
 in anhedonia and depression, 20
limbic system/structures, 16
 brainstem afferent vagal projections, 312
 ECT and, 108
 hippocampus and, 108
 prefrontal governance, 259, 263
repetitive transcranial magnetic stimulation and craving and, 224
lithium and ECT, maintenance use, 72–3
lobotomy, frontal, 7
locus ceruleus and deep brain stimulation in epilepsy, 313–14
long-pulse intracortical inhibition, 155
long-term depression (LTD), 51–2
long-term depression (LTD)-like effects
 paired associative stimulation, 201–3
 repetitive transcranial magnetic stimulation, 158
transcranial direct current stimulation, 247
long-term memory effects of transcranial direct current stimulation, 243–4
long-term potentiation (LTP), 45, 48–51
 mechanisms of induction and expression, 48
 transcranial direct current stimulation and, 49–50
long-term potentiation (LTP)-like effects
paired associative stimulation, 201–3
repetitive transcranial magnetic stimulation, 158

M
M1 see motor cortex
magnetic resonance imaging (MRI)
in deep brain stimulation, 279
in focused ultrasound guidance, 160
functional (fMRI)
assessment of connectivity, 6, 205–6
BOLD signal see BOLD signal
ECT, 110–11
transcranial direct current stimulation, 237–8
transcranial magnetic stimulation, 157, 180–1, 205–6
vagal nerve stimulation in depression, 315
in vagal nerve stimulation in depression and epilepsy, 326
magnetic seizure therapy (MST), 4, 61, 76–7, 123–48
antidepressant efficacy, 140
blinding of randomized controlled trials, 132
dose optimization, 142
E-field distribution, 133–5
future directions, 142–4
high dose see high dose magnetic stimulation therapy
direct current stimulation, 191–201
history, 125–6
parameter selection, 131–2
rationale, 124–5
safety (incl. adverse/side effects), 124, 131, 139–40
subject selection, 142–3
technique, 127–32
therapeutic spectrum (other than depression), 143–4
metaplasticity and monoamines, 52
methylxanthines (intravenous) in ECT, 99
midbrain dopaminergic system, 39
migration with aura, 221
Mini Mental State Examination after ECT course, 87–8
mirtazapine combined with ECT, 95
monamine(s)
ECT effects and, 111
metaplasticity and, 52
monoamine oxidase inhibitors (MAOIs)
ECT combined with, 94
ECT vs., 67–8
monophasic transcranial magnetic stimulation, 166–71
monopolar (unipolar) stimulation
deep brain stimulation, 275
transcranial direct current stimulation, 239
mood
dysregulation, 18–21
in epilepsy following vagal nerve stimulation, improvement, 320
networks/pathways, 15–28
vagal nerve afferents and, 322
mood (affective) disorders, 15, 18–21, 23
deep brain stimulation see deep brain stimulation
ECT, children and adolescents, 69, 78
transcranial magnetic stimulation, 213–21
see also anxiety; bipolar disorder; depression
mortality
ECT, 74
vagal nerve stimulation, 321
mossy fiber sprouting and ECT, 108
motivation, 15–28
drive theories, 16
motor area
presupplementary, M1 interactions with, 198–9
supplemental, M1 interactions with, 198–9, 202
motor cortex (incl. M1/primary motor cortex)
epidural cortical stimulation (EmCS), 259–60
pain and, 221
paired associative stimulation in connectivity studies, 201–3
Parkinson’s disease and, 37
transcranial direct current stimulation, 50, 235–7, 239, 241, 243–6, 248
transcranial magnetic stimulation, 6, 151–6, 204
connectivity and interaction studies, 154–5, 191–201, 204, 206
fMRI and, 157, 205–6
repetitive, 158, 171, 221
state dependency and, 154
motor evoked potentials (MEPs)
transcranial direct current stimulation, 235
transcranial magnetic stimulation, 152–4, 156, 158–60, 191, 204, 220
motor neurons see spinal motor neurons
motor pathways, 29–43
motor response latency, transcranial magnetic stimulation, 170
motor threshold (MT) in magnetic seizure therapy, 143–4
motor training and learning
M1–cerebellum interactions and, 199
M1–M1 interhemispheric interactions and, 194
paired associative stimulation (PAS) plasticity and, 203
peripheral cortical paired associative stimulation and, 203
transcranial direct current stimulation effects, 243–4
in stroke rehabilitation, 245–6
movement disorders
deep brain stimulation, 7, 271–3, 282
multidisciplinary approach, 274
repetitive transcranial magnetic stimulation, 222
MPTP model of Parkinson’s disease, 23, 33, 36–7, 40, 111
multidisciplinary approach, movement disorders, 274
multiobjective optimization model of basal ganglia, 39
multiphasic (polyphasic) transcranial magnetic stimulation, 166, 168, 170
multisensory perception, transcranial direct current stimulation effects, 242–3
muscarinic antagonists, antidepressant effects of, 112
muscle contractions and brain connectivity, 193, 195, 198–9, 203
muscle relaxants, magnetic seizure therapy, 127

