INDEX

Note: Page numbers in *italics* figures; tables are noted with *t*.

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA. See Arbitrator Agents</td>
<td></td>
</tr>
<tr>
<td>AC automatic contingency control</td>
<td>49</td>
</tr>
<tr>
<td>AC automatic contingency screening/filtering</td>
<td>49</td>
</tr>
<tr>
<td>ACDs. See Adaptive critic designs</td>
<td></td>
</tr>
<tr>
<td>AC filters</td>
<td>72</td>
</tr>
<tr>
<td>AC load flow</td>
<td>37</td>
</tr>
<tr>
<td>ACO. See Ant colony optimization</td>
<td></td>
</tr>
<tr>
<td>Action dependent heuristic dynamic</td>
<td>117</td>
</tr>
<tr>
<td>programming</td>
<td></td>
</tr>
<tr>
<td>Action networks</td>
<td>116</td>
</tr>
<tr>
<td>Action vectors</td>
<td></td>
</tr>
<tr>
<td>adaptive dynamic programming and</td>
<td>115</td>
</tr>
<tr>
<td>ADP implementation structure for</td>
<td>193</td>
</tr>
<tr>
<td>performance of, during system training</td>
<td>195</td>
</tr>
<tr>
<td>Adaptability, smart grid and</td>
<td>52</td>
</tr>
<tr>
<td>Adaptive controls, applications for</td>
<td></td>
</tr>
<tr>
<td>in smart grid design</td>
<td>137–138</td>
</tr>
<tr>
<td>Adaptive critic designs</td>
<td>116</td>
</tr>
<tr>
<td>Adaptive dynamic programming</td>
<td>41, 118t</td>
</tr>
<tr>
<td>framework of applications to power systems</td>
<td>42</td>
</tr>
<tr>
<td>generation schedule for UC problem</td>
<td>191</td>
</tr>
<tr>
<td>solved with</td>
<td></td>
</tr>
<tr>
<td>implementation structure</td>
<td>192–193, 195–196</td>
</tr>
</tbody>
</table>

