INDEX

1024 site wireless cortical microstimulating array, 383–397
measurement results, 394–397
system overview, 385–393
three dimensional array microassembly, 393–394
ABRs. See Auditory brainstem responses
Acoustic signal processing, biomimetic integration and, 281–295
Action potentials, recording of, cultured neural probes and, 360
Actuation, 291–293
Adaptation in future spaces, SVM and, 66–68
Adaptive visual encoding examples of, 87–90
natural stimulation, RF changes, 89–90
functional characterization, 81–99
multiple adaptive mechanisms, identifications of, 90–96
recursive least-square estimation (RLS), 84–85
RLS vs ERLS, 87–88
Address-event representation, neural pulse coding and, 273–274
AEP (auditory evoked potentials) 101, 535
based indices, 546–549
AEP derived A line ARX index, 547–549
AEPex index, 547
BAEP correction, 547–549
LLAEP correction, 547–549
muscular response, 547–549
requirements, 546–547
composite AEP/EEG indices and, 536–538
derived A line ARX index, 547–549
extraction, 538–543
autoregressive, 540–543
m-pulse sequences, 540
optimal vector quantization, 539–540
wavelets, 539
Wiener filtering, 539
AEPex index, 547
Algorithm
MLDB, 62–63
model selection, 49–51
posteriori probability model selection (PMMS), 49–51
RLS, 97–99
Amplifiers, configurations, ENG recording, 558–559
triple cuff, 559–562
Anesthesia
composite AEP/EEG indices and, 535–550
depth of, 535–536
Anthropomorphic hand, 426–428
Application specific integrated circuit design, 349–350
Artifact removal, 135–140
filter performance, 140–149
neural ICA, 141–145
wavelet, 140–141
wavelet-ICA filter performance, 145–149
independent component analysis, 137–139
proposed mixed wavelet-ICA filter, 139–140
wavelet-ICA filter preprocessing, 149–150
Artificial nose design, 244–245
neurorobotics and, 424–426
Atrioventricular nodes, 111–128
Atrioventricular (AV) node, 111
conduction time (AVCT), 111
Auditory brainstem responses (ABRs), 59
evoked potentials. See AEP
Automated odor discrimination, multichannel EAG and, 260–263
Autonomic cardiac modulation atrioventricular nodes, 111–128
experimental methods, 114–118
protocol, 114
results, 114–119
models, 119–127
integrate and fire based, 119–121
results of simulation, 123–127
simulation, 121–123
physiological background, 113–114
sinoatrial nodes, 111–128
Autoregressive process
AEP extraction and, 540–543
exogenous input (ARX) model, 540–543
AVCT. See AV conduction time

Handbook of Neural Engineering. Edited by Metin Akay
Copyright © 2007 The Institute of Electrical and Electronics Engineers, Inc.

651
Cognitive (Cont.)
