Accommodation procedure, of the detuning operation, 27
AC/DC power flow program, 8
AC generation and propulsion test bed, 8
Adaptation, sequential decision processes and, 137–139
Adaptation options, 139–140
Adaptive control, 138–139
Admittance bus matrix, 38, 40
Advanced Systems Theory, 4
Aggregated dispatch, 170–172
Aggregate planning problem, 136
Alternating-current (AC) transmission, 160
American electric utility system distributed generation and momentum change in, 157–175
momentum of, 172
Analytic redundancy, fault detection via, 17
Ancillary services (A/S), 81. See also Intelligent power router ancillary service
Angular displacements, 30
Approximation, in hierarchical planning, 135–136
Approximation algorithm, 106
Armature MMF distributions, 20
Autonomous systems, 73–74
Availability planning, market model for, 147
Badinelli, Ralph D., xi, 119, 157
Barriers to entry, 159
Beard-Jones detection (BJD) filter, 17
Behavior and Market Model Tool module, 7
Benchmark systems, 3
Benchmark test systems, 7 challenges related to, 5
Bilateral contracts, 151
Block switch failure, 102–103
Border IPRs, 59, 62, 63, 64, 82. See also Intelligent power routers (IPRs)
Branch failure, 107
Breaker reliability, 68
Broken rotor bar detection, on IFOC-driven induction motors, 28–35
Broken rotor bars residual generator to detect, 31–35 squirrel cage induction motor model with, 29–31
Building block switching module, 110, 111
Bus admittance matrix, 38
Business community, DG in, 173
Business decision problems, 120
Business entities, DG technology implementation by, 168–170
Bus load change, 37, 42, 43
California electricity crisis, 163
Case analysis, 119
Case studies, 121–123 importance of, 153–154
Cedeño, José R., xi, 47
Centeno, Virgilio, xi, 119
Circuit breakers, 87 construction of, 109–111 control circuit for, 111 design of, 106–107, 114–115 failure of, 107 medium voltage, 88–90, 95 proper operation of, 100
Circuit breaker technology, 88–92
Civil Test Bed, 10
Coal-fired power plants, 167
Cogeneration plants, 161–162, 164
Cold switching, 88
Combined heat and power (CHP) facilities, 164–166
Commitment planner, 150–153
Communications network congestion, 61

*Operation and Control of Electric Energy Processing Systems*, Edited by James Momoh and Lamine Mili
Copyright © 2010 Institute of Electrical and Electronics Engineers
Commutation, mechanical, 20
Comparator signal, 113
Computer controllable bus, 55
Computer hardware IPR subsystem, 65–66. See also Intelligent power routers (IPRs)
Computerized educational support system, effectiveness of, 130
Computerized descriptive model, 125
Computerized tools, 123
Computer simulation benefits of, 120
as a robust tool, 119
“Conservative” inventions, 159
Consumer behavior, challenges related to, 4
Contingency messages, 61
Contractor industry (CI), 169
Control centers, 48
Control circuit, 111–114
Controlled induction motors, detuned operation of, 20–24
Controlled islanding mechanism, 79, 83
Cortés, Hugo Rodríguez, xi, 15
Cost-effectiveness, as an IPR design objective, 50
CPLEX software, 133
Current distribution, switch failure and, 102
Current-fed indirect field-oriented controlled induction motors, detuned operation of, 20–24
Current interruption, 94
analysis of, 97–100
Current pulse, 110
Current transformer, 110
Current transformer signal, 113
Curricula innovative and integrated, ix, 3, 5
interdisciplinary, 6
interdisciplinary research-based, 2
Damage tolerance analysis, 16
Data-routing model, 48
DC pulses, 110
DC signal, 113
DCZEDS model, simulation studies using, 77. See also DC Zonal Electric Distribution System (DCZEDS)
DC Zonal Electric Distribution System (DCZEDS), 76–77
enhanced implementation of, 77
DC zonal ship service distribution test bed, 10
DD(X) Navy Test Bed model, 55
DD(X) shipboard power system, 57
Decentralized electricity generation, 166