INDEX

AEP, 196
AGC. See Automatic generation control
Agriculture, climate change and, 153
AHP. See Analytical hierarchical processing
Alkaline fuel cells, 147
American Electric Power, 9, 10
American National Standard for Utility Industry End Device Data Tables, 167
American National Standards Institute, 163, 165
AMI. See Advanced Metering Infrastructure
Amorphous silicon, in manufacture of PV cells, 141
AMR. See Automated meter reading
Analytical hierarchical processing, 101, 102, 102–103
Angle stability, overview of methods for, 74
Angle stability assessment, 73–81
algorithms
for closest unstable equilibrium point (UEP) approach, 77–78
for controlling UEP approach, 78–79
for finding controlling UEP, 80
boundary of region of stability, 77–79
stability application to a practical power system, 76–77
transient stability, 75–76
ANNs. See Artificial neural networks
ANSI. See American National Standards Institute
Ant colony optimization, 113–115, 118
Appliance control/monitoring, smart meters and, 22
Appliance level, of smart grid, 137
Appliances, smart, 22
Arbitrator Agents, 24
Arcadian Networks, 185
Areva, 9
Artificial intelligence, 112, 119
Artificial Intelligence Method, 75
Artificial neural networks, 109–111, 118
ATC
computed, formula for, 36
defined, 38
Automated meter reading, 52
Automatic generation control, 46, 112
Automatic Tax Credit for Low Speed & 2- or 3-Wheeled Vehicles, 159
Automobile Tax Credit for Hybrid Gas-Electric and Alternative Fuel Vehicles, 158
Automobile Tax Credit for Plug-In Electric Vehicles, 158
Automobile Tax Credit for Plug-In Hybrid Conversion Kits, 158
Back propagation, artificial neural networks and, 109
Backscatter radios technology, 21
Bad data, detection and identification of, 86
Bandwidth, high, smart grid communications technology, 17
Base case load flow solution, 48
Battelle, 9
Batteries, advanced, characteristics, advantages, and disadvantages, 156
Becquerel, Edmund, 141
Bellman principles, techniques derived from, 107
Beta density function
conversion and power electronic technology and, 144
solar insolation modeling and, 144
Bifurcation theory, 65
Billing, smart meters and, 22
Biodiesels, 147
Biomass-bioenergy, 145, 147
Biomass plants, commercial availability of, in U.S., 147
Biopower, derivation of, 145, 147
Blackouts, 20, 73
Bonneville Power Administration, 9
Botanic ceramic fuel cells, 147
Bottlenecks, phasor measurement and, 20
BPL. See Broadband over Power Lines
Branch participations, 68
Broadband over Power Lines, 17
Broadcast transmission, LAN and, 18
Bulk power systems
automation of smart grid at transmission level, 130–131
coordinating with new and emerging technologies, 9
Bush, George W., 2
Bus impedance network method, 35–36
Bus topology, 18
Bus voltages, 81
Cadmium telluride (CdTe)
in manufacture of PV cells, 141
as thin semiconductor film, solar power, 142
California Energy Commission, 8
Capacity Benefit Margin, in ATC computation, 36
Cape Wind, 196
Case studies/testbeds for smart grid, 184–199
 ADP for optimal network reconfiguration in distribution automation, 191–196
 advanced metering, 185
 benefits of smart transmission, 198
 challenges of smart transmission, 198
demonstration projects, 184–185
microgrid with renewable energy, 185
power system unit commitment problem, 186–191
RER integration, 196–197
testbeds and benchmark systems, 197–198
Cast polycrystalline silicon panels, 142
CBM. See Capacity Benefit Margin
Chance-constrained programming (CCP), 107
Chemical and materials residues, bioenergy derived from, 145
CI. See Computational intelligence
CIS. See Copper indium diselenide
Cisco, 11, 185
Classical optimization method, 103
Climate change
 causes of, 153
 implications of, 153
Coaxial cable, 17
Commercial interoperability, 161
Common Information Model (CIM) for Power Systems, 167t
Commonwealth Edison, 185
Compressed air, characteristics, advantages, and disadvantages, 157t
Computational intelligence, 4, 4, 119
Computational tools
 adaptive dynamic programming techniques, 115–117
 computational challenges, 118–119
 decision support tools, 101–102
 evolutionary computational techniques, 112–115
 heuristic optimization, 108–112
hybridizing optimization techniques and applications to smart grid, 118
introduction to, 100–101
optimization techniques, 103
Pareto methods, 117–118
for smart grid design, 100–119
Conductor sensors, 21
ConEd, 9
Congestion
 defined, 37
 phasor measurement and, 20
Congestion management effect, 37–38
Consumers Energy, 10
Contingencies
 classification of, 44–46
 Static Security Assessment and, 43–44
Contingency studies, for smart grid, 48–49
Continuation power flow method, 127
Control agent, multiagent specifications of, 25
Control architecture, power systems and, 25
Copper indium diselenide, 142
Copper indium selenide, in manufacture of PV cells, 141
Corn, bioenergy derived from, 145
Corn ethanol, 147
Corrective controls, cyber threats and, 169
Critical peak pricing, RER integration case study, 197
Critic networks, 116
Curriculum, smart grid education, 179–182
Cyber security
 AMI and, 171, 172t
 built-in vs. added-on, 168
 contingency and recovery plans, 168
defined, 166
 facets and objectives of, 168
 possible operation for improving methodology for other users, 173
 risks, 169–171
 considering, trade-off, 170
 mitigation approach to, 171, 173
 system constraints, 170–171
smart grid, 166–173
smart grid and mandating development of, 8
standards for various electric grid levels, 167t
Cyber security (cont’d)
state of the art, 166, 168–169
tools and technologies, training in, 182
Cyber threats, monitoring, 168–169

DA. See Decision analysis; Diagnosis Agents
Database agent, multiagent specifications of, 26
Day-ahead economic scheduling, 151
Day-ahead hourly pricing, 150
Day-of economic dispatch, 151
DC-AC conversion, PV Inverter system for, 144
Decision analysis, stages in, 101–102
Decision support tools, uses for, 101
Deforestation, climate change and, 153
Demand bidding buy-back, 150
Demand response
renewable energy, categorizing, 150–151
RER integration case study, 197
technology tree, 150
Demand-response rates, smart meters and, 22
Demand-side management, 6, 14, 136–137
categories of options for, 136
classification of, 136–137
Demonstration projects, development of
WAMS and, 184–185
Department of Energy, 7, 8, 200
Modern Grid Initiative, 25
Office of Electricity and Energy Assurance, 9
representative architecture of smart grid
design, 12
Department of Homeland Security, 182
DERs. See Distributed Energy Resources
Detective controls, cyber threat detection and,
168–169
Development of Stochastic Dynamic Optimal
Power Flow
application to smart grid, 41–43
module 1, 42
module 2, 42
module 3, 42–43
cases for, 41
efficient optimization technique and
objectives with, 138
features of, that aid development of new
OPF, 73
Device level, smart grid development, 123,
124–125
Device malfunctions, state estimation and, 95
DFRs. See Disturbance Fault Recorders
DHP. See Dual heuristic programming
Diagnosis Agents, 24
Digital and Distributed Power Systems
Training Program, 182
Digital signal processing techniques, 119
Direct Control of Load, 136
Direct load control, 150
Discount rate, adaptive dynamic
programming and, 115
Distributed energy resource agent, multiagent
specifications of, 25–26
Distributed Energy Resources, 140
Distribution automation, ADP for optimal
network reconfiguration in, 191–196
Distribution generation control, 137
Distribution Load Control, 137
Distribution load flow methods, 33–37
bus impedance network: method 3, 35–36
forward/backward sweep: method 1, 33–34
load flow based on sensitivity matrix for
mismatch calculation: method 2,
34–35
Distribution systems, distribution automation
for, 133
Disturbance Fault Recorders, 20
DOE. See Department of Energy
Dominion Virginia Power, 185
DP. See Dynamic programming
DSA
for smart grid, 82
designing, 80–81
DSE. See Dynamic state estimation
DSM. See Demand-side management
DSOPF. See Development of Stochastic
Dynamic Optimal Power Flow
Dual heuristic programming, 116
Duke Energy, 185
DyLiacco’s security-state diagram, 43
Dynamic analysis, 130
Dynamic line rating technology, 21
Dynamic programming, 103, 107
Dynamic security, 130
Dynamic stability (Type II instability), 59–60
fast instability, 60
slow instability, 60
Dynamic state estimation, 97
Dynamic voltage stability studies, analysis techniques for, 57, 60–62

