CONTENTS

Preface xv
Acknowledgments xix
About the Author xxi

1 Introduction to Reinforcement and Systemic Machine Learning 1
1.1. Introduction 1
1.2. Supervised, Unsupervised, and Semisupervised Machine Learning 2
1.3. Traditional Learning Methods and History of Machine Learning 4
1.5. Machine-Learning Problem 8
1.5.1. Goals of Learning 8
1.6. Learning Paradigms 9
1.7. Machine-Learning Techniques and Paradigms 12
1.8. What Is Reinforcement Learning? 14
1.9. Reinforcement Function and Environment Function 16
1.10. Need of Reinforcement Learning 17
1.11. Reinforcement Learning and Machine Intelligence 17
1.15. Reinforcement Machine Learning and Systemic Machine Learning 19
1.16. Case Study Problem Detection in a Vehicle 20
1.17. Summary 20
Reference 21

2 Fundamentals of Whole-System, Systemic, and Multiperspective Machine Learning 23
2.1. Introduction 23
2.1.2. History 26
2.2. What Is Systemic Machine Learning?

2.2.1. Event-Based Learning

2.3. Generalized Systemic Machine-Learning Framework

2.3.1. System Definition

2.4. Multiperspective Decision Making and Multiperspective Learning

2.4.1. Representation Based on Complete Information

2.4.2. Representation Based on Partial Information

2.4.3. Uni-Perspective Decision Scenario Diagram

2.4.4. Dual-Perspective Decision Scenario Diagrams

2.4.5. Multiperspective Representative Decision Scenario Diagrams

2.4.6. Qualitative Belief Network and ID

2.5. Dynamic and Interactive Decision Making

2.5.1. Interactive Decision Diagrams

2.5.2. Role of Time in Decision Diagrams and Influence Diagrams

2.5.3. Systemic View Building

2.5.4. Integration of Information

2.5.5. Building Representative DSD

2.5.6. Limited Information

2.5.7. Role of Multiagent System in Systemic Learning

2.6. The Systemic Learning Framework

2.6.1. Mathematical Model

2.6.2. Methods for Systemic Learning

2.6.3. Adaptive Systemic Learning

2.6.4. Systemic Learning Framework

2.7. System Analysis

2.8. Case Study: Need of Systemic Learning in the Hospitality Industry

2.9. Summary

References

3 Reinforcement Learning

3.1. Introduction

3.2. Learning Agents

3.3. Returns and Reward Calculations

3.3.1. Episodic and Continuing Task

3.4. Reinforcement Learning and Adaptive Control

3.5. Dynamic Systems

3.5.1. Discrete Event Dynamic System

3.6. Reinforcement Learning and Control
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>ix</th>
</tr>
</thead>
</table>

3.7. Markov Property and Markov Decision Process 68
3.8. Value Functions 69
 3.8.1. Action and Value 70
3.9. Learning an Optimal Policy (Model-Based and Model-Free Methods) 70
3.10. Dynamic Programming 71
 3.10.1. Properties of Dynamic Systems 71
3.11. Adaptive Dynamic Programming 71
 3.11.1. Temporal Difference (TD) Learning 71
 3.11.2. Q-Learning 74
 3.11.3. Unified View 74
3.12. Example: Reinforcement Learning for Boxing Trainer 75
3.13. Summary 75
Reference 76

4 Systemic Machine Learning and Model 77
4.1. Introduction 77
4.2. A Framework for Systemic Learning 78
 4.2.1. Impact Space 80
 4.2.2. Interaction-Centric Models 85
 4.2.3. Outcome-Centric Models 85
4.3. Capturing the Systemic View 86
4.4. Mathematical Representation of System Interactions 89
4.5. Impact Function 91
4.6. Decision-Impact Analysis 91
 4.6.1. Time and Space Boundaries 92
4.7. Summary 97

5 Inference and Information Integration 99
5.1. Introduction 99
5.2. Inference Mechanisms and Need 101
 5.2.1. Context Inference 103
 5.2.2. Inference to Determine Impact 103
5.3. Integration of Context and Inference 107
5.4. Statistical Inference and Induction 111
 5.4.1. Direct Inference 111
 5.4.2. Indirect Inference 112
 5.4.3. Informative Inference 112
 5.4.4. Induction 112
5.5. Pure Likelihood Approach 112
7.3.3. Representative Decision Scenario Diagram (RDSD) 160
7.3.4. Example: PDSRD Representations for City Information Captured from Different Perspectives 160
7.4. Whole-System Learning and Multiperspective Approaches 164
 7.4.1. Integrating Fragmented Information 165
 7.4.2. Multiperspective and Whole-System Knowledge Representation 165
 7.4.3. What Are Multiperspective Scenarios? 165
 7.4.4. Context in Particular 166
7.5. Case Study Based on Multiperspective Approach 167
 7.5.1. Traffic Controller Based on Multiperspective Approach 167
 7.5.2. Multiperspective Approach Model for Emotion Detection 169
7.6. Limitations to a Multiperspective Approach 174
7.7. Summary 174
References 175

