Index

Adaptive forecasting, 311
Advection, 345, 361
Advection–dispersion equation (ADE), 345, 356, 361
Aerodynamic resistance, 73, 131
AFFDEF model, 206
Aggregated dead zone (ADZ) model, 345, 363
AGNPS model, 228
Albedo, 131
Amazon, 97
ANSWERS model, 228
Antecedent conditions, 7, 29
Approximate Bayesian Computation (ABC), 279, 287
ARC-Hydro, 40, 205
Arkansas-Red River, 97
Arno model, 37, 46
Arno River, 101
Artificial neural networks (ANN), 99
ASTER DEM, 381
AWBM model, 37
Baseflow, 10, 32
BATEA, 249, 287
Bayes equation, 283
Bayesian Forecasting System (BFS), 296
Bayesian Model Averaging, 269
Blind testing
SHE, 138
Boundary conditions, 122, 374
Cauchy, Dirichlet, Neumann, 122
Bowen ratio, 73
Box–Cox transform, 277
Brooks–Corey characteristics, 171
Brue catchment, 262
BTOPMC model, 194
By-pass flow, 315
Calibration, 5, 18–20, 123, 154
soil moisture characteristics, 174
Calibration: use of tracer data, 357
Canopy resistance, 75, 131
Capillary drive, 162
Capillary potential, 158
Cappus, 12
CAPTAIN toolbox, 111, 383
Carlisle flood, 297, 299
CASC2D model, 41, 120
Catchment change, 305–9
Catchment Modelling Framework software, 385
Catchment Modelling Framework (CMF), 375
CATCHFLOW, 120, 130, 134
CATFLOW model, 120, 124, 130, 134
CATMOD model, 319
Cauchy boundary conditions, 122
Celerity, 15, 45, 349
CHAIN-2D, 123
Change detection, 305
Channel flow roughness, 131
Index

Channel routing models, 177–81
St. Venant equations, 125
kinematic wave, 142
Muskingum–Cunge, 147, 220
Characteristic curves, 146
Chicken Creek catchment, 154
Classification and regression trees (CART), 102
Climate change, 307–9
Closure problem, 316–324
Cloud computing, 70
Commensurability, 245, 372
Communication of Uncertainty, 375
Complexity, 324
Compressibility, 159
Conceptual model, 4
choosing, 16–18, 369
Confidence intervals, 244
Constitutive relationships, 318
Continuous Stirred Tank Reactor, CSTR, 366
Contributing area, 191, 211
Convolution, 365
Coos Bay, OR, 154
Coweeta catchments, 95
Crank-Nicholson scheme, 169
CREAMS model, 228
CREW model, 319
Crop growth, 131
CUAHSI, 70
software, 381
Curve number, 205

Dam safety
flood frequency prediction, 302
Darcy’s law, 4, 120, 158
Darcy–Richards equation, 314
Darcy–Weisbach roughness, 178
Data Assimilation, 151
Data-based mechanistic (DBM) models, 84, 91
adaptive, 311
emulation, 93
flood forecasting, 296
DBM model
software, 383
Decision Support Systems
NELUP, 67
WATERSHEDS, 67
Deconvolution, 354
Degree-day factor, 131
Degree-Day Method, 92
Degree-day method, 79–82
Derived distributions, 299
Deterministic models, 17
Deuterium tracer, 69, 344
DHMS model, 205
Diffusivity, 171
Digital elevation models, 61–6
ASTER, 381
flow pathways, 63
HydroSHEDS, 382
raster, 61
stream tubes, 64
TAPES-C, 64
TINs, 61
vector, 61
Digital terrain analysis
topographic index, 193
Dirichlet boundary conditions, 122
Discharge data, 55–6
quality control, 55
slope area method, 55
weirs and flumes, 55
Discharge: incremental, 347
Disinformation in hydrological data, 269, 377
Dispersion, 345, 361
Dispersion coefficient, 361
Dispersive fraction, 363
Distributed models, 16, 40–42, 119–57, 306
ANSWERS, 133
Bernard, 141, 147
CASC2D, 120, 133
CATFLOW, 120, 130, 134
GSSHA, 120
HEC1, 142
HILLFLOW , 133
HIRO 2, 151
HydroGeoSphere, 120
IHDM, 130, 134
InHM, 120, 152
KINEROS, 134, 142
MIKE SHE, 133
PIHM, 120, 130
QPBRRM, 152
SHE, 120, 130, 132–4
SHETRAN, 133
THALES, 134, 151
TOPLATS, 151
TOPOG, 130, 134, 145
TOUGH2, 120, 154
tRIBS, 120, 130
VSAS2, 130