EAL. See Energy Auction level
Economic dispatch, 127–128

Education
smart grid, 179–182
architecture: module 2, 180–181
case studies and testbeds: module 9, 182
communication technologies: module 7, 182
functions: module 3, 181
introduction: module 1, 180
pathways to design: module 5, 181
renewable energy technologies: module 6, 181–182
standards, interoperability, and cyber security: module 8, 182
tools and techniques: module 4, 181

EDVs, battery, power supply or demand and, 151

Efficiency
improving, smart grid and, 6
transmission, 14
Eigenvalue analysis methods, system dynamics and, 57

880.2, 18

EISA. See Energy Independence and Security Act
Electricity, smart meters for, 22
Electric parameters, 20
Electric Power Research Institute, 10
Electric power system
future demand and trends in, 23–24
threats facing, 169

Electric vehicles, 151. See also Plug-in hybrid electric vehicles
proposed power line and wireless control connections between grid and, 152

Electronic instrument transformers, 21

EM. See Energy margin
EMS. See Energy management systems

Encryption, smart grid communications and, 17

End-user level, of smart grid, 137
Energy, climate change and, 153
Energy and power exchange model, UC optimization problem and, 186

Energy Auction level, smart grid development, 122, 123, 124
Energy Independence and Security Act of 2007, 8
rationale for smart grid, 2–4, 3
Energy management systems, 19, 81, 163
Energy margin, 73
Energy margin method, 127
Energy method, 66
Energy storage, 154–158

EP. See Evolution programming
EPRI. See Electric Power Research Institute

ES. See Expert systems
Ethanol, 147
Ethernet/IEEE 802.3, 18

EUE. See Expected unserved energy

Euler method, modified, 75
Evolutionary computational techniques, 112–115
ant colony optimization, 113–115
genetic algorithm, 112, 113
particle swarm optimization, 113

Evolution programming, 118
Expected unserved energy, 127
Expert systems, 111–112, 119
advantages over human experts, 111

fundamental components of, 111

FACTS. See Flexible AC transmission systems
Fast decouple method, 33
Fast instability, 60
Fathoming, in branch-and-bound procedure, 106

Fault and stability diagnosis, 131–132
Fault Detection Agents, 24
Fault-on trajectories, finding controlling UEP for, 79

FDA. See Fault Detection Agents
Federal Energy Regulatory Commission (FERC), 8
Fiber optics cable, 17

Flexible AC transmission systems, 71
Flicker factor, calculations, parameters, and network/systems where index is applied, 135
Flow batteries, characteristics, advantages, and disadvantages, 156
Flywheels, characteristics, advantages, and disadvantages, 158
Fold type curve, including predictor-corrector step, 71
Food costs, climate change and rise in, 153
Forced outages, 46
Forward/backward sweep method, 33–34
Forward propagation, artificial neural networks and, 109
Fossil fuel burning, climate change and, 153
Fuel cells, 140, 147–148
Fuel to electricity efficiency, 147
Fuzzy-GA systems, 118
Fuzzy logic, 112, 112
Fuzzy-PSO systems, 118
Fuzzy set, 112
Fuzzy system, 112