image
re prioritization, 645–647
search, 640–641
rapid object recognition,
641–645
Coherence analysis, 133–135,
150–154
Common
drive detection, 149–154
artifact removal,
wavelet-ICA filter
preprocessing,
149–150
coherence analysis, 150–154
spatial patterns, linear
methods and, 638
Competitive local linear models,
nonlinear mixture, 17–19
Composite AEP/EEG indices
AEP
based indices, 546–549
extraction, 538–543
anesthesia, hypnotic depth,
535–550
auditory-evoked potentials,
536–538
EEG
based indices, 543–546
parameter, 549
hybrid index, 549–550
Cone mosaic disorder, 305–306
Configurations, tripole cuff
amplifiers and, 559–562
Conformal multielectrode arrays,
near prostheses and,
328–331
Continuous-loop averaging
deconvolution (CLAD), 101
overlapping auditory brain-
stem responses method-
ology and, 102
technique, effectiveness of,
106–109
Cortical
activity estimation
brain-computer interface
applications, 193–198
high-resolution EEG and,
195
data collection, 194
head model, 194–195
methodology, 194–196
results, 196–197
integration
Bayesian networks,
585–597
belief propagation,
590–591
direction of figure,
591–593
integrating form,
593–596
model for, 589–590
motion streams,
593–596
simulation of, 591–596
circuitry, 587–588
problem with, 587
networks
culturing of, 29–32
observations of, 32–37
chemical agent stimu-
lation, 32–35
electrical stimulation,
35–37
neuron isolation, 360
reorganizing, FES command
signals and, 238–239
source estimation
current densities spectral
estimation, 204–205
high-resolution EEG
recordings (HREEG),
201–209
testing, 202–206
human short-term memory
and, 201–209
region of interest activity,
205
statistical probability
mapping, 201–209
CORTIVIS project,
274–277
Cross validation, brain–machine
interface modeling and,
20–21
Cuff electrodes
description of, 555–558
signal characteristics,
555–558
tripolar, 555–565
Cultured neural probes,
357–367
enhanced neurophobic/
neurophilic contrast, 359
materials and methods,
360–366
action potentials, recordings
of, 360
background adhesion, 361
cortical neuron isolation,
360
culturing and MEA fabrica-
tion, 360
neurophobic background
materials, 361
polymethylsiloxane
microstamps, 361
methods, 360–366
microelectrode arrays
(MEAs), 357
patterned islands, 359–360,
363–366
neuron electrodes, 231
Culturing
cortical networks, creating of,
29–32
MEA fabrication and, 360
Current
densities spectral estimation,
204–205
injection, retinal neuroprosth-
esis design and, 413–416
Cybernetic hand prosthesis,
426–429
control of, 428–429
three-fingered anthropo-
morphic hand, 426–428
Data
acquisition
neural networks and,
132–133
surface EMG and,
521–523
collection, cortical activity
estimation and, 194
Decoding
neural code, PSTH-based
classification and,
486–487
sensory stimuli, neuron
populations and,
481–492
PSTH-based classification
of, 486–491
Decomposition methods
synchronous muscle synergies
and, 453–454
time-varying muscle synergies
and, 451–452
Deconvolution, overlapping auditory brainstem responses and, 101–109
Derivation, RLS algorithm and, 97–99
DEXTER robot arm, 444–446
Differential sensitivity between species, hybrid olfactory biosensors and, 247–249
Direction of figure, Bayesian networks and, 591–593
EAG system design, 249–260
EEG (electroencephalography), 193, 535
based indices, 543–546
bispectral analysis, 543–544
cerebral state index, 545–546
clustering analysis, 543
entropy, 544–545
patient state index, 544
composite AEP/EEG indices and, 549
nonstationary signal analysis, 601–612
measuring results, 602–605
single-trial analysis of
cognitive user interfaces, 635–648
machine learning, 637–639
Effective connectivity
semantic memory areas and, 215–217
test results, 218–219
Electrical stimulated
brain and, visual prostheses and, 269
cortical network observation and, 35–37
psychophysics of, 406–409
retina and, validated models, 353
therapy, FES command signals and, cortical reorganizing, 238–239
Electrodes
cuff, 555–565
cultured neuron, 231
extraneural, 229–230
fabrication, retinal neuroprosthesis design and, 404–406