8 Incremental Learning and Knowledge Representation 177
 8.1. Introduction 177
 8.2. Why Incremental Learning? 178
 8.3. Learning from What Is Already Learned. . . 180
 8.3.1. Absolute Incremental Learning 181
 8.3.2. Selective Incremental Learning 182
 8.4. Supervised Incremental Learning 191
 8.5. Incremental Unsupervised Learning and Incremental Clustering 191
 8.5.1. Incremental Clustering: Tasks 193
 8.5.2. Incremental Clustering: Methods 195
 8.5.3. Threshold Value 196
 8.6. Semisupervised Incremental Learning 196
 8.7. Incremental and Systemic Learning 199
 8.8. Incremental Closeness Value and Learning Method 200
 8.8.1. Approach 1 for Incremental Learning 201
 8.8.2. Approach 2 202
 8.8.3. Calculating C Values Incrementally 202
 8.9. Learning and Decision-Making Model 205
 8.10. Incremental Classification Techniques 206
 8.11. Case Study: Incremental Document Classification 207
 8.12. Summary 208
9 Knowledge Augmentation: A Machine Learning Perspective 209

9.1. Introduction 209
9.2. Brief History and Related Work 211
9.3. Knowledge Augmentation and Knowledge Elicitation 215
 9.3.1. Knowledge Elicitation by Strategy Used 215
 9.3.2. Knowledge Elicitation Based on Goals 216
 9.3.3. Knowledge Elicitation Based on Process 216
9.4. Life Cycle of Knowledge 217
 9.4.1. Knowledge Levels 219
 9.4.2. Direct Knowledge 219
 9.4.3. Indirect Knowledge 219
 9.4.4. Procedural Knowledge 219
 9.4.5. Questions 220
 9.4.6. Decisions 220
 9.4.7. Knowledge Life Cycle 220
9.5. Incremental Knowledge Representation 222
9.6. Case-Based Learning and Learning with Reference to Knowledge Loss 224
9.7. Knowledge Augmentation: Techniques and Methods 224
 9.7.1. Knowledge Augmentation Techniques 225
 9.7.2. Knowledge Augmentation Methods 226
 9.7.3. Mechanisms for Extracting Knowledge 227
9.8. Heuristic Learning 228
9.9. Systemic Machine Learning and Knowledge Augmentation 229
 9.9.1. Systemic Aspects of Knowledge Augmentation 230
 9.9.2. Systemic Knowledge Management and Advanced Machine Learning 231
9.10. Knowledge Augmentation in Complex Learning Scenarios 232
9.11. Case Studies 232
 9.11.1. Case Study Banking 232
 9.11.2. Software Development Firm 233
 9.11.3. Grocery Bazaar/Retail Bazaar 234
9.12. Summary 235
References 235

10 Building a Learning System 237

10.1. Introduction 237
10.2. Systemic Learning System 237
 10.2.1. Learning Element 240
 10.2.2. Knowledge Base 240
 10.2.3. Performance Element 240
10.2.4. Feedback Element 240
10.2.5. System to Allow Measurement 241
10.3. Algorithm Selection 242
 10.3.1. k-Nearest-Neighbor (k-NN) 242
 10.3.2. Support Vector Machine (SVM) 243
 10.3.3. Centroid Method 243
10.4. Knowledge Representation 244
 10.4.1. Practical Scenarios and Case Study 244
10.5. Designing a Learning System 245
10.6. Making System to Behave Intelligently 246
10.7. Example-Based Learning 246
10.8. Holistic Knowledge Framework and Use of Reinforcement Learning 246
 10.8.1. Intelligent Algorithms Selection 249
10.9. Intelligent Agents—Deployment and Knowledge Acquisition and Reuse 250
10.10. Case-Based Learning: Human Emotion-Detection System 251
10.11. Holistic View in Complex Decision Problem 253
10.12. Knowledge Representation and Data Discovery 255
10.13. Components 258
 10.13.1. Example 258
10.15. Summary 259

Appendix A: Statistical Learning Methods 261

Appendix B: Markov Processes 271

Index 281