N
Narp and ECT, 108
National Institute of Mental Health (NIMH) OPT-TMS trial, 214, 219
navigated transcranial magnetic stimulation, 171–2, 177
near-infrared spectroscopy, functional, in transcranial magnetic stimulation, 182
negative emotional content and M1–supplementary and presupplementary motor area, 198–9
neglect and M1–posterior parietal cortex connectivity, 198
NEMOS™ (Cerbomed), 326–7
Neosync transcranial magnetic stimulation trial, 215
networks, 15–28
balancing in disease, 21–2
connectivity in see connectivity
transcranial direct current stimulation effects, 237–8
neuritic outgrowth with ECT, 108
neuroendocrine effects
ECT, 108
NeuroStar TMS Therapy system
neuroleptics (antipsychotics agents), 69
neurological disorders, 222–3, 271–87
connectivity and
M1–cerebellum, 200–1
M1–M1 interhemispheric, 194–5
M1–posterior parietal cortex, 198
paired associative stimulation and, 203–4
deep brain stimulation see deep brain stimulation
transcranial direct current stimulation, 244–6
neuron(s)
discharge/firing see discharge/firing
ECT effects
generation of new neurons, 108
neuritic outgrowth, 108
transcranial magnetic stimulation effects, 153
NeuroNets NeuroStar TMS Therapy system, 166, 172, 178, 214–5
neurophysiology see electrophysiological effects; physiology
neuropsychiatric disorders see psychiatric and neuropsychiatric disorders
NeuroStar TMS Therapy system, 166, 172, 178, 214–5
neurosurgery for neuropsychiatric conditions, 7
neurotransmitter studies of vagal nerve stimulation
depression
animals, 314
humans, 315–17
epilepsy
animals, 313–14
humans, 315
neurotrophic factors and ECT, 108
nicotine dependence, smokers, 223–4, 297
NIMH OPT-TMS trial, 214, 219
NMDA receptors, 46–8, 158, 235–6
long-term depression and, 51–2
long-term potentiation and, 48–51
transcranial direct current stimulation and, 49–51, 236
noise in transcranial magnetic stimulation, 178
nonconvulsive stimulation, 4–5, 149–254
direct current see transcranial direct current stimulation
magnetic see transcranial magnetic stimulation
noninvasive brain stimulation, 1–2, 50–254
Northstar Neuroscience Inc. trials of epidural cortical stimulation, 8, 261, 265
nortriptyline/lithium/ECT, maintenance use, 72–3
nucleus accumbens (NAc), 16–7, 20, 22–3
deep brain stimulation
anorexia nervosa, 299
depression, 295
obsessive-compulsive disorder, 291–2
side effects, 292–3, 295

O
obesity, deep brain stimulation, 298
obsessive-compulsive disorder
deep brain stimulation, 289–93
repetitive transcranial magnetic stimulation, 220

INDEX
opiates in ECT, 99
OPT-TMS trial, 214, 219
orbital frontal cortex, transcranial magnetic stimulation, 142
oscillatory stimulation, 240–2

P

pain
transcranial magnetic stimulation in treatment of conditions causing, 221–2
transcranial magnetic stimulation-related, 178
paired associative stimulation (PAS), 159, 201–4
corticocortical (ccPAS), 202–4
peripheral cortical, 201–4
paired-pulse technique in repetitive transcranial magnetic stimulation, 154–5
inhibition in, 52–3, 154–5
see also paired associative stimulation

pallidum
discharge rates/patterns, 36
in dopamine replacement therapy, 36
synchronization, 37
see also globus pallidus

