Index

abciximab, 160
accelerated degradation studies, 34
accreditation, 8, 9, 12, 63, 68
accuracy, 14
acquired functional inhibitors of hemostasis, 124–5, 132
assay characteristics, 129–30
assay pitfalls and limitations, 130–1
assays
 equipment, 127
 expected values, 128
 improved sensitive assay, 128–9
 method, 127–8
 methods available, 126–7
 principle, 126
 reagents, 127
 result evaluation, 128
 clinical manifestations, 125
differential classification of inhibitors, 126
screening tests, 125–6
activated clotting time (ACT), 83, 147
point-of-care testing (POCT), 152
activated partial thromboplastin time (aPTT), 46
effect of sodium citrate, 47
lupus anticoagulant (LAC), 235–6
method evaluation, 99–100
point-of-care testing (POCT), 151–2
systemic lupus erythematosus (SLE), 233–4
activated protein C (APC), 219–20
resistance, 226–7, 228
activated prothrombin complex concentrates (APCC), 116
ADAMTS13, 205–6
adhesion of platelets, 159
afibrinogenemia, 119
aggregometry of platelets, 163–5, 179
washed platelet activation assays, 179–81
whole blood impedance aggregometry, 181
allergic inhibitors of hemostasis, 124
Alphanate, 39
amperometric clot detection, 149
analytical errors, 28–9
analytical measurement range (AMR), 15
anti-beta2 glycoprotein antibody assays, 240
 performance, 240–1
 clinical implications, 241
anticoagulants, 47–8
blood-to-anticoagulant ratio, 49
antiphospholipid antibodies, 233–5, 241
anti-beta2 glycoprotein antibody assay performance, 240–1
clinical implications, 241
anti-beta2 glycoprotein antibody assays, 240
anticoagulant assay performance, 239–40
anticoagulant assays, 239
lupus anticoagulant assay in coumarin-treated subjects, 238–9
lupus anticoagulant assay performance, 237–8
lupus anticoagulant assays, 235
APTT, 235–6
kaolin clotting time (KCT), 236
lupus anticoagulants, 234
beta2 glycoprotein, 235
antiphospholipid syndrome, 233
definition, 233
antithrombin (AT), 244
apixaban, 87
argatroban, 246
argatroban, 98, 100, 125, 265
Arrhenius equation, 35
aspirin, 103, 160, 163
atherosclerosis, 159
autologous inhibitors of hemostasis, 124
Bernard–Soulier syndrome (BSS), 159
beta2 glycoprotein, 235
anti-beta2 glycoprotein antibody assays, 240
clinical implications, 241
performance, 240–1
between-run error, 228
between-run precision, 14
bivalirudin, 87
Bland–Altman plot, 20
bleeding syndromes, 159
bleeding time (BT), 160
blood samples, 46
whole blood transportation, 51
refrigerated storage, 51–2
cardiopulmonary bypass (CPB), 152
carrier diagnosis, 118
central venous catheters (CVCs), 86
centrifugation, 24–5
Chediak–Higashi syndrome, 160
chemically depleted plasma (CDP), 130
children, hemostatic testing in, 77, 87–8
anticoagulant monitoring, 84
developmental hemostasis, 79
coaulation factor reference values, 80
effect of assay method, 81–2
global hemostasis parameters, 83
LMWH, 85–6
local pediatric reference range development, 81
new anticoagulants, 87
normal hemostasis, 77–9
pediatric reference ranges, 80–1
POC INR, 86–7
test sampling, 82
analytical variables, 83
postanalytical variables, 83
preanalytical variables, 82–3
thrombophilia testing, 83–4
indication in children, 84
UFH, 84–5
VKA, 86
chorionic villus biopsy, 119
citrated, theophylline, adenosine, and dipyradimole (CTAD) tubes, 48, 249
Clinical Laboratory Standards Institute (CLSI), 9
INDEX

Clinical Pathology Accreditation (CPA), 63
clinical sensitivity, 20
clopidogrel, 103
closure time (CT), 162–3
clot detection
 amperometric, 149
electrical impedance, 150
electrogenic, 149–50
optical, 149
clot retraction, 168
coaugulation factors and inhibitors, 37
 Factor VIII (FVIII), 37–40
 Factor IX (FIX), 40
 fibrinogen, 41
 inhibitors, 41
 other plasma clotting factors, 41