Distribution function models, 42–3
G2G, 188
ISBA-TOPMODEL, 193
PDM, 187
TOPDYN, 211
Index 451

TOPKAPI, 203
TOPMODEL, 190, 210
Doing hydrology backwards, 84–7, 112
Donor catchment, 335
DPFT-ERUHDIT model, 33
DREAM, 249, 287
Dynamic TOPMODEL, 198, 218
DYNIA, 269
 software, 384

ECMWF, 292
ECOMAG model, 205
Effective parameters, 41, 306
Effective rainfall, 28, 86, 112
 Phi index method, 30
 Proportional loss method, 30
 SCS method, 30
Emulating complex models, 93
End Member Mixing Analysis (EMMA), 347, 360
Energy balance
 evapotranspiration, 72
 snowmelt, 60
Ensemble precipitation forecasts, 292
 ECMWF, 293
 MOGREPS, 292
Ephemeral stream, 7
EPIC model, 228
Epistemic uncertainty, 232, 241, 379
Equifinality, 20, 156, 264, 379
 in geomorphology, 325
Error transformations, 277
ESMA models, 37
ETH-4 Snowmelt model, 80
EU Ensembles, 381
Euclidean distance, 335
European Flood Alert System (EFAS), 293
Evaluation, 154
Evapotranspiration
 actual, 56, 60
 aerodynamic resistance, 73
 Bowen ratio, 73
 canopy resistance, 75
 complementarity method, 60
 crop coefficients, 58
 eddy correlation, 59
 equations, 220
 latent heat flux, 73
 pan measurements, 58
 Penman–Monteith equation, 72–6
 Penman–Monteith model, 128
 potential, 56
 remote-sensing estimates, 69
 scintillometer, 59
 seasonal sine curve, 57
 sensible heat flux, 73
 SVAT models, 58, 75
 wet canopies, 58
Explicit soil moisture accounting (ESMA) models, 16,
 105
Explicit time stepping, 169
Factor of safety, 376
FDTF-ERUHDIT model, 113
FEWS
 software, 385
Fick’s law, 361
Film flow, 315
Finite difference solutions, 166
Finite element methods, 170
Finite volume methods, 170
Fixed interval smoothing, 113
Flash floods, 151
FLEX, 105, 375
Flexible model structures, 105
Flood Estimation Handbook, 332, 333, 335
Flood forecasting, 290–96, 311
 neural network models, 100, 294
 transfer function models, 290
Flood frequency, 299–305
 derived distributions, 299
 stochastic rainfalls, 300
 TOPMODEL, 302
Flood routing
 SFV model, 170
Flood routing models
 JFLOW, 127
 LISFLOOD-FP, 127
 Muskingum method, 220
 RMA2, 127
 SFV, 127
 TELEMAC_2D, 127
Flood Studies Report, 333
Flood warning, 291
Floods, 291
Flow routing models, 293
FLUXNET, 332, 382
Forecasting and Early Warning System (FEWS), 294
Fourier transform, 367
Fractal residence time distributions, 356
Fractures, 10
Framework for Understanding Structural Errors (FUSE), 105, 375
Freeze and Harlan blueprint, 314
Frozen soil, 8
FUSE, 105, 375
Fuzzy clustering, 334
Fuzzy inference, 104
Fuzzy intersection, 284
Fuzzy measures, 281
Fuzzy Models
 Takagi–Sugeno inference, 299
Fuzzy models, 17
Fuzzy regression, 304
Fuzzy union, 284