parietal cortex, posterior (PPC), M1 connectivity with, 197–8, 202

Parkinson’s disease
animal model, 23, 33, 36–7, 40, 111
cerebellum–M1 connectivity and, 200–1
deep brain stimulation, 7, 8, 22, 40, 271–2, 275–7, 292
dopamine replacement therapy (DRT), 29, 36–7, 40
obsessive-compulsive disorder and, 292
paired associative stimulation, 204
pathophysiology, 25–7
parvalbumin and repetitive transcranial magnetic stimulation, 53
pathophysiology, 244
basal ganglia see basal ganglia
epilepsy, 311
of psychiatric/neuropsychiatric disorders, 23
anhedonia in, 19–20
depression, 19, 87, 293, 311
obsessive-compulsive disorder, 291
perception, transcranial direct current stimulation effects, 242–3
peripheral cortical paired associative stimulation (pcPAS), 201–4
peripheral nervous system–M1 connectivity, 201
PET see positron emission tomography
pharmacotherapy see drug therapy
phenelzine combined with ECT, 94
physiology (neurophysiology) of deep brain stimulation in depression, 314
in epilepsy, 313–14
lead placement and physiologic localization, 282
see also electrophysiological effects; pathophysiology

plasticity, 45–56
Hebbian, 201–2
paired associative stimulation and, 159, 201–4
spike timing-dependent see spike timing-dependent plasticity
synaptic, 45–6, 51–2, 109, 158–9
transcranial direct current stimulation effects, 233–54
pleasure, 15–21, 23
cycle, 16–7
experience see experience
Poisson-like firing patterns in basal ganglia, 34–5
polarity
transcranial direct current stimulation devices, 235–6, 242
transcranial magnetic stimulation devices, 166, 169
poly I:C rat model of schizophrenia, 299
polyphasic transcranial magnetic stimulation, 166, 168, 170
pontine parabrachial nucleus, vagal pathways, 309–10
positron emission tomography (PET)
in deep brain stimulation in Alzheimer’s disease, 300
in ECT, 110, 124, 138
in magnetic seizure therapy, 138
in transcranial direct current stimulation, 233, 242
in transcranial magnetic stimulation, 157, 179, 181–2, 205
connectivity studies, 205
in vagal nerve stimulation, 315–7, 322
depression, 315–7
epilepsy, 315
postictal state in magnetic seizure therapy
EEG, 135–8
in randomized trials, 132
postpartum depression, 218
posttraumatic stress disorder, repetitive transcranial magnetic stimulation, 220–1
power grip and brain connectivity, 196–7, 205
precision grip and brain connectivity, 196–7, 205
prefrontal cortex
deep brain stimulation and, 291–2, 299
dorsolateral (DLPFC), 110–1, 244, 247, 259, 317
and postpartum depression, 218
and posttraumatic stress disorder, 220
ECT effects, 110–11
epidural stimulation (EpCS), 257–63
limbic structures and, 259, 263
magnetic seizure therapy and, 142–3
pain and, 221
prelimbic and infralimbic region, 55
transcranial direct current stimulation and, 241, 244, 247
transcranial magnetic stimulation and, 206
repetitive, 214–5, 217–8, 221–4
vagal nerve stimulation and, 310, 317
ventromedial, anhedonia in depression and, 20
pregnancy, ECT, 72
prelimbic region of prefrontal cortex, 55
premotor cortex
dorsal (PMd), M1 connections with, 195–6
transcranial magnetic stimulation and, 157–8, 195–6
ventral (PMv), connectivity with M1, 196–7, 202–3
presupplementary motor area, M1 interactions with, 198–9
PRIMATES, NON-HUMAN (NHP)
- magnetic seizure therapy, 125–6, 128–9, 133, 135, 137–9
- Parkinson’s disease model, 23, 33, 36–7, 40, 111
- prolactin surge, magnetic seizure therapy, 138
- propofol in ECT, 96–8
- puerperal (postpartum) depression, 218
- pulse
 - ECT see electroconvulsive therapy
 - sine wave see sine wave stimuli/pulses
 - in transcranial magnetic stimulation, source and waveforms, 165–71
 - see also long-pulse intracortical inhibition; paired-pulse technique; short-pulse intracortical inhibition; waveforms
- pulse generators, implantable
 - deep brain stimulation, 275, 278, 281–2
 - removal/explantation, 274
 - epidural prefrontal cortical stimulation, 260
 - vagal nerve stimulation, 306–7
 - removal/explantation, 322
 - pulsed ultrasound, transcranial, 160
 - pursuit of pleasure, 19, 23
 - pyramidal motor pathways, 30

R
- radiology of brain see neuroimaging
- random noise stimulation (tRNS), 240–2
- rat models
 - anxiety and/or depression, 314
 - schizophrenia, 299
- reaching movements
 - and M1–cerebellum connectivity, 200
 - and M1–posterior parietal cortex connectivity, 197–8
- Reading the Mind in the Eyes Task, 263
- real-time feedback, 8
 - vagal nerve stimulation, 258, 315–16
- realistic head models of electric field
 - magnetic seizure therapy vs. ECT, 135
 - transcranial magnetic stimulation, 176
- rectangular pulses
 - ECT, 114
 - transcranial magnetic stimulation, 168–9
- regional effects of transcranial direct current stimulation, 234–7
- reinforcement learning, 32, 37
- remifentanil in ECT, 99
- repetitive TMS see transcranial magnetic stimulation
- restless leg syndrome, 204
- reticular formation, medial, vagal afferent input, 311
- reward, 16–18, 23
 - depression and, 20–1
 - targeting of structures involved in, 22
- robotic coil holders in transcranial magnetic stimulation, 177–8
- rodent models
 - anxiety and/or depression, 314
 - drug-seeking, 55