GA. See Genetic algorithm
Gas consumption, smart meters for, 22
Gasification, 147
Gaussian functions, solar insolation modeling and, 144
Gauss-Seidal method, of studying load flow, 31–32
GDHP. See Globalized HDP
GE, 9
Generator outages, 46
Genetic algorithm, 112, 118t, 128
applications for, 112
typical cycle, 113
Geolocational monitoring equipment, 200
Geothermal heat pumps, 148
GHGs. See Greenhouse gases
GIS, Google mapping tools and, 23–24
Global Best (gbest) variant, of PSO, 113
Global change, defined, 153
Globalized HDP, 116
Global warming, defined, 153
Google Earth software, 23
Google mapping tools, GIS and, 23–24
GPS satellites, wide area monitoring systems and, 20
Greenhouse gases, climate change and, 153
GridComm project, 185
Grid-friendly appliances, 22
Grid methodology, old and new, 54t
Grid monitoring, enhanced, smart meters and, 22
GridPoint, 169
GridWise Architecture Council, 9, 162
GridWise Program, 9
GWAC. See GridWise Architecture Council

Hamilton-Jacobi-Bellman equation, of optimal control, 116
Hardware, computational tools for smart grid and, 118
HDP. See Heuristic dynamic programming
Health, climate change and, 153
Heuristic dynamic programming, 187
in ACDs, 116
implementation of, schematic for, 188
neural network in, structure of, 190
Heuristic optimization, 108–112
artificial neural networks, 109–111
expert systems, 111–112
HIDS. See Host-based intrusion detection systems
Home Access Network, 18
Home Energy Efficiency Improvement Tax Credit, 158
Host-based intrusion detection systems, 168
Hybridization optimization techniques, applications to smart grid, 118
Hybridized computational intelligence tools, for smart grid analysis and design, 118t
Hybrid vehicles, tax credits and, 158
Hydropower, small and micro, 147
IBM, 9, 10, 185
IDAPS microgrid, 26
IETF. See Internet Engineering Task Force
IEEE. See International Electrotechnical Commission
IEEE. See Institute of Electrical and Electronic Engineers
IETF. See Internet Engineering Task Force
IHS Emerging Energy Research, 196
Immunized-neuro systems, 118
Immunized-swarm systems, 118
Incentive-based demand response, 150
Indirect methods (continuation methods), parameterization, 69–70
Injection Shift Factor, 38
Institute of Electrical and Electronic Engineers, 163, 164t, 166, 174
Index

Standard for Interconnecting Distributed Resources with the Electric Power System, 167t
Standards for Synchrophasors for Power Systems, 167t
Insulation contamination leakage current, 21
Integer programming, 106–107
branch-and-bound procedure, 106
Integration, computational tools for smart grid and, 119
Intelligent grid, 200, 202
automation, 131
distribution subsystem component, 14
Intelligent Power Grid
components of, 11
key characteristics of, 10
Intelligent system technologies, 119
Intelligrid software, 10
Interest rate, adaptive dynamic programming and, 115
Interior point methods, 128
International Electrotechnical Commission, 163, 164t
Internet Engineering Task Force, 163, 164t
Interoperability, 161–163
benefits and challenges with, 161–162
control of power grid and, 163
defined, 161
model for, in smart grid environment, 162
smart grid network, 162
state-of-the-art, 161
Intersystem communication, smart grid and mandating development of, 9
IP-enabled digital communication, 17
IPM. See Interior point methods
ISF. See Injection Shift Factor
ISO/RTO, 19
Iterated Linear Step ATC, 37
I-V characteristic model of single cell, 142–143
Judgment Index Agent (JIA), 24
Karush-Kuhn-Tucker, 105
Keyhole Markup Language, 23
Kinetic energy, 77
Kirchhoff’s current law nodal equations, 64–65
Gauss-Seidal method and, 31–32
KKT. See Karush-Kuhn-Tucker
KML. See Keyhole Markup Language
Kuhn-Tucker (KT), 105
Lagrangian relaxation method, 103
solving UC problems and, 187
for unit commitment problem, 130
LAN. See Local area network
Land use change, global change and, 153
L index, 65, 66
Linearization, 37
Linear programming, 103
Lithium-ion batteries, 156t
Load base VSCP, 54
Load curve, of 3-generator, 6-node system, 191
Load flow
challenges to, in smart grid and weaknesses of present methods, 30–31
proposed methodology, 39
for smart grid design, 38, 40–41
Load flow state of the art
distribution load flow methods, 33–37
Fast Decouple method, 33
Gauss-Seidal method, 31–32
Newton-Raphson method, 31, 32–33
Load flow studies, function of, 29
Load flow techniques
comparison of, 30t
traditional, characteristics of, 31
Load stability, 57. See also Voltage stability
Local area network
attributes and advantages with, 18
data transmission categories, 18
description of, 17
topologies, 18
Local Best (lbest) variant, of PSO, 113
Local Load Control Option, 137
LOLP. See Loss of load probability
Long-term voltage collapse, 59
Loss of load probability, 127
Lyapunov function, 54
Lyapunov stability assessment, 127