impediments to, 166–168
Decision alternatives, ramifications of, 125
Decision analysis, 120
Decision/control actions, 71–73
Decision hierarchy, 121
Decision making, coordinated, 133–135
Decision model hierarchy, 141
Decision modeling, 119
Decision models building and optimizing, 123
data elements in, 125
general structure of, 126
performance measure trajectories in, 125
Decision model structure, generic, 123–126
Decision problem, optimal solution to, 124
Decisions simulation model for, 128
stochastic, 140–141
uncontrollable factors of, 124
Decision support systems, 123
Decision variables, 124
selection of, 135
Demand planning, market model for, 147
Descriptive decision models, 125–126
Descriptive models, data flow of, 126
Deterministic forecasts, 139
Detuned indirect field-oriented controllers, residual generator to detect, 24–26
Detuned operation, detection of, 24–26
Detuning, consequences of, 22
Detuning detection/accommodation, on IFOC-driven induction motors, 19–28
Detuning effect model, 22–24
Detuning operation, accommodation of, 27
DG adoption, business model for, 169. See also Distributed generation (DG)
DG facilities, 166
DG insertion, in protective device coordination, 127
DG paradigm, transition to, 166
DG system manufacturers, 169
DG technologies, 164
connection to the grid, 166–167
environmental issues related to, 166
opportunities for, 172–173
as a power grid replacement, 165
reliability of, 165
DG units, dispatch of, 171
Differential equations, 36–37
Dispatching option parameters, 140
Dispatching options, capacity and demand constraints on, 139
Distributed algorithms, 52
Distributed control, of electronic power
distribution systems, 71–74
Distributed control models, 71–79
Distributed generation (DG), 158, 163. See also
DG entries
in the American electric utility system,
157–175
as a business enterprise, 168–170
new momentum and, 164–166
opportunities for the use of, 171
stimulating economic momentum with,
170–172
Distribution systems, short circuits in, 90
Dynamic model-based state estimation approaches,
35
Dynamic models, 16
in fault tolerant operation, 15–45
Dynamic programming, 137–138
Dynamic residual generator, 18
Dynamic security assessment, 16
Dynamic state estimating, 16
Dynamic system monitors (DSM), 51
Economic market efficiency, funded research for,
12
Economic momentum, stimulating with DG,
170–172
Economics
challenges related to, 4
interdisciplinary research in, 12
Edison, Thomas, 159
Educational case studies, characteristics of,
122–123
Educational support system (ESS), 119. See also
ESS entries
Efficiency, challenges related to, 4
EGMS data flow diagram, 134. See also Electricity
Grid and Market Simulator (EGMS)
Electrical energy networks, restoration with IPRs,
59–60
Electric drives, high-performance applications of,
19–20
Electric energy delivery network (EEDN), 60
Electric energy processing networks, distributed
coordinating for, 47–85
Electric energy processing systems, operation and
control of, ix
Electricity, cost projections for, 166
Electricity generation, decentralized, 166–168
Electricity Grid and Market Simulator (EGMS),
131–133. See also EGMS data flow diagram
Electricity price uncertainty, 170
Electric power
distribution of, 87
efficient, 165
Electric power networks
analysis, planning, and operation of, 1
interdisciplinary curriculum for, 6
security of, 2
Electric power networks efficiency and security
(EPNES) framework, 1, 3, 4. See also
EPNES entries
future directions of, 13–14
Electric utility companies, early, 159–160
Electric utility industry, regulation of, 160–161
Electric utility system
distributed generation and momentum change in,
157–175
origins and growth of momentum in, 159–161
Electromechanical torque, 21
Electronic power distribution systems (EPDS),
distributed control of, 71–74
Electronic power flow control devices, 55