 thrombin, 41
 von Willebrand factor (VWF), 40–41
coaugulation testing preanalytical errors, 25–7
coefficient of variation (CV), 14, 34, 60
collagen, platelet adhesion to, 40
collection containers, 46–7
comparative statistics, 19, 20
complement control proteins (CCP), 234
condidence intervals, 20
coumarin, lupus anticoagulant assay, 238–9
cryoprecipitation, 58
d-dimer/fragment E (DD/E) complex, 137
d-dimer point-of-care testing (POCT), 133
d-dimer testing standardization, 136, 145
 assay calibrators, 137–9
 assay harmonization, 139–43
 assay standardization, 139
daily practice problems, 143–4
 heterogeneity, 136–7
 monoclonal antibody specificity, 137
 reference material, 144–5
 dabigatran etexilate, 265
dalteparin, 246
deep venous thrombosis (DVT), 137
defects per million events (DPM), 6
 Deming principles, 4
descriptive statistics, 20
detection limits, 15
diagnostic errors, 23
 definition, 23
 types, 23–4
direct thrombin inhibitors (DTIs), 264–5
 monitoring, 267–8
discard tubes, 50–51
disseminated intravascular coagulation (DIC), 136
diagnosis, 143–4
 DMEAIC strategy, 7
 Döhle bodies, 161
dysfibrinogemena, 219, 227
ecarin time, 238
 EDTA, 47–8
 EIA – Gold nanoparticle-based fluid phase, 186–87
electrical impedance clot detection, 150
 electronic clot detection, 149–50
electrogenic clot detection, 149–50
 electronic medical record (EMR), 9
 error detection and correction, 7–8
erors, causes of, 30
 analytical errors, 28–9
 diagnostic errors, 23
definition, 23
 types, 23–4
 overview, 22–3
 postanalytical errors, 29–30
 preanalytical errors, 24–5
 dealing with, 27–8
 specific to coagulation testing, 25–7
 external quality assessment (EQA), 6, 8–9,
 29
 molecular genetics, 121
 von Willebrand disease (VWD), 211
 external quality assessment (EQA) in
 hemostasis
 additional advantages, 70–71
 educational role, 70
 establishing programs in developing
 countries, 72–3
 extension to other countries, 75
 impact, 74–5
 India, 73
 Participants, 74
 Samples, 73–4
 target value assignment, 74
 tests offered, 74
 laboratory performance evaluation, 67–9
 limitations, 70–71
 monitoring results, 69–70
 overview, 65–6
 recent developments, 71–2
 target values, 66–7
 Factor V (FV) inhibitors, 131
 Factor V Leiden, 219, 226–7
 Factor VIII (FVIII), 37–40
 hemophilia, 115–17
 Factor VIII (FVIII) assay, 105
 chromogenic assay, 111–12
 clotting factor infusions, 112
 elevated levels of FVIII, 110
 one-stage assay, 105–7
 components, 108–9
 pretest variables, 105
 severe deficiency, 109–10
 strong lupus anticoagulant, 107–8
 two-stage clotting assay, 110–11
 Factor XIII (FXIII) inhibitors, 151–2
 Factor IX (FIX), 40
 clotting factor infusions, 112
 hemophilia, 115–17
 one-stage assay, 105–7
 components, 108–9
 severe deficiency, 109–10
 strong lupus anticoagulant, 107–8
 false negative results, 25
 false positive results, 25
 familial thrombocytopenias (FTs), 159
 fibrin, 136–7
 high molecular weight (HMWF), 137,
 139
 low molecular weight (LMWF), 137, 139
 fibrinogen, 41
 frequency of IQC testing, 59–60
 method evaluation, 100–101
 fibrinogen deficiency, 119
 fibrinogen inhibitors, 131
 fibrinolysis standards, 42
 fill volume, 61
 flow cytometry (FC), 165–8
 fluorescent isothiocyanate, 167
 freezers, 53
 frequency of testing, 59
 genetic counseling for hemophilia, 118–19
 genomics, 169–70
 gene sequencing, 170
 Glanzmann’s thrombasthenia (GT), 159–60
 good laboratory practice, 60
 Gray platelet syndrome, 160
 hematocrit, 49
 hemophilia A and B, 115–17
 mutations, 117
 genetic counseling, 118–19
 genotypic–phenotypic relationship,
 118
 molecular diagnosis, 117–18
 hemostasis continued performance, 16–17
 protocol