Machine learning, 119
Man-in-the-middle (MitM) attacks, wireless networks and, 173
MCDA. See Multi-criteria decision analysis
Metering, 19
Michigan Gas and Electric, 10
Microcrystalline silicon, in manufacture of PV cells, 141
Microgrid
with renewable energy, 185
sample testbed environment, 186
smart grid vs., 27
topology, storage technologies, 154
Micro hydropower, 147
Minimum distribution line loss, formulation for, 191–192
Minimum singular value, of Jacobian matrix, 63–64
Minutes dispatch, 151
MIP. See Mixed-integer programming
MIP problem, general structure of, 106
Mismatch calculation
load flow based on sensitivity matrix for, 34–35
single feeder representation, 34, 35
Mismatch power, computing, 32
Mixed-integer programming, 103
Modal (or Eigenvalue) analysis method, 66
Modern Grid Initiative (DOE), 25
Modified Euler method, 75
Monitoring and control technology component, 14
Monocrystalline solar panels, 142
MPLS. See Multiprotocol Label Switching
Multiagent architecture, simplified view of, 24
Multiagent systems
characteristics of, 26
performance of, 24
Multiagent systems (MAS) technology, 24–27
multiagent specifications, 25–26
multiagent systems for smart grid implementation, 25
multiagent technique, 26
Multicast transmission, LAN and, 18
Multi-criteria decision analysis, 101
Multiobjective optimization problem, solving, Pareto analysis for, 117
Multiprotocol Label Switching, 17
National Institute of Standards and Technology, 163, 165f, 174
National Renewable Energy Laboratory, 8
n-1 contingency analysis, 130
Neighborhood Area Network, characteristics of, 19
NERC. See North American Electric Reliability Corporation
Net Transmission Capacity, 37
Network-based intrusion detection systems, 168
Network distribution reconfiguration problem, small power system for, 192
Network equivalents, utilization of, steps in, 48
Network errors, state estimation and, 95
Network Interface Card, 17
Network reconfiguration, 136
Network switching and restoration, 132
Neural networks, 128
Neuro-fuzzy systems, 118
Neuro-genetic systems, 118
Neuro-swarm systems, 118
Newton method, 128
Newton-Raphson iterations, basic load flow calculation method and, 37
Newton-Raphson method, 32–33, 34
for power flow analysis, 69
for studying load flow, 31, 32–33
system partitioned matrix equations of, rewriting, 66–67
New York State Energy Research and Development Authority, 8
Nexgen, 9
NIC. See Network Interface Card
Nickel metal hybrid batteries, 156t
NIDS. See Network-based intrusion detection systems
NIST. See National Institute of Standards and Technology
Nonlinear programming (NLP), 105–106
challenges related to, 106
structure of problems solved by, 105
North American Electric Reliability Corporation, 29, 163, 165
NREL. See National Renewable Energy Laboratory
NTC. See Net Transmission Capacity

Ocean circulation, climate change and, 153
Ocean wave energy, 196
OLTCs. See On load tap changers of transformers
One-at-a-time strategy, 117
On load tap changers of transformers, 71
Optimality test, 106
Optimality Test and Termination Criteria, 105
Optimization, applications for, in smart grid design, 137–138
Optimization techniques, 103
Outage detection, sensing, 19
Ozone depletion, global change and, 153

Pacific Northwest National Laboratory, 9
Pacific Northwest Smart Grid Demonstration Project, 185
PAFCs. See Phosphoric acid fuel cells
Parabolic troughs, 142
Parameterization, 69–70
Pareto methods, 117–118
Particle swarm optimization, 118
Particle swarm optimization, 113, 128
Peak clipping, demand-side management and, 136
Peak shifting, demand-side management and, 136
Pepco, 185
PEPCO Holdings, 9
Performance indices, external system equivalents, 47–48
Phase shifters, 37
Phasor Measurement Units, 20–21, 52
enhancing current grid, 55
scheme for state estimation with, 96
stability monitoring and analysis, 132
PHEVs. See Plug-in hybrid electric vehicles
Phosphoric acid fuel cells, 147
Photovoltaic cells, harnessing solar energy with, 141
Photovoltaic panels, modeling output of, alternative equation for, 143
Photovoltaic systems, modeling, 142–144
PJM Interconnection, 9
Plug-in hybrid electric vehicles, 140, 151, 201
advantages and disadvantages with, 151
description of technology, 151
impact of, on grid, 151–152, 152
standards related to, 164
PMU. See Phasor Measurement Units
PNNL. See Pacific Northwest National Laboratory
Policy-makers, 7
Polycrystalline silicon, in manufacture of PV cells, 141
Polycrystalline solar panels, 142
Polymerion batteries, 156
Power flow, Jacobian matrix of, decomposed, 63–64
Power grid, interoperability and control of, 163
Power quality, 20
defined, 135
indices, typical, 135
measures, indices utilized as, 135
Power system enhancement, smart grid and, 4, 5
Power Systems Engineering Research Center, 10
Power system stabilizer, 60
Power system unit commitment problem, 186–191
Power Transfer Distribution Factors, role and calculation of, 37
Predictivity, smart grid and, 52
Prepaid metering, 22
Price-based demand response, 150
Pricing signals, 19, 20
Proton exchange membrane (PEM) fuel cells, 147
PSERC. See Power Systems Engineering Research Center
PSO. See Particle swarm organization
PSS. See Power system stabilizer
PTDFs. See Power Transfer Distribution Factors
Pumped hydro, characteristics, advantages, and disadvantages, 157
PV-DesignPro, 142
PV inverter system, for DC-AC conversion, 144
Q-learning, 117