Embedded intelligence, 48
Energy crisis, 161
Energy flow control devices (EFCD), 50–51
Energy grid management, 135
Energy industry, 170
Energy market model (EMM), 133
Energy policy, 161–162
Energy processing systems, 15
fault detection problems in, 16
Engineering decision problems, 120
Environment, interdisciplinary research in, 12
Environmental advocates, 163
Environmental issues, challenges related to, 4–5
Environment Issues and Control module, 7
EPNES architecture. See also Electric power
networks efficiency and security (EPNES)
framework
modular description of, 6–7
solution of, 6–8
EPNES award distribution, 12–13
EPNES benchmark test beds, expectations of
studies using, 7–8
EPNES goals, 13
EPNES initiative, interdisciplinary education
component of, 12
EPNES solicitation, funded research work in
response to, 10–13
ESS data flow diagram, 132. See also Educational
support system (ESS)
ESS packages, 153
Estimation error, 26
Estimation error dynamics, 27
Event Scheduler, 128
“Externalities,” 168
INDEX

Fail-to-open/close failures, 105–106
Failure detection filters, 17–19
Failure modes, 70
Failure probability, modeling, 106
False alarms
identification of, 35
rate of, 16
Fault adaptive control systems, 73
Fault detection
induction motor dynamics for, 32
key to, 43
on power systems, 35–43
via analytic redundancy, 17
Fault detection circuitry, 53
Fault detection, isolation, and accommodation (FDIA) procedure, 17
Fault detection schemes, 39–41
basic function of, 16
Fault detector, 34
Fault injection module, 53
Fault scenarios, managing, 71–73
Fault tolerance, as an IPR design objective, 50
Fault tolerance enhancement framework, 15
Fault tolerant operation, dynamical models in, 15–45
Federal Energy Management Program, 172
Federal Energy Regulatory Commission (FERC), 80, 81
Field flux, 20
Field orientation, implementation of, 21–22
Field-oriented (vector) control, 19–20
Field-oriented controllers, 20
Field-oriented induction machine, dynamic response of, 21
Filters, failure detection, 17–19
Financial risk, 140–141. See also Risk entries
Finite state machine diagram, 77
Flexible AC transmission system (FACTS) devices, 5
Flux and torque control, decoupled, 20–21
Flux linkages, 31
Fossil fuels, 167
Friendly request negotiation stage, 63–64
Fuel cell technology, 164
Fuel cost uncertainty, 170
Funded research, under the EPINES award, 10–12
Fuzzy logic, 29
Gain-scheduled nonlinear observer, 35
Gel, Esma, xi
Generation cost scenarios, 128–129
Generation technologies
non-traditional types of, 158
small-scale, 164
Generators
constraints related to, 152
“level playing field” among, 168
Generic decision model structure, 123–126
Generic market model, 148–150
Geographic information system (GIS), 130–131.
See also GIS-based simulation studies
Geometric techniques, 29, 34, 44
GIS-based simulation studies, for power systems education, 119–155. See also Geographic information system (GIS)
Global sustainability technology, 5
Government entities, interest in DG, 171–172
Government policies, 172–173
DG implementation and, 167–168
Grid-driving decisions, simulation of, 143
Grid operation models/methods, 143–154
Grid operations model (GOM), 133
Group decision making, markets and, 141–142
Hadjicostis, Christoforos N., xi
Harmonic filter (HF), 10
Heuristic approaches, 135
Heydt, Gerald T., xi
Hierarchical planning, 133–137
High confidence systems architecture, challenges related to, 4
High-performance electric power system model, 8
High-performance electric power systems (HPEPS), 6
High-voltage breakers, reliability of, 67
Hirsh, Richard F., xi
Hubele, Norma, xi
Hughes, T. P., 158–159
Hybrid dynamical systems theory, 73
IFOC-driven induction motors
broken rotor bar detection on, 28–35
detuning detection and accommodation on, 19–28
IMSL software, 133
Indirect field-oriented control (IFOC) diagram, 22.