 external quality assessment, 17
 internal quality control, 17
 reference interval, 17–19

274
INDEX

standards and guideline developing organizations, 19
statistics, 19–21
hemostasis initial evaluation, 95
instrument selection, 95–6
method evaluation, 96–7
aPTT, 99–100
fibrinogen, 100–101
PT, 97–8
thrombin, 101–2
viscoelastic assays, 102–3
hemostasis laboratory
IQC, 57, 63
acceptable limits, 60
accreditation and regulatory bodies, 63
materials, 57–9
out of limits results, 61–3
results storage and processing, 60–61
testing frequency, 59–60
quality principles, 4–5
hemostasis test validation, 12–13
concepts, 13–14
limits, 14–16
protocol, 16
heparin, 244
limitations
clinical, 245
pharmacokinetic, 244–5
low molecular weight (LMW) heparin, 34, 35–6, 245
children, 83, 84–5
heparin-induced platelet activation (HIPA) assay, 179–81
heparin-induced thrombocytopenia (HIT), 174, 245
fluid-phase immunoassays, 186
gold nanoparticle-based fluid-phase EIA, 186–7
McMaster Platelet Immunology Laboratory, 187–8
sepharose G fluid-phase EIA, 186
HIT syndrome, 174
central paradigm, 174
key concepts, 175
iceberg model, 175–6
immune response timeline, 176
positive control reagents, 176–8
pretest probability evaluation, 178–9
serum versus plasma, 176
stoichiometric PF4:heparin ratio, 175
PF4-dependent enzyme-immunoassays, 181–3
instrumentation-based immunoassays, 185–6
particle gel immunoassay (PaGIA), 184–5
particle immunofiltration assay (PIFA), 185
platelet activation assays, 179
platelet aggregation assays, 179
washed platelet activation assays, 179–81
whole blood impedance aggregometry, 181
heparin therapy monitoring, 244, 251
IIa inhibition assays, 249
LMWH monitoring, 251
plasma
aPTT, 246–7
chromogenic Xa inhibition assays, 247–9
PS neutralization assay, 247
quality assurance results, 250–1
calibration curves, 249–50
preanalytical variables, 249
Hermansky–Pudlak syndrome, 160
hirudin, 265
hypofibrinogenemia, 119
icteric samples, 52–3
idiopathic thrombocytopenia purpura (ITP), 160
immune tolerance induction (ITI) therapy, 125
imprecision evaluation, 14
India
EQA program, 73
extension to other countries, 75
impact, 74–5
participants, 74
samples, 73–4
target value assignment, 74
tests offered, 74
inhibitors, 41
instrument selection, 95–6
instrumentation-based immunoassays, 185–6
interference, 27
internal quality control (IQC), 8, 28–9
molecular genetics, 121
von Willebrand disease (VWD), 210–11
internal quality control (IQC) in hemostasis laboratory, 57, 63
acceptable limits, 60
accreditation and regulatory bodies, 63
materials, 37–9
out of limits results, 61–3
results storage and processing, 60–61
testing frequency, 59–60
international normalized ratio (INR), 36, 86
conversion of PT, 257
ISI, 259
issues affecting results, 257–9
mean normal PT (MNPT), 258–9
patient PT, 258
implementation, 260–1
limits
general limits, 259
specific limits, 259–60
International Reference Preparations (IRP), 36–7
International Sensitivity Index (ISI), 36
international standards, 32
coagulation factors and inhibitors, 37
Factor VIII (FVIII), 37–40
Factor IX (FIX), 40
fibrinogen, 41
inhibitors, 41
other plasma clotting factors, 41
prothrombin complex factors, 41
thrombin, 41
von Willebrand factor (VWF), 40–41
establishment, 33
choice of materials, 33
collaborative study, 33
physical attributes, 33
similarity, 33
stability studies, 33–4
usage, 34
fibrinolysis standards, 42
heparin and LMW heparin, 35–6
thromboplastins, 36–7
units
activity, 32–3
international units (IU), 33
International Standards Organization (ISO), 9
Jewish populations, mutations in, 119
kaolin clotting time (KCT), 234
dilute Russell’s viper venom test (DRVVT), 236–7
lupus anticoagulant (LAC), 236
kininogen, 100