Raw data, classification of, 87–88
Rayleigh density function, conversion and power electronic technology and, 144
Rayleigh distribution function, wind technology and, 149
RDS, 9
Reactive power control, 132
Reactive Power Controllers, 71
Real-time consumption data, 20
Real-time network modeling, state estimation and, 95
Reforestation, climate change and, 153
Regenerative fuel cells, 147
Regional transmission organization, 19, 20
Regulatory frameworks, smart grid development and, 177
Reliability improving, smart grid and, 6 power system, defined, 125 transmission, 14
Remote Terminal Unit, 16
Renewable energy resources, 140 demand response issues, 150–151 design of architecture for smart grid with, 52 energy storage and increased development of, 155 microgrid with, 185 tax credits and, 158–159
Renewable energy systems, smart grid and integration of, 6 RER. See Renewable energy resources RER integration case study, 196–197 approach for smart grid application, 196–197 advanced metering infrastructure, 196 critical peak pricing, 197 demand response, 197 time-of-use pricing, 197 description of smart grid activity, 196 RES. See Renewable energy systems Research activities multidisciplinary, 178–179 in smart grid, 178 Research areas, for smart grid development, 176–177 Residential Renewable Energy Tax Credit, 158

Ribbon silicon, in solar panels, 142
Ring bus topology, 18
Risk assessment, 127
RK4, 75
Robustness, smart grid and, 52, 119
Robust state estimation, 90–91, 93–94 with pre-estimation analysis, flow chart for, 94
RockPort Capital Partners, 9
RPCs. See Reactive Power Controllers
RTO. See Regional transmission organization
RTU. See Remote Terminal Unit

