Adaptable models 124, 125
Adaptation 132
dynamic 133
pattern based 132, 133, 136, 137
event based 137
exploration based 132, 133
feature based 137
forecasting based 137
framework 139
function 142
space 138
static 133
time 138
uncertainty based 137
Adaptive
behavior 135, 136
classification 148
control 63
document presentation 148
dynamic programming 71
learning 119–124, 127, 140, 145, 146, 214
time based 123
re-grouping 148
system 119, 120, 134, 135
Adaptive Machine Learning see adaptive learning
Agent(s) 152, 219
greedy 66
Intelligent 57, 59, 154, 163, 166, 186, 219, 238, 246–249
Deployment 250
Systems 249
Analytical thinking 25, 26
Artificial Intelligence (AI) 244
Artificial neural network see Neural network
Bagging 124, 130
Bayesian 38–40, 100, 157, 242
Belief network 42
Classification 248
Black Box classifier 212
Boosting 120
Case based learning 224, 251
cycle 252
Centroid 243
method 243
arithmetical average 243
Vector Space Model 243
Classifier 2
Classification See also Classifier 1, 2, 9, 216
Document 2, 146
Closeness 200–204
Closeness factor based approach (CFBA) 222
Clustering 191, 197
Hierarchical/Non-hierarchical 3, 192
Inter/intra cluster distance 197
partition based 192
perspective based incremental 50
subspace 50
COBWEB 222
Competitive learning 140
Concept learning 258
Context based learning 249

© 2012 by the Institute of Electrical and Electronics Engineers, Inc.
Published 2012 by John Wiley & Sons, Inc.
Context building 79, 152
Continuing task 61
Co-operative inference 100
Cumulative learning 161

Data 237
acquisition 237
centric paradigm 12
discovery 255
mining 229

Decision
centric analysis 24
centric learning 143
context 166
diagram 136
making model 205
making perspective 156
matrix 91, 158, 166
network 143, 144
parameters 142–144
problems 252
scenario 121, 136, 139, 140, 142, 147, 148, 161, 163, 246
trees 156

Descriptive models 78
Discrete event system 67
Discriminative modeling 9
Document mining 148

Dual perspective Decision Scenario Diagram (DSD) 41, 159
Dynamic programming 71
Dynamic system 66

Ensemble learning 120
Environment
multiparallel 138
Episodic task 63
Epistemology 211
Example based learning 246
Expert systems
rule based 9
Euclidean distance 192, 198, 242

Face recognition 6
False
positives 3
negatives 3
F1 evaluations 243
Feature vectors 179, 183

Fuzzy
sets 249
values 158

Gaussian mixture model 192
Generative modeling 9

Hierarchical decision making See also
decision making 35

Hyperplane 269

Imitative modeling 9
Impact space 80
factor 91
function 91
space 80

Incremental 144
classification techniques 206
clustering 218
knowledge representation 222, 223
learning (IL) 56, 177–179, 187, 199, 205, 222, 223
absolute 185
approaches 201–204
collective 186
clustering 193–195, 198
dynamic selective (DSIL) 185, 191
factors 185
selective 5, 182–184, 186, 189, 190
semi-supervised 196–198
supervised 191
unsupervised 191

