CONTENTS

Preface xix
Contributors xxi

SECTION I ESSENTIALS OF HIGH CONTENT SCREENING 1

1. Approaching High Content Screening and Analysis: Practical Advice for Users 3
Scott Keefer and Joseph Zock

1.1 Introduction 3
1.2 What is HCS and Why Should I Care? 4
1.3 How does HCS Compare with Current Assay Methods? 5
1.4 The Basic Requirements to Implement HCS 8
 1.4.1 Cell Banking 9
 1.4.2 Plating, Cell Density, and the Assay Environment 10
 1.4.3 Compound Addition and Incubation 11
 1.4.4 Post-Assay Processing 11
 1.4.5 HCS Imaging Hardware 12
 1.4.6 HCS Analysis Software 13
 1.4.7 Informatics 13
1.5 The Process 15
1.6 An Example Approach 16
1.7 Six Considerations for HCS Assays 18
 1.7.1 Garbage In, Garbage Out (GIGO) 18
 1.7.2 This Is Not a Plate Reader 19
 1.7.3 Understand Your Biology 20
 1.7.4 Subtle Changes Can Be Measured and Are Significant 20
 1.7.5 HCS Workflow — Flexibility is the Key 21
 1.7.6 HCS is Hard — How Do I Learn It and Become Proficient at It? 21

References 22
2. Automated High Content Screening Microscopy

Paul A. Johnston

2.1 Introduction
2.2 Automated HCS Imaging Requirements
2.3 Components of Automated Imaging Platforms
 2.3.1 Fluorescence Imaging and Multiplexing
 2.3.2 Light Sources
 2.3.3 Optical Designs: Confocal Versus Wide-Field
 2.3.4 Objectives
 2.3.5 Detectors
 2.3.6 Autofocus
 2.3.7 Environmental Controls and On-Board Liquid Handling Capabilities
2.4 Imaging Platform Software
2.5 Data Storage and Management
2.6 Selecting an HCS Platform
2.7 Comparison of a SAPK Activation HCS Assay Read on an ArrayScan® 3.1, an ArrayScan® vTi, and an IN Cell 3000 Automated Imaging Platform

References

3. A Primer on Image Informatics of High Content Screening

Xiaobo Zhou and Stephen T.C. Wong

3.1 Background
3.2 HCS Image Processing
 3.2.1 Image Pre-Processing
 3.2.2 Cell Detection, Segmentation, and Centerline Extraction
 3.2.2.1 Cell Detection
 3.2.2.2 Particle Detection
 3.2.2.3 Cell Segmentation
 3.2.2.4 Centerline/Neurite Extraction
 3.2.3 Cell Tracking and Registration
 3.2.3.1 Simple Matching Algorithm
 3.2.3.2 Mean Shift
 3.2.3.3 Kalman Filter
 3.2.3.4 Mutual Information
 3.2.3.5 Fuzzy-System-Based Tracking
 3.2.3.6 Parallel Tracking
 3.2.4 Feature Extraction
 3.2.4.1 Features Extracted from Markov Chain Modeling of Time-Lapse Images
3.3 Validation
3.4 Information System Management

References
3.5 Data Modeling

3.5.1 Novel Phenotype Discovery Using Clustering 70
3.5.2 Gene Function Study Using Clustering 72
3.5.3 Screening Hits Selection and Gene Scoring for Effectors Discovery 74

3.5.3.1 Fuzzy Gene Score Regression Model 75
3.5.3.2 Experimental Results 76
3.5.4 Metabolic Networks Validated by Using Genomics, Proteomics, and HCS 76
3.5.5 Connecting HCS Analysis and Systems Biology 77
3.5.6 Metabolic Networks 78
3.6 Conclusions 79
3.7 Acknowledgments 79
References 80

4. Developing Robust High Content Assays 85

Arijit Chakravarty, Douglas Bowman, Jeffrey A. Ecsedy, Claudia Rabino, John Donovan, Natalie D’Amore, Ole Petter Veiby, Mark Rolfe, and Sudeshna Das

4.1 Introduction 85
4.2 Overview of a Typical Immunofluorescence-Based High Content Assay 86

4.2.1 Staining Protocol 87
4.2.2 Sources of Variability 87
4.3 Identifying Sources of Variability in a High Content Assay 88