Gårdsjön catchment, Sweden, 322
Generalised sensitivity analysis, 237
Genetic algorithms, 242
Geochemical tracers, 13–16
Geographical information systems (GIS), 66, 131, 204
 ArcHydro, 66
 ARHydro, 66
 GRASS, 66
 Green Kenue, 66
Geomorphological Unit Hydrograph (GUH), 35, 97
Geostatistics, 334
Gibbs sampler, 287
GIGO principle, 54
Glaciation, 324
GLEAMS model, 228
Global Data Runoff Centre, 382
GLUE, 151, 252–66, 269, 274
 Bayes equation, 252
 behavioural models, 254
 likelihood measures, 256
 limits of acceptability, 304
 Monte Carlo sampling, 255
 parameter ranges, 255
 software, 258, 384
Good Practice, 154
Google Earth Engine, 70
GoogleMaps, 70
Graphical estimation method, 26
Graphics Processing Units (GPUs), 127
Green Kenue, 205
 software, 383
Green–Ampt infiltration equation, 161
 parameters, 176
Grid to Grid (G2G) model, 91, 188, 307
GSFLOW model, 123
GSSHA model, 41, 120
Guidelines for Good Practice, 375

Hargreaves equation, 220
HBV model, 37, 238
HEC-RAS
 software, 383
 HEPEX, 294
 Heteroscedasticity, 241, 311
 Hillslope element models, 134
 Hindcasting, 292
 HIRO, 151
 Horton infiltration equation, 161
 Horton’s laws, 98
 Horton, Robert, 10, 22, 29, 344
 Hortonian overland flow, 22
 HOST soil types, 67
 HRU models, 204
 HSPF model, 37
 Hurst, Charles, 12
 Hydraulic conductivity, 131, 158, 171
 anisotropy, 158
 Hydraulic models, 293
 HydroGeoSphere model, 120
 Hydrograph separation, 13–16
 Hydrological data
 disinformation, 269
 quality control, 269
 Hydrological response units (HRUs), 35, 66, 185
 Hydrological similarity, 185, 197, 302, 335
 Hydropower, 101
 HydroSHEDS DEM, 382
 HYDROTTEL model, 205
 HydroWorks, 306
 HYDRUS model, 124
 software, 383
 HYPE model, 205
 Hypothesis testing, 370, 372
 Hysteresis, 123, 159, 183, 318
 REW scale, 318, 320
 saturated areas, 321
 IHACRES model, 89, 334
 software, 382
 IHDM model, 41, 64, 134
 IHMS model, 123
 Imbeaux, Édouard, 26
 Immobile storage, 349
 Implicit time stepping, 169
 Incommensurability
 parameters, 245
 variables, 245
 Incremental discharges, 347
 Inductive modelling, 84
 Infiltration, 29, 152
 air entrapment, 9
 capacity, 8
 frozen soil, 9
 Green–Ampt equation, 161
 heterogeneity, 165
Horton equation, 161
macropores, 9, 165
Philip equation, 162
ponding, 9
redistribution, 164
Smith–Parlange equation, 162
snowmelt, 9
storage capacity equation, 162
surface control, 315
surface crust, 9
time to ponding, 164
wetting front, 161
Infiltration equations, 160–65
Infiltration measurements
BEST inversion, 165
Informal likelihood measures, 279
InHM model, 41, 120, 152
INTAMAP, 70
software, 382
Integrated random walk, 114
Interception, 7, 58
Calder stochastic model, 78
Gash analytical model, 78
regression models, 76
Rutter model, 77–78, 128
Interception storage, 131
Intrinsic permeability, 159
Inverse method, 123
IPCC, 307
ISBA-TOPMODEL, 193
ISO model, 84
Isochrones, 29
Isotope tracers, 13–16
Isotopes, 343
Deuterium, 344
Oxygen 18, 344
Iterative solutions, 170
Kalman filter, 114
Kinematic wave models, 182, 141–83, 302, 349
2 dimensional, 133, 141, 147
assumptions, 183
characteristics, 146
kinematic shocks, 146
snowpack runoff, 146
subsurface stormflow, 144–5, 182
surface runoff, 142–4, 182
KINEROS model, 148
software, 383
Kirkby index, 190
Kolmogorov–Smirnov statistic, 238
Lagrangian velocity, 321
Lambert ISO model, 294
Land surface parameterisations, 58, 332
Land use and management, 305