intraneural, 229
models, retinal neuroprosthesis design and, 413–416
organization, retinal neuroprosthesis design and, 401–402
quantities, retinal neuroprosthesis design and, 402–404
sieve, 230
stimulation, visual prostheses and, 274
Electroencephalography. See EEG
Electroneurogram. See ENG
Electronic nerve stimulators, 231–233
retinal vision prosthesis, 340–341
vision prosthesis, 341–345
Electrophysiological activity modulation, neural networks, 29–39
EMG
signals
analysis of, 519–521
measurement of, 519–521
origin of, 519–521
surface, 519–531
ENG (electroneurogram) recording amplifier configurations, 555–565
interference reduction, 558–559
tripolar cuff electrodes and, comparison of, 562–564
Enhanced neurophobic/neurophilic contrast, 359
Entropy, 544–545
Epiretinal prosthesis, 343–345
ERLS vs RLS, comparison of, 87–88
ERLS. See Extended recursive least-square estimation
ERN. See Error-related negativity
Error corrections
cognitive user interfaces and, 639–640
Error-related negativity (ERN), 639–640
Error-related negativity (ERN), 639–640
Exogenous input (ARX) model autoregressive process and, 540–543
click volume, 542–543
signal to noise ratio, 541–542
Extended recursive least-square estimation (ERLS), 85–90
Extracellular electrophysiology in vivo, neuron recording population of, 482–486
Extraction
AEP, 539
real-time population spike amplitude, 323–325
Extraneural electrodes, 229–230
Feature extraction approach
central auditory processing disorders testing methods and, 61–63
local discriminant basis (LDB), 61
morphological local discriminant basis (MLDB), 61–63
single-channel unsupervised segmentation and, 183
testing results and, MLDB, 68–71
time-domain analysis, 68
Feature spaces of SVMs, 77
FES. See Functional electrical stimulation
Filter performance, artifact removal and, 140–149
Filtering, visual prostheses and, 271–272
Floquet’s modes, 575–578
fMRI. See Functional MRI
Foot prosthesis, implantable neural motor prostheses and, 234–235
Frog
intact, 461–462
spinalized, 459–460
Gray box, 10–14
Kalman filter, 11–14
population vector algorithm (PVA), 10
Todorov’s mechanistic model, 10–11
GSP networks
neural networks posterior probabilities estimation and, 46–52
probability model based on, 47–49
Hand prosthesis
cybernetic, 426–429
control of, 428–429
implantable neural motor prostheses and, 235–237
Head model, cortical activity estimation and, 194–195
Hebbian learning, 473
High-resolution EEG
brain–computer interface applications, 193–198
cortical activity estimation data collection, 194
head model, 194–195
methodology, 194–196
results, 196–197
recordings (HREEG)
cortical source estimation and, 201–209
testing, 202–206
results of, 207–208
statistical analysis, 205–206
subjects, 203
Hill’s equation, 571–574
Hippocampal
CA3 input/output model, microcircuitry implementation of, 322–328
time population spike amplitude extraction, 323–325
nonlinear modeling hardware implementation, 325–327
CA3 input/output properties, nonlinear dynamic modeling, 317–322
CA3 region, neural prostheses and, biomimetic device replacement, 313–315
trisynaptic circuit dynamics, CA3 prosthesis, 331–334
Hippocampus, 310–312
neural prostheses and, general strategy of, 312–313
trisynaptic pathway, nonlinear properties, 315–317
HREEG. See High-resolution EEG recordings
Human
short-term memory, cortical sources estimation, 201–209
visual pathways, 267–268
Hybrid
biosensors
neural cells incorporated into, 243–244
tissue incorporated into, 243–244
classification scheme, machine learning study testing results and, 71–73
index, composite AEP/EEG indices and, 549–550
olfactory, multichannel
EAG
differential sensitivity between species, 247–249
system design, 249–260
electroantennogram, 243–264
wavelet
central auditory processing disorders testing methods and, 63–64
machine learning approach, 63–64
I-blocks, neural building blocks and, 468–469
Image processing
retinal neuroprosthetics research and development and, 352–353
semantic memory areas and, 214