SA. See Scheduling Agent
SAIC, 9
SAIDI, 23
SAIFI, 23
San Diego Gas & Electric, 185
SCADA, 19, 25, 96, 97, 163, 166
Scalability, smart grid and, 52
SCE. See South California Edison
Scheduling Agent, 24
Schneider Electric, 9
SE. See State estimation
Security analysis, power, 130
Security-type performance index, 47
Sensing, 19
Sensitivity, computational tools for smart grid and, 119
Sensitivity-based approaches, to outages, 48
Sensor inputs, adaptive dynamic programming and, 115
Sequential Quadratic Programming, 106
Simulation and analysis tools, smart grid development and, 177
Simultaneous strategy, 117–118
Single Linear Step ATC, 37
Single-line outages, 46
Singular value decomposition method, 127
Slow instability, 60
SMA. See System Monitoring Agents
Small hydropower, 147
Smart appliances, 22
Smart distribution solutions, 132
Smart grid. See also Case studies/testbeds for smart grid; Cyber security; Stability analysis tools for smart grid advanced optimization and control techniques used with, 126
capabilities of, 1
characteristics of, 8, 17
communication and standards for, 4, 5
contingency studies for, 48–49
demand side management component, 14
deployment of, 177
DSA for, 82
education about, 179–192
end user/appliance level of, 137
Energy Independence and Security Act of
2007: rationale for, 2–4, 3
environmental implications for
development of, 152–154
climate change, 153–154
environment and testbed, 4, 5
hybridization optimization techniques
applied to, 118
intelligent grid distribution subsystem
component, 14
key characteristics of, 25
microgrid vs., 27
monitoring and control technology
component, 14
network interoperability and, 162
penetration of PV into, requirements for,
144
power system enhancement and, 4, 5
process changes in design of DSA for,
80–81
representative architecture, 12, 12
research activities in, 178
smart devices interface component, 13
stakeholder roles and function, 6–9
state estimation and approach with, 95–97
storage component, 13
today’s grid vs., 2t
training and professional development
related to, 182–183
transmission subsystem component, 14
utilities and, 9
working definition of, 11–12
Smart grid components, functions of, 12
Smart grid design
DOE representative architecture of, 12
load flow for, 38, 40–41
second architectural framework, 13
Smart grid development
key aspects of, 4
research areas for, 176–177
Smart grid environment, state estimation for,
94–95
Smart grid initiative
challenges related to, 200–201
design and prototypes of performance
metrics, 201–202
Smart grid market drivers, general view of, 6
Smart grid pathway design, 122–138
applications for adaptive control and
optimization, 137–138
barriers and solutions to smart grid
development, 122, 124–125
bulk power systems automation of smart
grid at transmission level, 130–132
distribution system automation requirement
of power grid, 132–137
demand-side management, 136–137
distribution generation control, 137
network reconfiguration, 136
power quality, 135–136
voltage/VAr control, 132–135
end user/appliance level of smart grid, 137
general level automation, 125, 127–130
economic dispatch, 127–128
reliability, 125, 127
security analysis, 130
stability, 127
unit commitment, 128–130
solution pathways for designing smart grid
using advanced optimization and
control techniques, 125
Smart Grid Task Force, 3
Smart meters, 52, 200
functions of, 21–22
Smart transmission, 200
benefits of, 198
challenges of, 198
Smoothing, wind technology and, 149
Sodium sulfur type batteries, 156
Software, computational tools for smart grid
and, 118
Solar energy, 140, 141
Solar insolation, probabilistic modeling of, for
variability studies of PV systems, 144
Solar power technology, 142
Solar power towers, 142
Solid oxide (SOFC) fuel cells, 147
Solid polymer molten carbonate (MCFC) fuel
cells, 147
Southern California Edison, 9, 185, 196
Soybeans, bioenergy derived from, 145
SP. See Stochastic programming
Spinning reserve requirements, UC optimization problem and, 187
SQP. See Sequential Quadratic Programming
Stability, power system, 127
Stability analysis tools for smart grid, 51–98
an technical techniques for steady-state voltage stability studies, 68–70
angle stability assessment, 73–81
application/implementation plan of voltage stability, 70–71
dynamic state estimation, 97
optimizing stability constraint through preventive control of voltage stability, 71–73
state estimation, 81–97
strengths/weaknesses of existing voltage stability analysis tools, 51–56
voltage stability assessment, 56–62
techniques for, 62–65
voltage stability indexing, 65–68
Stakeholders, smart grid and roles/function of, 6–9, 8
Standards, 163–166
cyber security, for various electric grid levels, 167
defined, 163
smart grid interoperability, approach to, 163, 166
summary of, for smart grid development by key standards bodies, 164–165
Star topology, 18
State estimation, 52, 81, 83–97
detection and identification of bad data, 86
dynamic, 97
mathematical formulations for weighted least square estimation, 84–85
overall flow chart for online, state, and parameter estimation, and bad data analysis, 92
PMU-based, steps for, 95
postestimation analysis, 88
flow chart for, 91
pre-estimation analysis, 86–88
classification of raw data, 87–88
detection of obviously bad measurements, 86–87
detection of obviously bad network topology, 87
flow chart for, 89
flow chart for robust state estimation with, 94
hypothesis testing for identification of single bad data point, 90
real-time network modeling, 95
robust, 90–91, 93–94
flow chart for, with pre-estimation analysis, 94
scheme for, with PMU, 96
smart grid and approach toward, 95–97
for smart grid environment, 94–95
static, 84
State estimator, outputs, statistical properties of, 85
Static Security Assessment, contingencies and, 43–44
Static stability (Type I instability), 59
Static state estimation, 84
Static Var Compensators, 71, 72
Stead-state security, 44
Stead-state contingency analysis, 44–45, 46–47
Steady-state voltage stability studies
analysis techniques for, 68–70
direct methods for detecting voltage collapse points, 69
indirect methods (continuation methods), 69–70
Stochasticity, smart grid and, 52
Stochastic programming, formulation for, 107–108
Storage conservation, demand-side management and, 136
Storage technologies, 154–158
microgrid topology with, 154
options, comparison of, 156–158
parameters for, 155
String silicon, in solar panels, 142
Super capacitors, characteristics, advantages, and disadvantages, 156
Super conducting magnetic energy storage, characteristics, advantages, and disadvantages, 157
Sustainable energy options for smart grid, 141–148
biomass-bioenergy, 145, 147
fuel cell, 147–148
geothermal heat pumps, 148
goals for, 141
modeling PV systems, 142–144
small and micro hydropower, 147
solar energy, 141
solar power technology, 142
wind turbine systems, 144–145, 146
Sustainable energy technology, penetration
and variability issues associated with, 148–150
SVCs. See Static Var Compensators
Switching, smart meters and, 22
Synchrophasors, 20, 21
System Average Interruption Duration Index. See SAIDI
System Average Interruption Frequency
Index. See SAIFI
System energy balance model, UC
optimization problem and, 186
System Monitoring Agents, 24
System Operations level, smart grid
development, 123, 124
System Planning and Maintenance level,
smart grid development, 122, 123, 124
System security
associated functions of, 45
defined, 43
Tabu search, 128
Tax credits, to consumers, RER and energy
efficiency, 158–159
TCR. See Thyristor controlled reactor
Technical interoperability, 161
TEF. See Transient energy function
TEF method, calculation of boundary of
region of stability and, 77
Testbeds. See also Case studies/testbeds for
smart grid
smart grid development and, 177
Thermal-storage air conditioning, 201
Thermostat control, smart meters and, 22
Theta method, 75
Thin film panels, 142
3-generator, 6-node system, load curve of, 191
Thyristor controlled reactor, 72
Tidal power, 196
Time-of-day tariffs, 19, 20
Time-of-use, 150
Time-of-use pricing, RER integration case
study, 197
Token Ring/IEEE802.5, 18
Total harmonic distortion, calculations,
parameters, and network/systems
where index is applied, 135
Total TransferCapability, in ATC
computation, 36
TOU. See Time-of-use
Training and professional development,
182–183
Transfer limit, of electrical power network,
68
Transient energy function, 76
terms for, 77
Transient stability, 75–76
analysis of
flowchart of TEF for, 78
nonlinear system model for, 54
Transient voltage collapse, 59
Transmission Reliability Margin, in ATC
computation, 36
Transmission subsystem component, 14
Trapezoidal method, 75
tree topology, 18
TRM. See Transmission Reliability Margin
TTC. See Total Transfer Capability
Twisted pair cable, 17
Two-way communications, 20
smart meters and, 22
UC. See Unit commitment
UK-based Electricity, 196
Under voltage load shedding, 132
Unicast transmission, LAN and, 18
Unit commitment, 128–130
formulation of, 129
slow application of computer-based
programs by electric utilities, 128–129
Unit commitment (UC) optimization problem
constraint models for, 186–187
objective function of, 186
Unit generation limits, UC optimization
problem and, 187
Unstable equilibrium point (UEP) approach
closest, algorithm for, 77
controlling, algorithm for, 78–79, 80
Urbanization, climate change and, 153