Induction see knowledge induction

Inductive transformation 228
techniques 228

Inference 30
Bayesian 113, 114
Context 103, 109
Co-operative 100
data 108
decision scenario driven 107, 108
direct 111, 112
direct engine 30
indirect 112
induction 112
informative 112
knowledge based 104
multi-level 101
non-parametric 101
parametric 101
parametric statistical 101
rule based 107
semi-parametric 101
statistical 107
system 108
temporal logic 107
time based 114
transitive 101
Information integration 115
Informed methods 15
Influence diagram(s) 33, 34, 156–158, 165
Semi constrained 40, 41, 157
Intelligent algorithm 249
Intelligent agents see agents 238, 259
Intelligent
Character Recognition (ICR) 244
System 1, 8
Systemic systems 246
Intelligence
dynamic 1
Interaction centric models 84, 85
Interactive decision diagrams 43
k-means 170, 192
k-nearest neighbor 242
Knowledge 209, 237
acquisition 4, 24, 209, 210, 214, 220, 229
module 247
augmentation 210, 212, 213, 218, 223, 229
lifecycle 220–221
techniques 225–226
methods 226
systemic aspects 226
base 180, 198, 245, 247
static 212
dynamic 212
building 116, 117, 188, 217, 237
categories 218
capturing 224, 231
cycle 210–211
Data Discovery (KDD) 255–258
discovery process 212, 255
elicitation 214–216, 232
ingenring 209
methods 215
extraction methods 227
induction 227, 228
deduction 227, 228
instance 144
levels 219
life cycle 217, 220
management 231
procedural 219
refinement 189
relevance 215
renewal 231
Representation (KR) 245, 255
Representation and Reasoning (KRR) 244
retrieval 224
reuse 224, 237
revisal 224
tacit 6
Labeled data/example(s) 3
Learning
active 15
adaptive systemic 51
agent 13, 58–61
co-operative 46
decision based 144, 145
desired behavior based 54
episodic 5
events 188
event based 29
example based 9
framework 67
Heuristic 228
Imitative 11
Knowledge based inductive 89
Object based 50
Observation based 9, 10
Pattern based 29
Perpetual 5
pre-programmed 1
procedural 5
Q 74
Reinforcement 246
Scenario based 144, 145
Selective systemic 51
Sub-system based system 54
Structural 30
Learning (Continued)

Temporal difference 71–73
Top-down system 54
Trial based 61
Learning System 237
components 248
design 239, 240
learning element 239, 240
knowledge base 239, 240
performance measurement element 239, 240
feedback element 239, 240

Machine intelligence 17
Machine learning 7, 9, 218, 229, 237–239, 255–258,
co-operative 81–84
framework 246–249
Manhattan distance 192, 198
Markov
Chain Monte Carlo methods (MCMC) 100
clustering 213
decision process 68, 69
property 68, 69
Maximum likelihood 92
Mel Frequency Cepstrum Coefficients (MFCC) 170
Meta cognitive strategies 7
Meta data 257
Meta expert 120
Mobile robots 255
Model based methods 70
Model free methods 70
Multi-agent 213
architecture 213, 214
system 46, 124, 128
Multi-perspective 167
approach 167
for traffic controller 167
for emotion detection 168
intelligent framework 153
learning 23, 33, 50, 151–155, 163, 165, 210
scenarios 165
Multi-perspective decision scenario diagram(s) 42
Multiple Classification Ripple Down Rules (MCDR) 213

Multiple expert scenario 120, 121
Multiple learners 122, 125, 129, 130
Multi sensory learning 152

Natural language processing 9
Naïve Bayes see Bayesian
Neural network 212, 242
artificial 249

Outcome centric models 84–86
Parameter selection module 247
Parametric model 100
Partial Decision Scenario Representation Diagram (PDSRD) 40, 41, 157, 158, 160
Pattern based learning 183
Prediction rule 6
Problem
analysis 216
based learning 225
solving system 1
Qualitative belief networks 42
Queries 220