Integrated circuit design, application specific, 349–350
Integrating form, Bayesian networks and, 593–596
Interestim, 383–388, 393–396
Interference reduction, ENG recording amplifier configurations and, 558–559
Intraneural electrodes, 229
Kalman filter, 11–14
LDA, PSTH-based classification, comparison between, 489–491
LDB. See Local discriminant basis
Learning and memory nonlinear approaches to, 627–631
nontriggered EEG, nonlinear analyses of, 629–631
triggered EEG, nonlinear analyses of, 627–629
Limbs, robot, 423–424
Linear discrimination, 638–640
machine learning and, 637–639
common spatial patterns, 638
independent component analysis, 637–638
linear discrimination, 638–640
LLAEP correction, AEP based indices and, 547–549
Local discriminant basis (LDB), 61
morphological, 61
Machine learning approach, 63–64
linear methods, 637–639
common spatial patterns, 638
independent component analysis, 637–638
linear discrimination, 638–640
study central auditory processing disorders testing results and, 71–73
testing results hybrid classification scheme, 71–73
time-domain analysis, 71
Magnetic resonance images neural network based segmentation and, 173–191
applications of, 173–175
segmentation, overview of, 176–179
result validation techniques, 180–181
single-channel unsupervised, case study, 182–190
scans, volunteer, 189–190
Mammalian visual system model fundamental building blocks, 498–501
higher processing levels, extending to, 503–507
neurophysiological basis for, 496–498
optical logic cells, 495–497
retina, 501–502
Mathematical preliminaries, spike superposition resolution theory and, 370–371
Mathieu’s equation, 575
MEAs. See Microelectrode arrays
Medical applications neural networks posterior probabilities estimation and, 42–46
posterior probabilities and, 42–44
images, multiresolution fractal analysis, 157–170
Microcalcification detection system, 52–53
input features, definition of, 52–53
system description, 52–53
Microcircuitry implementation, hippocampal CA3 input/output model and, 322–328
Mathematical preliminaries, spike superposition resolution theory and, 370–371
Mathieu’s equation, 575
MEAs. See Microelectrode arrays
Medical applications neural networks posterior probabilities estimation and, 42–46
posterior probabilities and, 42–44
images, multiresolution fractal analysis, 157–170
Microcalcification detection system, 52–53
input features, definition of, 52–53
system description, 52–53
Microcircuitry implementation, hippocampal CA3 input/output model and, 322–328
Mathematical preliminaries, spike superposition resolution theory and, 370–371
Mathieu’s equation, 575
MEAs. See Microelectrode arrays
Medical applications neural networks posterior probabilities estimation and, 42–46
posterior probabilities and, 42–44
images, multiresolution fractal analysis, 157–170
Microcalcification detection system, 52–53
input features, definition of, 52–53
system description, 52–53
Microcircuitry implementation, hippocampal CA3 input/output model and, 322–328
Microelectrode arrays (MEAs), 357
chronic implantation of, 484–486
fabrication, cultured neural probes and, 360
neuron recording population of, 483–484
MLDB. See Morphological local discriminant basis
Model selection algorithm
neural networks posterior probabilities estimation and, 49–51
posteriori probability model selection (PMMS) algorithm, 49–51
Modeling
brain–machine interfaces and, 8–21
input/output (I/O), 8–21
Morphological local discriminant basis (MLDB), 61–63
algorithm, 62–63
feature extraction study testing results and, 68–71
Motion streams, Bayesian networks and, 593–596
Motor control
biological framework, robot arm neurocontroller and, 433–436
muscle synergies and, 449–464
Movement, restoration of, implantable neural motor prostheses and, 227–239
m-pulse sequences
AEP extraction and, 540
nonlinear system identification and, 540
MRI acquisition, semantic memory areas and, 214
Multichannel
EAG
system design, 249–260
hybrid olfactory biosensor and, differential sensitivity between species, 247–249