275
INDEX

laboratory cycle, 5
laboratory information management system (LIMS), 9
Lean program, 6–7
lepirudin, 100
Levey–Jennings charts, 60–61
limit of detection (LOD), 14–15
limit of quantitation (LOQ), 14–15
linearity, 15–16
linear regression, 20
linkage analysis, 118–19
Local Method Quality (LMQ), 6
lupus anticoagulant (LAC), 107–8, 124, 234
assay in coumarin-treated subjects, 238–9
assay performance, 237–8
assays, 235
APTT, 235–6
dilute Russell’s viper venom test (DRVVT), 236–7
kaolin clotting time (KCT), 236
beta2 glycoprotein, 235
differentiation, 126
matrix effect, 49
McMaster Platelet Immunology Laboratory, 180, 187–8
mean normal PT (MNPT), 257, 258–9
megakaryocytes (MKs), 159
molecular genetics applications
EQA, 121
hemophilia A and B, 115–17
IQC, 121
Mutations, 117
diagnosis, 117–18
genetic counseling, 118–19
genotype-phenotype relationship, 118
nomenclature, 122
rare breeding disorders, 119–21
reporting, 121–2
monitoring, 52
monoclonal antibodies, 137
Montreal platelet syndrome, 161
multiplex ligation-dependent probe amplification (MLPA), 118, 208
mutations
gene sequencing, 170
hemophilia A and B, 117
prothrombin G20210A, 227
von Willebrand disease, (VWD)
deletions and duplications, 208
point mutations, 208
nadroparin, 246
National Method Quality (NMQ), 6
National Total Quality (NTQ), 6
near-patient testing (NPT), 147
needle gauges, 46
new anticoagulant monitoring, 264–5, 270
calibration, 265
direct Fxa inhibitor monitoring, 267
direct thrombin inhibitor (DTI) monitoring, 267–8
dual inhibitor monitoring, 268
global screening tests, 268–9
indirect Fxa inhibitor monitoring, 265–7
Nijmegen Bethesda unit (NBU), 128
p-nitroaniline, 111
null hypothesis, 20
optical clot detection, 149
oral anticoagulants
monitoring with vitamin K antagonists (VKA), 253–4
conversion of PT into INR, 257–9
future directions, 261
implementation of INR, 260–1
limits of INR, 259–60
thromboplastin calibration, 254–7
oral anticoagulation therapy (OAT), 147–9
osteoporosis, heparin-induced, 245
outliers, 20, 60
Owen’s disease, 120
P value, 20
parahemophilia, 120
Paris–Trousseau syndrome, 161
particle gel immunoassay (PaGIA), 184–5
point-of-care testing (POCT), 163
patient self monitoring (PSM) in oral anticoagulation, 150–1
patient self testing (PST), 147
planning for quality, 3, 11
laboratory application of tools
Quality System Essentials (QSE), 9–11
principles, 3–4
hemostasis laboratory, 4–5
tools, 5
error detection and correction, 7–8
external quality assessment (EQA), 8–9
internal quality control (QC), 8
Lean program, 6–7
Quality Assurance (QA), 8
Six Sigma program, 5–6
plasma
controlled thawing, 53–4
stability and storage, 53
platelet-activating anti-platelet factor 4 (PF4), 174
fluid-phase immunoassays, 186
gold nanoparticle-based fluid-phase ELA, 186–7
McMaster Platelet Immunology Laboratory, 187–8
sepharose G fluid-phase ELA, 186
PF4-dependent enzyme-immunoassays, 181–3
instrumentation-based immunoassays, 185–6
particle gel immunoassay (PaGIA), 184–5
particle immunofiltration assay (PIFA), 185
stochiometric heparin ratio, 173
platelet function diagnostic assessment, 159–60
bleeding time (BT), 160
clot retraction, 168
flow cytometry (FC), 165–8
new technologies
proteomics and genomics, 169–70
platelet aggregometry, 163–5
platelet counting and morphology, 160–1
platelet function analyzer, 162–3
platelet procoagulant activity, 169
platelet secretion, 163
prothrombin consumption, 160
signaling pathways, 168
thrombus formation in vitro studies, 168
adhesion to collagen, 168–9
flow conditions, 169
VerifyNow and point-of-care testing (POCT), 163
platelet-poor plasma (PPP), 164–5
platelet-rich plasma (PRP), 163
point mutations, 208