See also IFOC-driven induction motors
Indirect field-oriented controlled induction motor model, 23–24
Indirect field-oriented controller, 22
Inductances, 31
Induction machines, flux pattern disturbances in, 29
Induction motor dynamics, 32
Induction motors
IFOC-driven, 19–28, 28–35
parameters of, 28, 34
Industry-government partnerships, 13
Input (UI) observer approach, 17
Input lines, 60, 61
Integrated power system (IPS), 1, 8
Intellectual disciplines, existing barriers between, 3
Intelligent control and communication unit (ICCU), 51–52
Intelligent power router ancillary service, defined, 82
Intelligent power router concept, 48–50
Intelligent power routers (IPRs), 47–85. See also IPR entries
Described, 48, 51
distributed, 82
electrical network featuring, 59
islanding-zone approach via, 61–62
local, 59
restoration of electrical energy networks with, 59–60
risk assessment of a system operating with, 65–71
risk sources for a system with, 69
strategic distribution of, 49–50
synergy with LMP, 81–82
technical/social/economical potential for optimality, 81–82
types of, 60
Intelligent power router service, economic issues related to, 79–82
Interdisciplinary approach, 2
Interdisciplinary curriculum, 6
Interdisciplinary research
framework for, 1–14
in systems, economics, and environment, 12
Interdisciplinary research work, 14
Interface technologies, 167
Interfacing, 130–133
Interfacing circuits (ICKT), 50–51
Interior IPRs, 62, 63, 82. See also Intelligent power routers (IPRs)
Internal combustion engines, modular, 164
Inter-zone assistance request, 64
Intiyot, Boonyarit, xi, 119
Intra-zone negotiation, 62–64
Investor-owned utilities (IOUs), 168
IPR architecture, 50–55, 82. See also Intelligent power routers (IPRs); IPR network architecture
IPR communication protocols, 55–65
IPR components, 65–66
IPR configurations
in a 179-bus section, 72
reliabilities and failure probabilities of, 67–68
IPR decision making, performance and quality of, 61
IPR intercommunication subsystem, 55
IPR internal configurations, 66
IPR modules, decentralized, 50
IPR negotiation phases, 62–64
IPR network architecture, 60–61
IPR network communication, 60
IPR operation, 69
IPR reliability, 83
IPR software module, 50–55
IPR states, 70–71
IPR subsystems, 65
IPR system, 49
switch-based, 51–52
virtual test bed (VTB) simulation of, 52–53
Irizarry-Rivera, Agustín A., xii, 47
Islanding-zone approach, via IPR, 61–62
Karady, George G., xi, 87
Key performance indicators (KPIs), 120, 125
Kirchoff’s current law, 153
Kirchoff’s voltage law, 153
Knowledge
broader dissemination of, 3–4
unification of, 2
Lagrange multiplier, 150
Large-scale optimization, 133–137
Latching circuit, 113
Latching type switch, 91
Legislative changes, 161–163
Linear congruential method, 145–146
Line-to-ground fault, 35
Load change, 39
Load conditions, influence of, 29
Load energization, analysis of, 97
Load-flow equations, 36
Load-forecasting formula, 144, 146
Load priorities, 52, 55
Load serving entities (LSEs), 171, 173
Load shaping, 152
Load-shedding communication stage, 64
Load-shedding operations, 55
Load torque conditions, 44
Load uncertainty, 170
Local area power networks, 59
Local power generation, 165
Locational marginal price (LMP) concept, 80, 81–82
Lost line, 37–38, 42
Machine parameters, 42
Magnetic coils, 93
Magnetizing flux, 25
estimation of, 26–27
Magneto-motive force (MMF), 20
Market-clearing condition, 148–149
Market-clearing price, 146, 149
Market constraints, 152–153
Market maker, 146–150
Market model, 147
for demand planning, 147
generic, 148–150
Markets, group decision making and, 141–142
Markov chain, 71, 73
Markov model, 106
Mathematical Analysis Toolkit module, 6–7
MATLAB Stateflow toolbox, 77
Mean time between failure (MTBF), 67
Medium voltage circuit breaker, 88–90, 95,
109–110, 114–115
MEMS-based circuit breaker, 92–95. See also
Micro-electro-mechanical systems (MEMS)