signal processing, automated odor discrimination, 260–263
electroantennogram, hybrid olfactory biosensor and, 243–264
Multiple adaptive mechanisms
adaptive visual encoding and, identifications of, 90–96
RF changes, offset changes, 94–96
RF estimation, operating point effects, 92–94
Multiresolution fractal analysis, 157–170
background of, 158–159
proposed analytical models, 159–165
power spectrum method, 162–163
statistical variance method, 160–161
Wigner–Ville distribution model, 164–165
Multisource characterization, spike superposition resolution theory and, 374–378
Muscle activity patterns, extraction of, 459–462
biopotentials, 233
synergies, 449–452
activity patterns, extraction from, 459–462
identifying methods, 452–455
motor control and, 449–464
simulations of, 455–459
synchronous synergies, 455–457
time-varying synergies, 457–459
synchronous, 451
decomposition methods, 453–454
extracted from spinalized frogs, 459–460
time-varying, 451–452
decomposition methods, 451–452
extracted from intact frogs, 461–462
Muscular response, AEP based indices and, 547–549
myelinated nerve fiber cable equation model, 569–583
Floquet’s modes, 575–578
Hill’s equation, 571–574
Mathieu’s equation, 575
point source response, 574–575
TMP induced 3-D, 578–583
Natural stimulation, adaptive visual encoding and, RF changes, 89–90
Neural building blocks
hardware classification of, 470
I-blocks, 468–469
network, 469–473
robots, 467–480
cells, hybrid biosensors and, 243–244
data, PSTH-based classification and, 488–489
ICA filter, 137–139
performance, 141–145
model, robot arm neurocontroller and, 438–442
motor prostheses, implantable, 227–239
networks
based segmentation, magnetic resonance images and, applications of, 173–191
building blocks, 469–473
spiking of, 473–479
cortical networks, observations, 32–37
culturing cortical networks, creating of, 29–32
data acquisition, 132–133
electrophysiological activity modulation and, 29–39
magnetic resonance image segmentation and, 179–180
posterior probabilities estimation, 41–57
GSP networks, 46–52
medical applications, 42–46
microcalcification detection system, 52–53
model selection algorithm, 49–51
simulation results, 53–57
Neural (Cont.)

surface electromyography, 132–133
time-frequency analysis, 131–154
applications of, 149–154
artifact removal, 135–140
common drive detection, 149–154
probes, cultured, 357–367
prostheses
brain-implantable biomimetic electronics, 309–334
conformal multielectrode arrays, 328–331
hippocampal trisynaptic circuit dynamics, CA3 prosthesis, 331–334
CA3 prosthesis and, 331–334
hippocampal CA3 region, biomimetic device, 313–315
hippocampus, 310–312
general strategy, 312–313
pulse coding
address-event representation, 273–274
leaky integrate and fire spiking neuron, 272
visual prostheses and, 272–274
recordings
activity, 7
characteristics of, 6–7
signal processing, biomimetic integration, 281–295
actuation, 291–293
neuromorphic signal processing, 293–295
ultrasonic transducer technology, 289–291
Neurocontroller, robot arm, 433–447
Neuroelectronic interface
cultured neuron electrodes, 231
extraneural electrodes, 229–230
implantable neural motor prostheses and, 229–231
intraneural electrodes, 229
sieve electrodes, 230
Neuroengineering, neurorobotics and, interfacing of, 421–430
Neurogenic bladder control, implantable neural motor prostheses and, 237–238
Neuromorphic signal processing, 293–295
Neuron
integrate and fire spiking, 272
populations
decoding sensory stimuli, 481–492
PSTH-based classification of, 486–491
recording of, 482–486
extracellular electrophysiology in vivo, 482–486
microelectrode arrays, 483–484
sensory maps, 486
Neurophobic background materials, cultured neural probes and, 361
Neurophobic/neurophilic contrast, 359, 362–363
Neuropsychological protocol, semantic memory areas and, 213–214
Neuroprostheses preprocessing platform, cortical visual and, 267–278
Neuroprosthetics, retinal, 337–353
Neuropsychological protocol, semantic memory areas and, 213–214
Neuropathic pain, 495–407