Latent heat flux, 73
Latin Hypercube Sampling (LHS), 285
Likelihood functions, 277
Likelihood measures, 276–83
combining, 284–6
Limits of acceptability, 373
likelihood measure, 282
Linearity, 28
LIQUID model, 375
software, 385
LISFLOOD model, 205
EFAS, 293
Lumped models, 16
MACAQUE model, 193, 306
MACRO model, 123
Macropore flow, 42
Macropores, 5
Mahalonobis distance, 335
Maimai catchment, 13
Manning roughness equation, 143
MATLAB, 67
Mean residence time, 365
Mersene Twister, 285
Method of characteristics, 146
Metropolis MC² algorithm, 242
Microwave remote sensing
soil moisture, 68
MIKE SHE model, 41
MIPs model, 322, 345
Mixing models, 346
Mobile-immobile model, 363
Model calibration, 231–66
soft data, 241, 282
Model choice, 16, 369, 370
Model rejection, 370
Model space, 266, 370
Model structural error, 269
Model validation, 138
Models of Everywhere, 43, 374
MODFLOW, 364
software, 383
MODFLOWP, 123
MOGREPS ensemble precipitation forecasts, 292
Momentum equation, 178
Monte Carlo Markov Chain (MC²), 287
Monte Carlo methods, 252–8
MOPEX, 47, 105, 331
data, 382
MOUSE, 306
Mulvaney, Thomas, 25
Muskgingham–Cunge routing, 148, 220
variable parameter, 148
Nash Cascade, 33
Nash–Sutcliffe efficiency, 239, 258, 270, 280, 282
National River Flow Archive, 382
National Water Resources Model, Denmark, 374
Network width function, 96
Neumann boundary conditions, 122
Neural network models, 99, 294
New water, 344
Nice flood, 291
NIMROD radar rainfall system, 292
Noise variance ratio (NVR), 116
nomogram, 26
Nonlinear dynamics, 324
NORA rainfall projections, 292
Normal Quantile Transform, 278, 296
Numerical solution, 5
NWS River Forecast System, 293
Old water, 69, 344
OpenMI, 70, 375
software, 385
Optimality constraints, 325
evaporanspiration, 326
net carbon production, 326
Optimisation, 18
Overland flow, 12
Dunne model, 12
Horton model, 10, 22
infiltration excess, 8
saturation excess, 9, 12
Overland flow roughness, 131
Overland flow routing, 177–81
Overparameterisation, 101
Oxygen isotopes, 18, 69, 344
Panola catchment, GA, 154
Parameter estimation, 18, 231–266
bias, 246
Genetic algorithms, 242
GLUE, 252–66
Metropolis MC² algorithm, 242
optimisation, 241
Pareto optimal sets, 249
performance measures, 239
Rosenbrock method, 242
SCE-UA method, 243
simplex method, 242
simulated annealing, 242
Parameters
 calibration, 18
effective, 18
 incommensurate, 18
 optimisation, 18
Pareto optimal sets, 249
Particle filter, 269
Particle tracking models, 321
MIPs, 322, 345
SAMP, 322
PC-RASTER, 67
PDM model, 42
Pedotransfer functions, 67, 123, 175–7, 315
Penman–Monteith equation, 57, 72–6, 220
Perceptual model, 3, 6–13
Performance measures, 239, 276–84
 combining, 283, 286
 fuzzy measures, 281
 qualitative measures, 282
PEST
 software, 384
Philip infiltration equation, 162
 parameters, 176
Phreatophytes, 7
PIHM model, 120, 130
PILPS, 47
Plynlimon catchments (Wales), 86, 357
Pooling group, 335
Pore water velocities, 349
Post-audit analysis, 307
Post-normal science, 377
Pre-event water, 344
Pre-posterior prior analysis, 378
Precipitation
 bias correction, 308
Prediction intervals, 244
Prediction of Ungauged Basins (PUB), 329–41
Preferential flow, 124, 315
PREVAH model, 205
Priestly–Taylor equation, 220
Prior information, 371
PRMS model, 40, 205
Probability axioms, 280
Probability Distributed Moisture (PDM) model, 91, 187
Procedural model, 5
PRZM model, 228
PV-WAVE, 67