4.3.1 Verifying the Accuracy and Precision of Liquid Handling Procedures 89
4.3.2 Deconstruction of Immunofluorescence and Cell Culture Protocols 90
4.3.3 Control Experiments 90
4.3.4 Protocol Optimization 92
4.3.5 Antibody Optimization Using a Design of Experiments Framework 94
4.3.6 Addressing Sources of Variability in Microscopy 96
4.3.7 Optimization of Image Processing Parameters in a High Content Assay 99
4.4 From Immunofluorescence to High Content: Selecting the Right Metric 101
4.5 Validation of High Content Assays 102

4.5.1 Establishing SOPs and Reagent Stocks for Cell Culture and Immunofluorescence Staining 103
4.5.2 Linking Assay Variability to Assay Performance 104
4.5.3 Design of Assay Quality Control Measures 105
SECTION II APPLICATIONS OF HCS IN BASIC SCIENCE AND EARLY DRUG DISCOVERY

5. HCS in Cellular Oncology and Tumor Biology

Steven A. Haney, Jing Zhang, Jing Pan, and Peter LaPan

5.1 Cancer Cell Biology and HCS

5.1.1 Oncology Research and the Search for Effective Anticancer Therapeutics

5.1.2 A General Protocol for Establishing HCS Assays Within Oncology Research

5.1.2.1 What is the Underlying Biology to be Evaluated in an HCS Assay?

5.1.2.2 What Resources Are Immediately Available for Characterizing the Target or its Activity?

5.1.2.3 How Do the Available Reagents Perform Quantitatively?

5.1.2.4 What Multiplexing is Required for the Assay?

5.2 The Cell Biology of Cell Death

5.2.1 Cell Death Stimuli and Response Pathways

5.2.2 Induction of Cell Death Signals

5.2.2.1 Activation of Cell Death Receptors

5.2.2.2 Mitochondrial Damage

5.2.2.3 Mitotic Arrest, Replication Stress, and DNA Damage

5.2.2.4 ER Stress

5.2.3 Propagation of Cell Death Signals into Specific Cell Death Responses

5.2.3.1 Apoptosis

5.2.3.2 Mitotic Catastrophe

5.2.3.3 Autophagy

5.2.3.4 Necrosis

5.2.3.5 Senescence

5.2.4 Cytological and High Content Assays for Cancer Cell Death

5.2.4.1 Detection of Moderate and Severe ER Stress in Cancer Cells

5.2.4.2 Effects of Cytotoxic Therapeutics on Apoptosis and Necrosis of Cancer Cells
5.3 Cell Signaling Pathways in Cancer 133
 5.3.1 Signal Transduction in Cancer 133
 5.3.2 A Multiparametric Assay for the PI3K/AKT Pathway as Representative of Quantitative Measures of Signal Transduction in Cancer Cells 135

5.4 HCS in Tumor Biology 137
 5.4.1 The Biology of Tumor Growth 137
 5.4.2 An HCS Assay to Study Tumor Biology in vitro 137

5.5 Conclusions 139
References 139

6. Exploring the Full Power of Combining High Throughput RNAi with High Content Readouts: From Target Discovery Screens to Drug Modifier Studies 145
 Christoph Sachse, Cornelia Weiss-Haljiti, Christian Holz, Kathrin Regener, Francoise Halley, Michael Hannus, Corina Frenzel, Sindy Kluge, Mark Hewitson, Benjamin Bader, Amy Burd, Louise Perkins, Alexander Szewczak, Stefan Prechtl, Claudia Merz, Peter Rae, Dominik Mumberg, and Christophe J. Echeverri

6.1 Background: The Convergence of High Content Analysis and RNAi 145
6.2 Integrating HT-RNAi and HCA in Drug Discovery: The Potential 146
 6.2.1 Technology Platform, HCA, and HT-RNAi Methodologies 146
 6.2.2 Key Applications of HT-RNAi Combined with HCA in Drug Discovery 148
 6.2.2.1 Target Discovery Screens 148
 6.2.2.2 Target Validation Studies 149
 6.2.2.3 Drug Mechanism of Action Screens 149
6.3 Combining RNAi and HCA in One Assay — The Reality 150
 6.3.1 General Considerations 150
 6.3.1.1 Choice of the Right Cell Model 150
 6.3.1.2 Establishment of an RNAi Delivery Protocol 150
 6.3.1.3 Assay Optimization 151
 6.3.2 Applications: Combining HCA with HT-RNAi to Integrate Functional Validation Directly Within Target Discovery Studies 151
 6.3.2.1 Multipass Strategies for Systematic Screens 151
 6.3.2.2 Hurdles and Caveats 152
 6.3.2.3 Example: A Multiparametric Oncology Assay Platform 155
 6.3.3 RNAi Target Validation Studies 159
 6.3.3.1 Functional Profiling 160
9. High Content Analysis of Human Embryonic Stem Cell Growth and Differentiation