feasibility of, 114, 115
operational principle of, 93–94
MEMS devices
higher tolerance of, 109
failure of, 106
MEMS switches, 115. See also
Micro-electro-mechanical switches (MEMS)
building blocks for, 110
estimated dimensions of, 115
failure probability of, 107
opening of, 100–101
MEMS switch operation, 99
overvoltages and, 104
MEMS switch technology, 90–91
MEMS technology, fast growth of, 115
MEMS units, number of, 108–109
Micro-electro-mechanical switches (MEMS), 87–88, 90. See also MEMS switch entries
components of, 91
specifications for, 92
Micro-electro-mechanical systems (MEMS), 10. See also MEMS entries
funded research for, 11–12
Micromechanical switches, power circuit breaker using, 87–117
Microswitches, 113
Minimal unobservability distribution, 18, 19, 33
Model-based broken rotor bar detection techniques, 29
Model-based fault detection, 16–19
Model-based fault detection scheme, 35–43
Model-based fault detection techniques, 16
Modeling, computational techniques for DC/AC systems, 6
Modeling tools, 123
Modern technological systems, 158
Modular decentralized control, 50
Momentum, 158–159
distributed generation and, 164–166
in the electric utility system, 159–161
of the American electric utility system, 172
stakeholders and, 161, 163
Momentum change, in the American electric utility system, 157–175
Momoh, James, xi, 1
Monte Carlo simulation model, 108
Motor current signature analysis (MCSA) method, 29
Motors, residual behavior for, 34
Multidisciplinary approach, 3
Multimachine state estimation, 35
Must-run generators, 152
Must-serve loads, 151
Naval Integrated Power System, 1
Navy Electric Ship example, 38–39
Navy power system model, 8–10
Navy power systems baseline ship architecture, 5
Navy power system topology, 9
Negative array, 97
Negative switches (NC), 94, 97, 100
Negative voltage cycle, 100
Nested optimization problems, 137–138
Network flow graph optimization problem, 59
Network intelligence, distributing, 47, 48
Network intelligence/control functions, distributing, 59
Network operation conditions, 35
Network parameters, 42
Networks of Power: Electrification in Western Society (Hughes), 158
New generators and consumers (NGCs), 169
risks for, 170
Newton-Raphson load flow method, 153
New York State Energy Research and Development Authority (NYSERDA), 171
Next-generation power network control model, 48
9-bus WSCC equivalent system, 79
Noisy measurements, 34
NSF initiatives, EPNES as a benchmark for, 13–14
NSF/ONR awards, 10
NSF-ONR EPINES initiative, ix
Nuisance fault modes, 32
Nuisance faults, 17, 18, 24
Numerical simulations, 28, 34, 41–43, 44
Object-oriented programming (OOP), 131–133
Objects, 131, 133
Observer error, 42–43
Observer performance, 42–43, 44
Office of Naval Research (ONR), 76. See also ONR reference system
119-bus reduced WSCC electric power system, 11
179-bus section, IPR configuration in, 72
179-bus WSCC benchmark power system, 10
O’Neill-Carrillo, Efraín, xi, 47
ONR reference system, 74–75. See also Office of Naval Research (ONR)
Optimal decision rules, 138
Optimality, IPR potential for, 81–82
Optimal power flow determination, modeling, 133
Optimal power flow (OPF) problem, 151
constraints related to, 152–153
stages of, 153
Optimal solution, 124
Optimization, large-scale, 133–137
Optimization problems, nested, 137–138
Organizations, analysis of, 169
Output diffeomorphism, 19
Output lines, 60, 61
Output statistical analyzer (OSA), 133
Output stream summarizer (OSS), 133
Overcurrents, 100, 102
Overvoltages, 95, 100, 102–103, 114
MEMS switch operation and, 104
Power circuit breaker, using micromechanical switches, 87–117
Power delivery systems, future, 48
Power distribution infrastructure, decentralized, 50
Power distribution scheme, experimental results of, 65
Power electronic switching devices, 20
Power engineering education, 2
Power flow information, 49
Power-flow optimization problems, 133