QPBRRM model, 151, 152
Quantile regression, 296

R-5 Chickasha, OK, 151
Radar
rainfalls, 292
Rainfall data, 51, 54
catchment averaging, 52
radar, 53, 292
telemetred gauges, 293
Rainfall–runoff models
History, 43
Rainfalls
effective, 86
Rainstorm models
Bartlett-Lewis, 301
Eagleson, 300
Neyman-Scott, 301
Random walk, 114
Rating curve, 126
Rational method, 25
Real-time forecasting, 290–96, 311
Realisation effects, 305
Recession curves, 85
Regionalisation, 329–41
hydrograph characteristics, 337
uncertainty, 334, 338
Relaxation times, 324
Relict soils, 324
Remote Sensing, 67–9
soil moisture, 151
Reno catchment, Italy, 321
Representative Elementary Watershed (REW) concepts, 43, 315, 324
balance equations, 317
closure, 316, 317
CREW, 319
implementations, 318
REWASH, 319
REWv4, 319
THModel, 319
Residence time distributions, 343–60
fitting, 365–68
fractal, 356
nonstationarity, 367
snowmelt, 367
time varying, 368
Response surface, 233, 234

Return flow, 349
REWASH model, 319
REWv4 model, 319
Reynolds Creek catchment, Idaho, 8, 40, 135
RFortran
software, 385
RHESSys model, 193, 306, 326
Richards equation, 120, 121, 158, 171
limitations, 121
Riparian area, 7
Risk, 309
RORB model, 37
RRMT model
software, 383
Runoff coefficient, 28
Runoff Processes, 6
Maimai, New Zealand, 13
Russia, 13
Tropical catchments, 13
Rutter model, 77–78
Ryedale Flood Research Group, 376
Sacramento model, 37, 293
Saeternbekken catchment, Noway, 258, 370
SAMP model, 322
Saturated area, 321
SCS Curve Number, 30, 165, 205, 224–9
Self-organising maps, 334
Semi-distributed Models
AFFDEF, 206
Arc-Hydro, 205
DHMS, 205
ECOMAG, 205
Green Kenue, 205
HYDROTEL, 205
HYPE, 205
LISFLOOD, 205
MACAQUE, 193
PREVAH, 205
PRMS, 205
RHESSys, 193
SLURP, 205
SWAT, 205
TOPLATS, 193
WATFLOOD, 205
Sensible heat flux, 73
Sensitivity analysis, 233
Hornberger–Spear–Young method, 237
sensitivity index, 237
Severn catchment, UK, 97
SFV model, 170
SHE model, 41, 130, 132–5
MIKE SHE, 133
SHETRAN, 133, 138
SHETRAN model, 41
Similar media theory, 173
Similarity measures, 335
Simulated annealing, 242
Skalka catchment, Czech Republic, 302
Slapton Wood catchment, UK, 138
SLURP model, 205
Smith–Parlange equation, 162
Smoothed Particle Hydrodynamics (SPH), 323
Smoothed random walk, 114
Snow data
snow courses, 54
snow pillows, 54
Snowmelt models, 7, 60, 303, 367
degree-day method, 79–82, 92
energy balance, 60
Soft data in calibration, 241, 282
Soil moisture
remote sensing, 68
Soil moisture characteristics, 121, 131, 171
calibration, 165, 174
pedotransfer functions, 175
Soil Water Assessment Tool (SWAT), 40, 205, 208, 219–24, 228
SRM Snowmelt Runoff Model, 81
SSARR model, 37
St. Venant equations, 125, 178–81, 314
assumptions, 179
diffusion wave approximation, 179
kinematic wave approximation, 179
momentum equation, 179
Stability, 124, 166
Stakeholders, 375
involvement, 376
Stanford Watershed Model, 37, 105
State dependent parameter (SDP) estimation, 117
STATSGO soil database, 67
Stemflow, 7, 76
Stochastic models, 17
Stochastic physics, 292, 307
Stochastic storage models, 321
Stokes flow, 121
Strahler stream ordering, 98
Streamtubes, 364
Structural error: model, 269
Subsurface stormflow, 10, 12
Support Vector Machine models, 101, 294
Surface ponding, 9
SVAT models
CLM, 58
ISBA-TOPMODEL, 58
MOSES, 58
SWAT model, 40, 205, 208, 219–24, 228