Paul J. Sammak, Vivek Abraham, Richik Ghosh, Jeff Haskins, Esther Jane, Patti Petrosko, Teresa M. Erb, Tia N. Kinney, Christopher Jefferys, Mukund Desai, and Rami Mangoubi

9.1 Introduction

9.2 Cell Culture Methods
 9.2.1 Maintaining Pluripotency
 9.2.2 Cardiomyocyte Differentiation
 9.2.3 Neuronal Differentiation

9.3 Statistical Wavelet-Based Analysis of Images for Stem Cell Classification
 9.3.1 Motivation for Algorithm Development
 9.3.2 Measuring Amorphous Biological Shapes
 9.3.3 Texture and Borders as Biological Features
 9.3.4 Texture Analysis

9.4 Molecular Analysis of Pluripotency and Cell Proliferation in Undifferentiated Stem Cells
 9.4.1 Methods
 9.4.2 Analysis of Pluripotency and Cell Proliferation in Undifferentiated Stem Cells

9.5 Analysis of Cardiomyocyte Differentiation

9.6 Analysis of Neuronal Differentiation
 9.6.1 Methods
 9.6.2 Analysis of Neurectodermal Intermediates in Early Differentiated hESC
 9.6.3 Analysis of Neuronal Processes

References

SECTION III HCS IN DRUG DEVELOPMENT

10. HCS for HTS

Ann F. Hoffman and Ralph J. Garippa

10.1 Introduction

10.2 HCS for Orphan GPCRs and Transfluor

10.3 HCS for Multiparameter Cytotoxicity Screening

10.4 Discussion

10.5 Summary

References
11. The Roles of High Content Cellular Imaging in Lead Optimization 249
Jonathan A. Lee, Karen Cox, Aidas Kriauciunas, and Shaoyou Chu

11.1 Introduction 249
11.2 Statistical Validation of Assays 250
11.3 High Content Cellular Imaging is a Diverse Assay Platform 251
11.4 Use of High Content Cellular Imaging for Oncology Research at Eli Lilly 255
 11.4.1 Cell Cycle and High Content Cellular Imaging 255
 11.4.2 Advantages of High Content Cellular Imaging 256
 11.4.2.1 Rare Cell Populations 256
 11.4.2.2 End Point Multiplexing 257
 11.4.3 Advantages of Multiplexing 259
11.5 The Future of High Content Cellular Imaging in Lead Optimization 261
11.6 Acknowledgments 264
References 264

12. Using High Content Analysis for Pharmacodynamic Assays in Tissue 269
Arijit Chakravarty, Douglas Bowman, Kristine Burke, Bradley Stringer, Barbara Hibner, and Katherine Galvin

12.1 Introduction 269
 12.1.1 Preclinical Models 269
 12.1.2 Pharmacokinetics/Pharmacodynamics (PK/PD) 270
 12.1.3 PK/PD Approaches in Practice 271
12.2 Designing a High Content Assay for Use in Tissues 272
 12.2.1 Preliminary Biomarker Characterization 272
 12.2.2 Development and Validation of HC Assays in Tissue 273
12.3 Technical Challenges in Establishing High Content Assays for Tissue 274
 12.3.1 Logistical Challenges in Tissue Staining and Acquisition 274
 12.3.2 Plane-of-Focus and Plane-of-Section Issues 275
 12.3.3 Heterogeneity in Tissue Samples 277
 12.3.4 Automated Detection of Areas of Interest 279
 12.3.5 Segmentation and Background Issues in High Content Assays 282
 12.3.6 Variability in Staining 284
12.4 Case Study: Design and Validation of a High Content Assay for Biomarker X 286
12.5 Conclusions 289
12.6 Acknowledgments 290
References 290
13. High Content Analysis of Sublethal Cytotoxicity in Human HepG2 Hepatocytes for Assessing Potential and Mechanism for Chemical- and Drug-Induced Human Toxicity

Peter J. O'Brien

13.1 Introduction
13.1.1 Past Failure of Cytotoxicity Assessments
13.1.2 Development of a Novel Cellomic Cytotoxicity Model
13.1.3 Parameters Monitored in the Cellomic Cytotoxicity Model
13.1.4 Materials and Methods

13.2 Results from High Content Analysis of Human Toxicity Potential

13.3 Discussion
13.3.1 Applications of the Cellomic Cytotoxicity Model
13.3.2 Limitations of the Cellomic Cytotoxicity Model
13.3.3 Future Studies