Neurophobic background materials, cultured neural probes and, 361
Neurophobic/neurophilic contrast, 359, 362–363
Neuropsychological protocol, semantic memory areas and, 213–214
Neuropathic pain, 495–407
Neuropathic pain, 495–407
Neuropathic pain, 495–407
Neuropathic pain, 495–407
Nonlinear
dynamic modeling, hippocampal CA3 input/output properties and, 317–322
mixture, competitive local linear models and, 17–19
modeling hardware implementation, hippocampal CA3 input/output model and, 323–325
properties, hippocampal trisynaptic pathway and, 315–317
system identification, m-pulse sequences and, 540
Nonstationary signal analysis, EEG and, 601–612
measuring methods, 602–605
results, 602–605
Nontriggered EEG, nonlinear analyses of, 629–631
Offset changes, RF changes, multiple adaptive mechanisms and, 94–96
Olfactory
sensors, 244
artificial nose design, 244–245
signal processing, biological, 246–247
system, insects, 245–246
One-dimensional case, 162–164
statistical variance method and, 160
Operating point effects, multiple adaptive mechanisms and, 92–94
Optical logic cells, mammalian visual system model and, 495–407
Optimal
dynamic modeling, hippocampal CA3 input/output properties and, 317–322
mixture, competitive local linear models and, 17–19
modeling hardware implementation, hippocampal CA3 input/output model and, 323–325
properties, hippocampal trisynaptic pathway and, 315–317
system identification, m-pulse sequences and, 540
Nonstationary signal analysis, EEG and, 601–612
measuring methods, 602–605
results, 602–605
Nontriggered EEG, nonlinear analyses of, 629–631
Offset changes, RF changes, multiple adaptive mechanisms and, 94–96
Olfactory
sensors, 244
artificial nose design, 244–245
signal processing, biological, 246–247
system, insects, 245–246
One-dimensional case, 162–164
statistical variance method and, 160
Operating point effects, multiple adaptive mechanisms and, 92–94
Optical logic cells, mammalian visual system model and, 495–407
Optimal
dynamic modeling, hippocampal CA3 input/output properties and, 317–322
mixture, competitive local linear models and, 17–19
modeling hardware implementation, hippocampal CA3 input/output model and, 323–325
properties, hippocampal trisynaptic pathway and, 315–317
system identification, m-pulse sequences and, 540
Nonstationary signal analysis, EEG and, 601–612
measuring methods, 602–605
results, 602–605
Nontriggered EEG, nonlinear analyses of, 629–631
Offset changes, RF changes, multiple adaptive mechanisms and, 94–96
Olfactory
sensors, 244
artificial nose design, 244–245
signal processing, biological, 246–247
system, insects, 245–246
One-dimensional case, 162–164
statistical variance method and, 160
Operating point effects, multiple adaptive mechanisms and, 92–94
Optical logic cells, mammalian visual system model and, 495–407
Optimal
signal processing, 3–26
brain–machine interfaces, examples of, 21–26
performance discussion, 26
neural recordings, characteristics of, 6–7
vector quantization, 539–540
Optimization problems, SVMs and, 78–79
Orthogonal transformation, 372–374
Oscillatory visual dynamics, 615–623
retino-cortical dynamics, (RECOD), 616–623
study of, 618–620
theoretical study basis, 616–618
Overlapping auditory brainstem responses
auditory-evoked potentials (AEP), 101
CLAD technique, effectiveness of, 106–109
continuous-loop averaging deconvolution (CLAD), 101
deconvolution, 101–109
methodology, 102–104
CLAD, 102
stimuli, 102–103
subjects and recording, 103
results, 105–106
click-level experiments, 106
stimulation rate experiments, 105–106
Pan-tilt vision system, robot arm neurocontroller and, 442
Papillary near reflex, 301
Parallel concurrent stimulation, retinal neuroprosthetics and, 346–349
Patient state index, 544
Patterned islands, cultured neural probes and, 359–360, 363–366
Perceptron, 19–20
Peripheral vision, retinal image and, 303–305
Phosphene image, retinal, 297–306
phenomenon, 339–340
Phosphenized vision, retinal neuroprosthesis design and, 401–402
Photoreceptors, 271
PMMS. See Posteriori probability model selection