Urbanization, climate change and, 153
U.S. Climate Change technology program, defining, 56–57
 DOE strategic plan for, 153
User agent, multiagent specifications of, 26
Utilities, smart grid and, 9
UVLS. See Under voltage load shedding

Valley filling, demand-side management and, 136
VCPI, 65, 66
Vehicle-to-grid power (V2G), 151
Very fast transient voltage collapse, 59
VIPI, 62, 62, 66
 computing, 63
 defining, equation for, 63
 in node specification space, 63
Voice over Internet Protocol (VoIP), 17
Volatage/VAr problem
 capacitor control limits, 134
 curtailable load control limits, 135
 customer outage cost, 133
 formulation of, 133–135
 load balancing, 134
 loss minimization, 134
 voltage limits/current limits, 134
Voltage assessment techniques, 62, 62–65
 condition number of the Jacobian matrix, 64–65
 minimum singular value, 63–64
 VIPI method, 62, 62–63
Voltage collapse
 description of, 68
 events leading to, 57–58
Voltage collapse dynamics, time frames and, 59
Voltage collapse points, detecting, direct methods for, 69
Voltage instabilities, classification of, 61
Voltage instability, 57
 preventive control scheme for power grid, 72
Voltage sag or swell, calculations, parameters, and networks/systems
 where index is applied, 135
Voltage security, defined, 58
Voltage stability
 application and implementation plan of, 70–71
 assessment, 56–62
 classification of, 58–59
 defining, 56–57
 flowchart of, 55
 indexing, 65–68
 optimizing stability constraint through preventive control of, 71–73
 study algorithm, 56
 voltage collapse and, 57–58
Voltage stability analysis tools, strengths/weaknesses of, 51–56
Voltage/VAr control, 132–135

WAMS. See Web Access Management System
Water consumption, smart meters for, 22
Water resources, climate change and, 153
Web Access Management System, 19
 demonstration projects for development of, 184–185
 stability monitoring and analysis and, 132
 techniques, 52
WEibull model, 149
Weighted least square estimation, mathematical formulations for, 84–85
Weighted least square (WLS) method, 81
Wheat, bioenergy derived from, 145
Wide area monitoring systems, 20
Wide-area situational awareness, smart grid and mandating development of, 9
Wi-Fi, 17
Wildlife, climate change and, 153
Wind energy, 140
 congestion management and, 145
Wind power, existing world capacity, 1996–2008, 145
Wind technology, variability in, sources of, 149
Wind turbines
 components of, 144
 drawbacks with, 144
 modeling, 145, 146
 systems of, 144–145
Wired communications technologies, 17
Wireless communications technologies, 17
Wireless networks, man-in-the-middle (MitM) attacks and, 173
Wood, bioenergy derived from, 145
Worldwide Interoperability for Microwave Access (WiMax), 17
World Wide Web Consortium (W3C), 163, 165
Y-bus matrix, 81