Power grid, constraints related to, 153
Power hardware IPR subsystem, 65, 66. See also Intelligent power routers (IPRs)
Power network, 49
Power outages, 165–166
Power routers, intelligent, 47–85
Power routing, 55
Power system management/control, concepts for modeling, 133–142
Power system model, Navy, 8. See also Navy power system entries
Power system modeling, 5–6
implementation of, 153–154
Power system restoration (PSR) problem, 79
mathematical formulations for, 60
Power systems architectures for, 5
automation technology in, 3
challenges to, 4–6
dynamic equations for, 41
evaluating the performance of, 5
fault detection on, 35–43
important role of, 119–120
parameters for, 41–42
reform in, 13
simulation models of, 128
systems related to, 120
Power systems design, case studies in, 122
Power systems education, GIS-based simulation studies for, 119–155
Power systems case studies, 122
Prefault states, assessment of, 16
Prescriptive models, 125–126
data flow of, 126
Principal power router (PPR), 60
Priority factors, 61
Probability distributions, 124
Proof of principles experiment, 109–114, 115
Pseudomeasurements, 35
Pseudorandom numbers, 145–146
PSPICE model, 98
Public policy
case studies in, 122
decision problems in, 120
DG implementation and, 167–168
uncertainty in, 170
Public utility commissions, early, 161
Public Utility Regulatory Policies Act (PURPA), 161–162
Pulse generator, 113
"Radical" technologies, 159
Ramirez-Orquin, Alberto R., xi, 47
Randomized load simulator, 144–146
Random number generators (RNGs), 144–145
Random number stream, reproducibility of, 145
Random performance measures, 124
Random variables, 124
Reconfiguration logic, implementation of, 77
Reconnection steps, right order of, 59
Redundant switches, determining the number of, 105–109
Regulatory constraints, 4
Regulatory inertia, 167
Regulatory uncertainty, 170
Reliability, approximations to estimate, 106–108
Reliability analyses, 105–109
computational results of, 108–109
Reliability assessment, 68–71
Reliability estimates, 67
Reliability factors, 61
Reliability theory, 66–71
Research, multidisciplinary, ix. See also Interdisciplinary research entries
Residual behavior, 34
Residual candidate, 39–40
Residual demand functions, 149
Residual generation problem, 18–19
Residual generator, 25
validating, 28
Residual generator dynamics, 33
Residuals, 17
Residual signal, 40, 41–42
Restoration process, for electrical energy networks, 59–60
Restricted diagonal detection (RDD) filter, 17
Retail markets, 142
Risk, challenges related to, 4. See also Financial risk
Risk assessment, of a system operating with IPR, 65–71
Risk constraint, 150
Risk factors, in DG adoption, 169–170
Risk framework assessment, 68
Risk management model (RMM), 133
Risk modeling, stochastic decisions and, 140–141
Risk sources, for a system with IPR, 69
Robust systems architectures/configurations, challenges related to, 4
Rodríguez-Martínez, Manuel, xi, 47
Rolling horizon, 138–139
Rotating frames, 43
Rotor flux dynamics, 32
Rotor speed, 25, 33
Rotor time constant, 22, 26, 28, 34
Rotor windings, 30
Routers, information exchange capability among, 48
Scalability, as an IPR design objective, 50
Scheduling options
capacity and demand constraints on, 139
parameters for, 139
Security
challenges related to, 4
funded research for, 10–12
Self-reconfigurable control system, 73, 74
Self-reconfigurable systems, 83
Sequential decision processes (SDP), 137–140
Series configuration, 68
Series/parallel system equations, 67
Ship architecture, integrated power system in, 74–76
Ship power systems
example of, 38–39
future of, 77
Ship service converter module (SSCM), 76
Ship service inverter module (SSIM), 76
Ship service power supply (PS), 8
Short circuits, 90
SimPower model, 54, 55, 57, 58
SimPower system simulation package, 53
Simulated system time, 128
Simulation controller (SC), 133
Simulation framework, 52–53