Point source response, 574–575
Polydimethylsiloxane microstamps, 361
Population vector algorithm (PVA), 10
Posterior probabilities estimation, neural networks and, 41–57
simulation results, 53–57
medical applications and, 42–44
Posteriori probability model selection (PMMS) algorithm, 49–51
implementation of, 51–52
Power spectrum method, 162–164
one-dimensional case, 162–164
two-dimensional case, 162–164
Preprocessing, single-channel unsupervised segmentation and, 182–183
Probability model, GSP networks and, 47–49
Probing oscillatory visual dynamics, 615–623
Proposed analytical models multiresolution fractal analysis and, 159–165
power spectrum method, 162–164
testing results, 165–169
real medical image, 167–169
synthetic image, 165
Wigner–Ville distribution model, 164–165
Proposed mixed wavelet-ICA filter, 139–140
Prosthesis CA3, 331–334
electronic retinal vision, 340–341
foot, 234–235
hand, 235–237, 426–429
retinal neuroprosthesis design, 410–411
subretinal, 341–343
Prosthetic vision problem, 297–299
PSTH-based classification computational efficiency, 488
decoding neural code, 486–487
sensory stimuli and, 486–491
LDA, comparison between, 489–491
method definition and, 487–488
raw neural data, 488–489
Psychophysics, retinal neuroprosthetics research and development and, 352–353
PUMA 560 robot arm, 444–446
PVA. See Population vector algorithm
Rapid object recognition, cognitive user interfaces and, 641–645
Real medical image spectral method, 168
variance method, 167–168
WVD method, 168–169
Real-time population spike amplitude extraction, hippocampal CA3 input/output model, 323–325
Receptive field (RF) changes adaptive visual encoding and, 89–90
offset changes, multiple adaptive mechanisms and, 94–96
estimation, multiple adaptive mechanisms and, operating point effects, 92–94
RECOD. See Retino-cortical dynamics
Recording populations of neurons, 482–486
overlapping auditory brainstem responses methodology and, 103
Recurrent multilayer perceptron, 19–20
Recursive least-square estimation (RLS), 84–85
algorithm, derivation of, 97–99
extended, 85–90
vs ERLS, comparison of, 87–88
Regularization, brain–machine interface modeling and, 20–21
Research and development, retinal neuroprosthetics and, 349–353
Result validation techniques, magnetic resonance image segmentation and, 180–181
Retina
electrical stimulation, validated models, 353
visual prostheses and, computer modeling of, 269–270
system model of, 501–502
results of, 502–503
Retinal image cone mosaic disorder, 305–306
formation of, 299–300
papillary near reflex, 301
peripheral vision, 303–305
phosphene image, 297–306
prosthetic vision problem, 297–299
spatial sensitivity of, 300–301
numerical experiment, 301–303
Retinal neuroprosthesis, design considerations in, 401–416
current injection, 413–416
electrical stimulation, psychophysics of, 406–409
electrode fabrication, 404–406
models, 413–416
organization, 401–402
quantities, 402–404
implant electronics, 411–413
implantation, 410–411
phosphened vision, 401–402
prosthesis, 410–411
stimulation rates, 402–404
Retinal neuroprosthetics, 337–353
biology based design, 345–346
parallel concurrent stimulation, 346–349
research and development, 349–353
application specific integrated circuit design, 349–350
biohybrid high density electrode arrays, 350–351
image processing, 352–353
psychophysics, 352–353
validated models, 352
review of, 338–345
electronic
retinal vision prosthesis, 341
vision, 340–341
epiretinal, 343–345
phosphene phenomenon, 339–340
subretinal prosthesis, 341–343
Retinal vision prosthesis, 341
Retino-cortical dynamics (RECOD), 616–623
RF. See Receptive field
RLS. See Recursive least-square estimation
Robot
arm neurocontroller, 433–447
experiments on, 442–446
DEXTER, 444–446
pan-tilt vision system, 442
PUMA 560, 444–460
two-dimensional robot simulator, 442–444
modeling of, 436–438
motor control biological framework, 433–436
neural model, 438–442
limbs, 423–424
Robots, neural building blocks and, 467–480
Segmentation