assumptions, 219
calibration, 222
hydrological response units, 220
overparameterisation, 222
sensitivity analysis, 222
software, 383
ungauged basins, 221
SWOT satellite, 341
Tank model, 37
TARDEM, 382
Tennessee Valley Authority, 12
THALES model, 41, 64, 134, 145, 151
Thames catchment, UK, 97
THModel, 318
Throughfall, 7, 76
Time compression assumption, 164
Time to ponding, 164
Time variable parameters, 113
Time-area diagram, 26
Tolerance intervals, 244
Top-Down modelling, 84
TOPDYN model, 211, 218
TOPKAPI model, 203, 204
software, 383
TOPLATS model, 151, 193
TOPMODEL, 42, 190–203, 210–19, 238, 258
assumptions, 210
BTOPMC, 194
Dynamic, 198, 218
flood frequency, 302
software, 384
TOPDYN, 211, 218
topographic index, 63
TOPOG model, 64, 134, 145, 306
TOPOG-dynamic model, 41
Topographic analysis
software, 382
Topographic index, 190, 193
TOUGH2 model, 120, 154
Tracers, 343
artificial, 69
environmental, 69
model calibration, 357
Trans-science, 377
Transfer function models, 87
adaptive, 294, 295, 311
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBM models, deconvolution</td>
<td>91, 112</td>
</tr>
<tr>
<td>effective rainfalls</td>
<td>112</td>
</tr>
<tr>
<td>emulation</td>
<td>93</td>
</tr>
<tr>
<td>flood forecasting</td>
<td>290</td>
</tr>
<tr>
<td>general linear model, GUH</td>
<td>35, 97</td>
</tr>
<tr>
<td>IHACRES</td>
<td>35, 89</td>
</tr>
<tr>
<td>linear, multiple input</td>
<td>88, 109</td>
</tr>
<tr>
<td>network width function</td>
<td>96, 89</td>
</tr>
<tr>
<td>parallel, time variable parameters</td>
<td>89, 113</td>
</tr>
<tr>
<td>Volterra series</td>
<td>35</td>
</tr>
<tr>
<td>Transient storage model</td>
<td>363</td>
</tr>
<tr>
<td>Transit time distributions</td>
<td>354</td>
</tr>
<tr>
<td>Translationary flow</td>
<td>344</td>
</tr>
<tr>
<td>Travel time distributions</td>
<td>354</td>
</tr>
<tr>
<td>Triangular Irregular Network (TIN)</td>
<td>64, 130, 142</td>
</tr>
<tr>
<td>tRIBS model</td>
<td>120, 130</td>
</tr>
<tr>
<td>Tritium tracer</td>
<td>69, 344</td>
</tr>
<tr>
<td>Type I, Type II, Type III errors</td>
<td>372</td>
</tr>
<tr>
<td>UBC model</td>
<td>37</td>
</tr>
<tr>
<td>UK Climate Impacts Programme</td>
<td>UKCP09, 307, 381</td>
</tr>
<tr>
<td>Uncertainty communication</td>
<td>375</td>
</tr>
<tr>
<td>Uncertainty estimation</td>
<td></td>
</tr>
<tr>
<td>Bayes, Bayesian statistical methods, Data assimilation, Forward uncertainty estimation, GLUE, Likelihood measures, Monte Carlo methods, Pareto optimal sets, Set theoretic methods, Types of quantile interval</td>
<td>258, 252, 245–7, 290–96, 243–5, 151, 252–266, 269, 274, 256, 276–287, 252–8, 249, 249–52, 244</td>
</tr>
<tr>
<td>UncertML software</td>
<td>70, 384</td>
</tr>
<tr>
<td>Uncertainty estimation</td>
<td></td>
</tr>
<tr>
<td>Bayes equation</td>
<td>252</td>
</tr>
<tr>
<td>Data assimilation</td>
<td>245–7</td>
</tr>
<tr>
<td>Forward uncertainty estimation</td>
<td>243–5</td>
</tr>
<tr>
<td>GLUE</td>
<td>151, 252–266, 269, 274</td>
</tr>
<tr>
<td>Likelihood measures</td>
<td>256, 276–287</td>
</tr>
<tr>
<td>Monte Carlo methods</td>
<td>252–8</td>
</tr>
<tr>
<td>Pareto optimal sets</td>
<td>249</td>
</tr>
<tr>
<td>Set theoretic methods</td>
<td>249–52</td>
</tr>
<tr>
<td>Types of quantile interval</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>