Simulation model, “replication” of, 128
Simulation modeling, 126–130
Simulation packages
comparison of, 154
interface to, 130
for power system modeling, 153–154
Simulation results, 77
Simulink, 76
Simulink DCZEDS simulation results, 78
Simulink model, enhancing, 77
Sink power router (SinkPR), 60, 63, 64
Slip frequency, 21
Small-scale technologies, 162
Snubber resistances, 95
Social-science systems approach, 157–175
utility system change and, 158–159
Socioeconomic principles, convergence with new system theories, 2
Sociopolitical databases, 131
Software IPR subsystem, 65, 66. See also Intelligent power routers (IPRs)
Software library, 65
Software module, IPR, 50–55
Software reliability estimates, 67
Source power router (SrcPR), 60, 64
Sovacool, Benjamin K., xii, 157
Special protection scheme (SPS), 68
Squirrel cage induction motor model, with broken rotor bars, 29–31
“Stacks,” 146, 148, 150
Standard market design (SMD), 83
Standard market design environment, 80–81
Stankovic, Aleksandar M., xi, 15
State diffeomorphism, 19
State estimation, 35
Stateflow toolbox, 77
State transition procedures, 128
Stator currents, 21, 23
Stator steady state values, 27
Stator windings, 30
Steady state messages, 61
Steam-turbine generators, 160
Stochastic decisions, risk modeling and, 140–141
Stochastic model, 124
Strategic business planning, 169
Strategic decisions, long-range, 135
Subsidization, 173
asymmetric, 167
Supercapacitor, 111
Supply function, 149
Survivability, as an IPR design objective, 50
Switch model, structure-preserving internal-node, 35
Switch closing, 94–95
Switches
building blocks for, 110
calculating expected lifetime of, 105–109
delayed closing of, 103–104
delayed opening of, 100
Switching arrays
 circuit diagram of, 96
 model development of, 97
 operation of, 95–105
Switching matrix, PSPICE model of, 98
Switching module, 112
Switching strings, 115
Symmetrical line short circuit, 37
Synchronous machine (SM), 8
System blackout, 59
System collapse, 68, 69
System components, modeling detailed interactions of, 128
System configuration model (SCM), 133
System engineering concepts, 13
System impedance, reduction of, 103
System momentum, 158–159
System momentum change, politics and, 161–163
System performance, representative sample of, 128–129
System reconfiguration problem, 79
Systems
 challenges related to, 4
 computerized descriptions of, 127
 interdisciplinary research in, 12
System state data, 128
System status information, distributed algorithms for disseminating, 55
Systems theory, funded research for, 11–12
System truth table, 79
Target fault modes, 32
Target faults, 17–18, 24
Technological evolution, social nature of, 160
Technological innovation, 169
“Technological stasis,” 161
Technological systems, 158
Technological uncertainty, 170
Technology/communications, funded research for, 11–12
Test beds, EPNES benchmark, 7–8
3-bus power system, 53, 54, 56
Three-phase circuit breaker, 89
3-phase computer controllable bus, 58
Time object, 131
Time rotor constant, 28
Transient current surge, 103
Transistor bridge (H-bridge), 111
Transition probabilities, 107–108
“Turn-off” signal, 97–100
“Turn-on” signal, 100
24/7 operation, as an IPR design objective, 50
Unit failure, 107
Units
 failure probability distribution of, 107–108
 number of, 108–109
Utility managers, 163
Utility practice, 15–16, 81
Utility system
 approaches for restructuring, 157–175
 restructuring, 172
Utility system change, social-science systems approach and, 158–159
Vacuum-bottle circuit breaker, 89–90
Value at risk (VaR), 129–130, 140–141, 150
Véliz, Bienvenido, xii, 47
Vélez-Reyes, Miguel, xi, 47
Vienna monitoring method (VMM), 29, 34
Virginia Tech Electricity Grid and Market Simulator (VTEGMS), 142, 143
Virtual test bed (VTB) simulation, 52–53
Wholesale markets, 142
WSCC 9-bus model, 65. See also 179-bus WSCC benchmark power system
Zonal distribution architecture, 74, 76