magnetic resonance images
neural networks, 179–180
overview of, 176–179
segmentation, magnetic resonance images and, result validation techniques, 180–181
single-channel unsupervised, case study, 182–190
neural network based, 173–191
Semantic memory areas, 211–223
brain organization of, 212–213
functional MRI
effective connectivity, 215–217
test methodology
functional connectivity analysis, 214–215
image processing, 214
MRI acquisition, 214
neuropsychological protocol, 213–214
test results
effective connectivity, 218–219
functional connectivity, 217–218
subject by subject analysis, 217–218
test methodology of, 213–217
Sensorimotor coordination and learning of, grasping and, 422–426
Sensors, visual prostheses and, 271
Sensory
maps, neuron recording population of, 486
stimuli, decoding of, 481–482
supported treadmill training, 509–531
cognitive feedback, 512–513
functional electrical stimulation (FES), 509
gait reeducation system design, 510–511
instrumentation, 514
measuring procedure, 514–516
methodology, 510–516
observations of, 516–517
swing-phase estimation, 511–512
Sieve electrodes, 230
Sight restoration, visual protheses and, 268
Signal characteristics, cuff electrodes and, 555–558
processing multichannel EAG and, automated odor discrimination, 260–263
surface EMG and, 523–527
Signal to noise ratio, 541–542
Simulated magnetic resonance images, single-channel unsupervised segmentation testing results, 187–188
Simulation, autonomic cardiac modulation models and, 121–123
Single-channel unsupervised segmentation classification, 185–187 clustering, 183–185 feature extraction, 183 magnetic resonance imaging and, 182–190 preprocessing, 182–183 testing results, 187–190 simulated magnetic resonance images, 187–188 volunteer magnetic resonance scans, 189–190
Single-source characterization, spike superposition resolution theory and, 371–372
Time (Cont.)
frequency analysis, wavelet filter, 135–137
varying muscle synergies, 451–452
decomposition methods, 451–452
intact frogs, extracted from, 461–462
muscle synergy simulations of, 457–459
TMP induced 3-D myelinated nerve fiber, 578–583
alternative representation, 582–583
formulation, 578
integral representation, 578–582
Todorov’s mechanistic model, 10–11
Treadmill training, sensory supported, 509–531
Triggered EEG, nonlinear analyses, 627–629
Tripolar cuff electrodes, ENG recording amplifier configurations, 555–565
comparison of, 562–564
interference reduction, 558–559
tripole cuff amplifiers, 559–562
in vitro, 562–564
in vivo, 564
parameters of, 558–559
Tripole cuff amplifiers, 559–562
configurations of, 559–562
Two-dimensional case, 162–164
statistical variance method and, 160–161
robot stimulator, robot arm neurocontroller and, 442–444
Ultrasound transducer technology, 289–291
Variance method
real medical image and, 167–168
synthetic image and, 165–166
Vision
cortical, 267–278
human visual pathways, 267–268
problem with prosthetic, 297–299
prosthesis
electronic, 340–341
retinal vision, 341
Visual encoding
adaptive, 81–99
extended recursive
least-square estimation (ERLS), 85–90
model of, 82–84
prostheses
architecture, 271
filtering, 271–272
neural pulse coding, 272–274
photoreceptors, 271
sensors, 271
visuotopic remapping, 272–274
brain electrical stimulation, 269
computer modeling of, retina, 269–270
CORTIVIS project, 274–277
electrode stimulation, 274
neuroprostheses preprocessing platform, 267–278
sight restoration, 268
wireless link, 274
Visuotopic remapping, 272–274
Volunteer magnetic resonance scans, single-channel unsupervised segmentation testing results and, 189–190
Wacket packet decompositions, 75–77
Wavelet, 539
filter performance, 140–141
ICA filter performance, 145–149
preprocessing, 149–150
Weight delay, brain–machine interface modeling and, 20–21
Wiener filtering, 539
Wiener filters, 14–16
Wigner–Ville distribution model, 164–165
Wireless
cortical microstimulating array, button sized 1024 site, 383–397
Interestim, 383–388
link, visual prostheses and, 274
WVD method, real medical image and, 168–169