INDEX

Barrage components, 31
 powerhouse, 38
 sluiceway, 36
 access dyke, 36
 closure dyke, 92
Bathymetric data, 20

Caisson projects, 72
 Hibernia, 73
 Kislaya Guba tidal power station, 74
Murray prefabricated steel
 powerhouse, 76
Scheldt Estuary control works, 73
St. Petersburg storm-surge barrier, 74
Concrete caisson design, 82
 foundation considerations, 77, 81
 hydraulic considerations, 77
 stability assessment, 81
 stability forces, 82
 maximum water levels, 77
 minimum water levels, 79
 tidal currents, 80
 wave climate, 78
 wave runup, 79
Construction “in the dry,” 76, see also
 La Rance Station, 195 and
 Annapolis Station, 204
Construction “in the wet,” 69,
 advantages, 76, see also Caisson
 projects and Concrete caisson
 design

Database for planning, 47, 166
 continuous tide level data, 50
 estuarial ecosystems, 58, 176, 192
 estuary topography/bathymetry, 42
 geological characteristics of estuary,
 171
 input for modeling tidal regime, 56
 sedimentation characteristics of
 estuary, 55
 seismicity of estuary region, 50
 tidal currents, 54
 wave climate, 54

Elements of Tidal-Electric Engineering. By Robert H. Clark
Copyright © 2007 the Institute of Electrical and Electronics Engineers, Inc.

277
Development schemes, 45
see also Retiming tidal energy
 single-basin single-effect, 35–39
ebb generation, 36–39
flood generation, 36–39
pumping capability, 41, 44
Bay of Fundy studies, 41–42, 44
La Rance tidal power plant, 41
 single-basin, double-effect, 36
 pumping capability, 41, 44
linked basins, 42
paired basins, 45

Dykes, 87–95
 access dykes, 89–92
 alternative construction methods, 89
 closure dykes, 92–95
 water velocities, 90, 92
 construction materials, 95
cost, 87
design factors, 88, 95

Economic analysis, 155–160, see also Sensitivity analysis
 basic assumptions, 155
 benefit/cost ratio, 164
cost parameters, 152
 cost of capital, 155–56
 fossil fuel costs, 155–57, 164
 labor costs, 152, 162
discount rate, 151–52, 155–56

Electrical equipment, 114, see also Turbogenerating equipment

Environmental aspects, 171–74
 agricultural, 174–75
 benthic environment, 172
 biological responses, 167, 174
 regional climate changes, 170
 erosion and sediment regimes, 171
 fisheries, 177
 floods and drainage, 174–75
 planktonic environment, 172
 recreation and tourism, 178
 transportation, 179
 water quality, 169–71
 waterfowl, 179

Estuary numerical models, 62–67
calibration, 60
 Factors influencing project economics, 20–21
 external factors, 20–21
 internal factors, 20

Feasibility studies, 22
 Severn Estuary, 24, 255–59
 Bay of Fundy, 30–32, 215–22

Finite grid element, definition, 64–65
grid sizes used for Bay of Fundy–Gulf of Maine model, 64

Mathematical model for barrage closure activities, 69

Modeling barrier effects, 67

Modeling techniques for tidal estuaries, 59, 63
 finite difference method, 63–64
 finite element method, 63–64
 hydraulic models, 55, 59–62
 numerical models, 52, 54, 59–60, 62–63, 65, 67
 hybrid models, 59, 61, 67

Modeling plant output
 Bay of Fundy Tidal Power Reassessment Study, 121
 one-cycle dynamic programming model, OCDPM, 122
 maximum energy operation, 122–23
 single-tide optimization model, STOM, 121, 123

Operation for maximum energy, 122
Optimizing plant output, 117
 cost-related, 118
 operating, 117–119
 principal variables, 117

Origin of tides, 9–12

Plant output
 factors determining output, 16
 optimization, 117–24, 127–28
 effect of varying numbers of sluices and turbines, 119
 operation simulation, 120
 optimum combination of turbine and sluiceway capacities 118–19

Plant operational modes, 34–38, 124
double-effect operation, 36, 38–39
single-effect operation, 35, 37–39
complex modes of operation, 124
Potential tidal power sites worldwide, 209
factors influencing exploitation, 221
Powerhouse caissons, 81, 84, 222, 241,
see also Concrete caisson design
Project economics, 20, 21, 199, see also
Economic analysis
Retiming tidal energy, 44, see also Tidal
energy storage options
Risk assessment, 157, 160
Sensitivity analysis, 155, 160, see also
economic analysis
nuclear penetration in system, 155–56
Simulation models to analyze viability of
alternative generation expansion
programs, 141, 145
Chronological Absorption of Tidal
Output (CATO), 145
Optimum Mix (OPTMIX), 146
Production Cost (PROCOX), 145
Tidal Capacity Correction (TCC), 145
Site investigations, 81–82
Site potential, 17
annual energy production, 18, 22–24,
109, 121, 126, 215, 226
gross energy potential, 17
Site selection, 15, 20, 22, 24, 223
criteria, 21, 24, 54, 78–79, 86, 88, 92,
113, 142–43, 146, 266
short listing of sites, 24
assessment factors, 31, 48
Socioeconomic impacts, 161
Sluiceway caissons, 61, 81, 85, 87–88, 244,
see also Concrete caisson design
Sluiceway gates, 17, 86, 178
design criteria, 21, 57, 86, 88, 92
radial gates, 86–87
vertical lift gates, 86–87
Sustainability, 6
System generation expansion, 129, 140,
145, 149, 153, 155–56
lead times to commissioning, 141
market analysis, 143–44
system simulation, 136–37, 142, see also
Simulation models
Minas Basin
Coriolis effect, 13, 64, 256
Jiangxia Inlet, 5
Kislaya Guba, 73–74, 195–97, 235, 238, 264
resonance effect, 12–13, 48, 67, 170, 257
Tidal range in oceans, 18, 222, 243
Tidal stream, 7, 266
Tide coefficients, 19, 62, 123, 127
Tide types, 9, 19, 56, 172
anomalistic tide, 9–11, 19
anomalous month, 9
apogee, 9, 11
perigee, 9, 11, 19
declinational tide, 9, 11, 19
diurnal, 8, 12, 19, 22, 51, 85, 121–24, 223, 257, 259–60
diurnal inequality, 12, 19, 22, 121–24, 232
semidiurnal, 7, 12–13, 15, 42, 51, 67, 188, 208, 231, 259–60
mixed tide, 9
synodic tide, 9, 19
synodic month, 9
spring tide, 92, 129, 188–89, 191, 211, 237
neap tide, 10, 41, 188–89, 191
Transmission to remote and local markets, 114
Straflo, 5, 102–06, 194, 198, 202, 206, 210–11, 222, 264, 266, 270
vertical Kaplan, 99, 101
Turbine output regulation, 45, 101, 104, 106, 109, 132
double regulation, 101, 106, 109
adjustable runner blades, 106, 257
fixed runner blades, 107–109
variable guide vanes, 106, 108
Turbine specific speed, 99, 112
Turbine runner diameter, 99, 112–23, 127
Turbine generator, 106, 140, 241, 243
Turbogenerating equipment, 97, 117
see also Turbines and and Turbine generator
percent of project cost, 121