INDEX
- Parkinson’s disease, 36–7
- schizophrenia, 299
- S
 - safety considerations (incl. adverse effects/side effects/complications)
 - deep brain stimulation, 274–6, 280–1
 - nucleus accumbens, 292–3, 295
 - subthalamic nucleus, 292–3
 - ECT see electroconvulsive therapy
 - magnetic seizure therapy, 124, 131, 139–40
 - vagal nerve stimulation, 326
 - in depression, 322–6
 - in epilepsy, 318–21, 326
 - surgery-related, 307
 - scalp stimulation in transcranial magnetic stimulation, 178
 - schizophrenia
 - brain connectivity in
 - M1–M1 interhemispheric, 194–5
 - M1–posterior parietal cortex, 198
 - deep brain stimulation, 291–2
 - ECT, 69
 - adolescents, 69
 - pharmacoeconvulsive therapy, 62–3
 - repetitive transcranial magnetic stimulation, 221
 - scopolamine, antidepressant effects of, 112
 - sedation, magnetic seizure therapy, 127
 - seizures (convulsions)
 - drug-induced, 62–3
 - monitoring in magnetic seizure therapy, 127–8
 - technology inducing see convulsive stimulation
 - see also epilepsy
 - selective serotonin reuptake inhibitors (SSRIs)
 - combined with ECT, 95, 112
 - connectivity and, 110
 - self-injury in autism, 70
 - sensory input and M1–M1 interhemispheric interactions, 193
 - sensory perception, transcranial direct current stimulation effects, 242–3
 - Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial, 68, 107, 265
 - sertraline and/or transcranial direct current stimulation in depression, 52, 247
 - sevoflurane in ECT, 99
 - sham treatment
 - deep brain stimulation, 291–2
 - ECT, 67, 124, 136
 - epidural cortical stimulation, 261–3
 - repetitive, 214–7, 219–21, 223–4
 - transcranial direct current stimulation, 246–7
 - transcranial magnetic stimulation, 165, 178–9
 - vagal nerve stimulation, 314–5, 323
 - short-pulse intracortical inhibition, 155
 - side effects see safety considerations
 - silent period in transcranial magnetic stimulation, 153
 - contralateral, 170
sine wave (sinusoidal) stimuli/pulses
ECT, 3, 64, 114
transcranial magnetic stimulation, 166, 168–9
single photon emission computed tomography (SPECT), 181–2
magnetic seizure therapy, 138
transcranial magnetic stimulation, 179
vagal nerve stimulation in epilepsy and depression, 315
single-pulse technique in transcranial magnetic stimulation, 152–3
assessing effect, 156–8
sleep apnea and vagal nerve stimulation, 321
“Slinky” coil design, 174
smoking, nicotine dependence, 223–4, 297
somatosensory perception, transcranial direct current stimulation effects, 242
SPECT see single photon emission computed tomography
spherical head models of electric field
magnetic seizure therapy vs. ECT, 133–5
transcranial magnetic stimulation, 176
spike timing-dependent plasticity (STDP), 158
paired associative stimulation and plasticity resembling, 158
spinal motor neurons, 30
transcranial magnetic stimulation effects, 152–4
spinal trigeminal nucleus, vagal information from, 310
SSRIs see selective serotonin reuptake inhibitors
STAR*D trial, 68, 107, 265
state dependency and transcranial magnetic stimulation and M1, 154
static magnetic stimulation, 160
stereotactic neuronavigation
deep brain stimulation, 277–8, 280
frame application, 278
transcranial magnetic stimulation coils, 176–7
striatal terminalis, deep brain stimulation of bed nucleus of, 290–1
striatum, ventral (VS)
anhedonia and, 20
deep brain stimulation, 8, 265, 291, 296
see also corticostriatal-thalamocortical loops
stroke (and brain connectivity/pathways)
epidural cortical stimulation, 259
motor cortex, 260
M1–dorsal premotor cortex, 196, 205
M1–M1 interhemispheric, 194, 204
M1–posterior parietal cortex, 198
repetitive transcranial magnetic stimulation, 222
transcranial direct current stimulation for motor rehabilitation, 245
subcallosal cingulate see cingulate cortex
subgenual cingulate see cingulate cortex
substance abuse see addiction
substantia nigra pars reticulata (SNr), 30, 32, 38
correlated activity, 35
discharge patterns, 35
hypo-hyperdopaminergic states, 36
discharge rate, 33
hypo-hyperdopaminergic states, 36
subthalamic nucleus (STN), 30–2, 35, 38
depression, deep brain stimulation, 275–8, 280, 282, 292–3
dystonia, 273
essential tremor, 272
Parkinson’s disease, 40, 271–2
discharge rates and patterns in abnormal dopaminergic states, 36
suicidality, accelerated repetitive transcranial magnetic stimulation, 218–19
supplementary motor area–M1 interactions, 198–9, 202
surgery
for deep brain stimulation, 274
complications, 274–5
procedure, 279–82
for neuropsychiatric conditions, 7
for vagal nerve stimulation, complications, 307
symptom-titrated maintenance ECT, 73
synaptic plasticity, 45–6, 51–2, 109, 158–9
T
tegmental area, ventral (VTA), vagal nerve stimulation in depression, 317
thalamus, deep brain stimulation of ventralis intermedius nucleus (Vim) of, 272–3, 275, 278, 280, 282
see also corticostriatal-thalamocortical loops
thiopental (thiopentone) in ECT, 96
3-D differential coil, 174
threshold stimulation, transcranial magnetic stimulation devices, 169–70
tinnitus, 222–3
tonic contractions and brain connectivity, 193, 195, 198, 203
Tourette syndrome, 220, 222, 273–4
tractus solitarius, nucleus (NTS), vagal pathways, 309
transcranial alternating current stimulation (tACS), 240–2
transcranial direct current stimulation (tDCS), 5, 49–52, 200, 233–54
advanced stimulation protocols, 238–42
cerebellum–M1 connectivity and, 200
cognitive effects, 242–4, 248
focality and, 239
in depression, sertraline and/or, 52, 246–7
learning and memory and, 243–4
long-term potentiation and, 49–50, 246–7
perception and, 242–3
physiological basis, 233–42
in stroke, 245–6
transcranial electrical stimulation, 151
transcranial magnetic stimulation, convulsive see magnetic seizure therapy
transcranial magnetic stimulation, nonconvulsive/subconvulsive (TMS), 4–5, 76–7, 151–231
advances in technology, 165–89
bifocal, 6, 191–2, 195–6, 198, 201–2, 206
convulsive (MST) compared with, 123–4
transcranial magnetic stimulation (Continued)