Rational decision making model 78
Reasoning
logical 249
qualitative 212
Region of interest (ROI) 171
Reinforcement learner 68
Reinforcement learning see also
learning 10–15, 57–63, 246
active 66
adaptive control 68
exploitation 13, 31
exploration 13, 31
cumulative rewards 62
function 16
model 65
penalties 16–17
rewards 16–17
value 16–17
Representation Decision Scenario Diagrams (RDSD) 41, 42, 159, 160, 161, 242
Rocchi 242
Rough sets 166, 167, 248, 267
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-supervised learning</td>
<td>2, 3, 4, 191</td>
</tr>
<tr>
<td>Sliding window</td>
<td>140, 141</td>
</tr>
<tr>
<td>Space boundaries</td>
<td>92–93</td>
</tr>
<tr>
<td>Speech recognition</td>
<td>6, 9</td>
</tr>
<tr>
<td>Supervised learning</td>
<td>2, 177, 178,</td>
</tr>
<tr>
<td></td>
<td>241, 245</td>
</tr>
<tr>
<td>Process</td>
<td>241</td>
</tr>
<tr>
<td>Support Vector Machines (SVM)</td>
<td>10, 242, 243</td>
</tr>
<tr>
<td>System</td>
<td>31</td>
</tr>
<tr>
<td>Context view</td>
<td>88</td>
</tr>
<tr>
<td>System dependency analysis</td>
<td>24</td>
</tr>
<tr>
<td>Systemic decision making</td>
<td>26</td>
</tr>
<tr>
<td>Systemic information</td>
<td>19</td>
</tr>
<tr>
<td>Systemic knowledge building</td>
<td>19</td>
</tr>
<tr>
<td>Systemic learning</td>
<td>See also</td>
</tr>
<tr>
<td>Systemic machine learning</td>
<td>Machine</td>
</tr>
<tr>
<td>Learning</td>
<td>6, 14–27, 199, 237</td>
</tr>
<tr>
<td>Systemic machine learning</td>
<td>2, 4, 18, 19,</td>
</tr>
<tr>
<td></td>
<td>229, 232, 259</td>
</tr>
<tr>
<td>decision matrix</td>
<td>30, 97</td>
</tr>
<tr>
<td>framework</td>
<td>30, 47, 52, 78, 79</td>
</tr>
<tr>
<td>knowledge building</td>
<td>199</td>
</tr>
<tr>
<td>Systemic thinking</td>
<td>25, 26</td>
</tr>
<tr>
<td>Synthetical thinking</td>
<td>25, 26</td>
</tr>
<tr>
<td>Temporal difference learning</td>
<td>247</td>
</tr>
<tr>
<td>Time boundaries</td>
<td>92–93</td>
</tr>
<tr>
<td>Training set/data</td>
<td>179, 241–242</td>
</tr>
<tr>
<td>Turing test</td>
<td>12</td>
</tr>
<tr>
<td>Uninformed methods</td>
<td>15</td>
</tr>
<tr>
<td>Uni-perspective decision scenario</td>
<td>diagram 41</td>
</tr>
<tr>
<td>Unlabeled data</td>
<td>179</td>
</tr>
<tr>
<td>Unsupervised learning</td>
<td>2, 3, 4, 179</td>
</tr>
<tr>
<td>Value functions</td>
<td>69</td>
</tr>
<tr>
<td>Vector Space Model (VSM)</td>
<td>see Centroid</td>
</tr>
<tr>
<td>method</td>
<td></td>
</tr>
<tr>
<td>Whole system learning</td>
<td>23, 151, 152,</td>
</tr>
<tr>
<td></td>
<td>161–165, 259</td>
</tr>
<tr>
<td>Whole System machine Learning (WSML)</td>
<td>see</td>
</tr>
<tr>
<td>Whole System Learning</td>
<td></td>
</tr>
</tbody>
</table>
The focus of this series is to introduce the advances in theory and applications of systems science and engineering to industrial practitioners, researchers, and students. This series seeks to foster system-of-systems multidisciplinary theory and tools to satisfy the needs of the industrial and academic areas to model, analyze, design, optimize and operate increasingly complex man-made systems ranging from control systems, computer systems, discrete event systems, information systems, networked systems, production systems, robotic systems, service systems, and transportation systems to Internet, sensor networks, smart grid, social network, sustainable infrastructure, and systems biology.

1. *Reinforcement and Systemic Machine Learning for Decision Making*
 Parag Kulkarni

2. *Remote Sensing and Actuation Using Unmanned Vehicles*
 Haiyang Chao, YangQuan Chen

3. *Hybrid Control and Motion Planning of Dynamical Legged Locomotion*
 Nasser Sadati, Guy A. Dumont, Kaveh Akbari Hamed, and William A. Gruver