point-of-care testing (POCT), 23, 71, 147, 154
ACT testing, 152
aPTT testing, 151–2
D-dimer testing, 153
LMWH monitoring, 153
oral anticoagulation monitoring, 147–9
platelet function, 163
PSM of oral anticoagulation, 150–1
QA of INR monitors, 149
service management, 154

276
thromboelastography, 153–4
TT testing, 152–3
point-of-care testing international normalized ratio (POC INR), 86–7
policies, 9–10
postanalytical errors, 29–30
preanalytical errors, 24–5
dealing with, 27–8
specific to coagulation testing, 25–7
precision, 14
preimplantation genetic diagnosis (PGD), 119
prenatal diagnosis for hemophilia, 119
process descriptions, 10
proteomics, 169–70
prothrombin complex factors, 41
prothrombin deficiency, 119–20
prothrombin time (PT), 36
effect of sodium citrate, 47
method evaluation, 97–8
protocols, 16
Quality Assurance (QA), 8
quality, definition of, 3
Quality System Essentials (QSE), 9–11
random error, 20, 60
real-time stability studies, 34
receiver–operator characteristics curves (ROC curves), 21
reference intervals, 17–19
relative light units (RLUs), 186
reportable range (RR), 14, 15
rivaroxaban, 87, 265
specificity, 14
Splice Site Finder, 121
Student’s t-test, 20
systemic lupus erythematosus (SLE), 233
systemic variation, 60
Taipan snake venom time, 238
test validation, 13–16
Textarin time, 237
thrombin, 41, 159
thrombin antithrombin complex [TAT], 50
thrombin inhibitors, 131
thrombin receptor activating peptide (TRAP), 163
thrombin time (TT)
method evaluation, 101–2
point-of-care testing (POCT), 152–3
thrombocytopenia, heparin-induced see heparin-induced thrombocytopenia (HIT)
thromboelastography, 153–4
thrombophilia, heritable, 219
methods, 220
activated protein C (APC) resistance and Factor V Leiden, 226–7
antithrombin, 220–2
other tests, 227–8
protein C, 222–3
protein S, 223–6
prothrombin G20210A mutation, 227
results
patient-specific interpretation, 229–30
physiological and pathological variability, 228–9
reference ranges, 229
sampling, 228
screening, 219–20
test subjects, 230
thromboplastins, 36–7
calibration, 254–7
thrombotic thrombocytopenic purpura (TTP), 132
thromboxane A₂, 78–9
tinzaparin, 85
tirofiban, 160
total acceptable error (TEA), 6
total error, 23
tourniquet use, 49–50
transverse myelopathy, 234
units
activity, 32–3
international units (IU), 33
vascular access device (VAD), 51
venipuncture, 46
venous thromboembolic disease (VTE), 136
diagnosis, 143–4
point-of-care testing (POCT), 153
VerifyNow, 163
viscoelastic assay method evaluation, 102–3
vitamin K antagonists (VKA), 147–9
children, 86
oral anticoagulant monitoring, 253–4
conversion of PT into INR, 257–9
future directions, 261
implementation of INR, 260–1
limits of INR, 259–60
thromboplastin calibration, 254–7
vitamin K dysfunction, 121
von Willebrand disease (VWD), 161, 204
background, 192
phenotypic evaluation, 193
EQA, 211
IQC, 210–11
laboratory diagnosis, 196–201
typical patterns, 199–200
mutation analysis
deletions and duplications, 208
importance of, 208–9
point mutations, 208
parental diagnosis, 210
phenotypic assays for diagnosis, 193–4
laboratory assays, 194–6
prenatal diagnosis, 210
recommendations, 201
reporting, 211
nomenclature, 211
report inclusions, 211–12

INDEX
INDEX

von Willebrand disease (VWD) (Continued)
Type 2 VWD, 205
summary, 207–8
Type 2A VWD, 205–6
Type 2B VWD, 206
Type 2M VWD, 206
Type 2N VWD, 206–7
Type 3 VWD, 204–5
von Willebrand factor (VWF), 40–41, 192
blood sample refrigeration, 51–2
sample acquisition, 46
von Willebrand factor deficiency, acquired (AvWD), 132
Westgard rules, 63
whole blood impedance aggregometry, 181
Wiskott–Aldrich syndrome (WAS), 159
World Health Organization (WHO) standards, 33
Z score, 67