history, 151
repetitive (rTMS), 4, 158–60, 213–31
clinical applications, 213–31
mode of action and effects, 52–4, 171, 219–20
transcranial pulsed ultrasound, 160
transcutaneous stimulation of trigeminal nerve, 327
tremor, essential, 8, 272–3, 275–6
tricyclic antidepressants
ECT combined with, 94–5
ECT vs., 67–9
trigeminal nerve, transcutaneous stimulation, 327
trigeminal nucleus, spinal, vagal information from, 310
twin coils
magnetic seizure therapy, 128–9, 131, 140, 175
transcranial magnetic stimulation, 154, 175

U
UK ECT Review Group, 67, 124
ultrabrief pulse, see electroconvulsive therapy
ultrasound
magnetic resonance guided focused, 160
transcranial pulsed, 160
unipolar stimulation see monopolar stimulation

V
vagal nerve, 305–35
anatomy, 308–11
stimulation (VNS), 7–8, 305–35
depression see depression

device, 306–8
epidural cortical stimulation compared with, 265
epilepsy see epilepsy
mechanism of action, 311–17
real-time feedback, 258, 315–16
safety considerations see safety considerations
vascular endothelial growth factor (VEGF) and ECT, 108
VEGF and ECT, 108
verbal material, transcranial direct current stimulation effects on learning of, 244
vibration in transcranial direct current stimulation, 178
“virtual lesion” effect (transcranial magnetic stimulation), 156
visual cues in randomized trials of magnetic seizure therapy, 132
visual perception, transcranial direct current stimulation effects, 242
voluntary contractions (incl. tonic contractions) and brain connectivity, 193, 195, 198–9, 203

W
wanting, 16–18
in anhedonia and depression, 20–1
excess, 19–20
waveforms (electrical stimulus/pulse)
ECT, 73, 75, 83, 114–15, 136
transcranial magnetic stimulation, 165–71
effects, 169–71
enhanced control, 168–9
WIN rat model of schizophrenia, 299