13.4 Acknowledgments

13.5 Appendix: Detailed Methods
13.5.1 Materials
13.5.2 Methods: Cell Culture
13.5.3 Subculture of HepG2 Cells
13.5.4 Poly-D-Lysine Coating
13.5.5 Drug Treatment Protocol for Three-Day Plates
13.5.6 Drug Solubility
13.5.7 Preparing the Drug Plate
13.5.8 Indicator Dye Loading Procedure
13.5.9 KSR Protocol: Fluorescence Settings
13.5.9.1 Data Capture
13.5.9.2 Assay Protocol Settings
13.5.9.3 Plate Protocol Settings
13.5.9.4 Quality Control

References

SECTION IV DATA MANAGEMENT, DATA ANALYSIS, AND SYSTEMS BIOLOGY

14. Open File Formats for High Content Analysis

Jason R. Swedlow, Curtis Rueden, Jean-Marie Burel, Melissa Linkert, Brian Loranger, Chris Allan, and Kevin W. Eliceiri

14.1 Introduction
14.2 The Data Problem in Biology: Why is it so Hard?
14.3 High Content Data in Biology: A Definition
14.4 The Difference Between a File Format and a Minimum Specification 321
14.5 File Formats: Open vs Closed 321
14.6 File Formats: Balancing Flexibility with Standards 323
14.7 Supporting a Successful File Format 323
14.8 Commercial Realities: How Users and Developers Can Define File Formats 324
14.9 OME-XML and OME-TIFF: Moving Towards a Standard Format For High Content Biological Data 324
 14.9.1 Metadata Support for High Throughput Assays 326
14.10 Data Model and File Format Integration: Towards Usable Tools 327
14.11 Conclusions 327
14.12 Acknowledgments 328
References 328

15. Analysis of Multiparametric HCS Data 329
 Andrew A. Hill, Peter LaPan, Yizheng Li, and Steven A. Haney

15.1 Cytological Classification and Profiling 329
 15.1.1 Multiparametric HCS Data and Cytological Profiling 329
 15.1.2 Cytological Features 330
 15.1.3 Using Cytological Features in Assays 331
15.2 Setting Up Cytological Profiling Studies 333
 15.2.1 Planning for a Cytological Classification Experiment 333
 15.2.2 Feature Extraction by Image Analysis and Export of Data for Analysis 335
 15.2.3 Example Studies that Use Cytological Profiling to Study Small Molecule Inhibitors and siRNAs 336
15.3 Sources of Variability and Corrections 336
 15.3.1 Detection and Elimination of Plate and Sample Outliers from a Data Set 336
 15.3.2 Visualization of Plate-Level Features to Assess Data Quality 337
 15.3.3 Normalization and Scaling of Data 340
 15.3.4 Post-Normalization Analysis of Data Quality 341
15.4 General Analysis Considerations 341
 15.4.1 Choosing the Appropriate Analysis Level: Well or Cell 342
 15.4.1.1 Cell Cycle Analysis 342
 15.4.1.2 Perturbations Where the Cell Is an Effective Experimental Block 342
 15.4.2 Statistical Summaries for Cell-Level Features 343
 15.4.3 Feature Relationships, Redundancy, and Selection 343
16. Quantitative and Qualitative Cellular Genomics: High Content Analysis as an End Point for HT-RNAi Phenotype Profiling Using GE’s IN Cell Platform

David O. Azorsa, Christian Beaudry, Kandavel Shanmugam, and Spyro Mousses

16.1 Cellular Genomics
16.2 Enabling Technologies to Facilitate Cellular Genomics: RNA Interference
16.3 High Throughput RNAi (HT-RNAi)
 16.3.1 Platforms and Screening Infrastructure
 16.3.2 Establishing Methods for Successful HT-RNAi
16.4 High Content Analysis (HCA) for High Throughput Phenotype Profiling
 16.4.1 IN Cell Analyzer 1000
 16.4.2 IN Cell Analyzer 3000
 16.4.3 HCA Assay Suites
 16.4.4 Fixed-Cell Assays
 16.4.5 Live-Cell Assays
16.5 Future Directions

References

17. Optimal Characteristics of Protein–Protein Interaction Biosensors for Cellular Systems Biology Profiling

Kenneth A. Giuliano, David Premkumar, and D. Lansing Taylor

17.1 Introduction
17.2 Challenge of Cellular Systems Biology (CSB)
17.3 Optimal Characteristics of Protein–Protein Interaction Biosensors (PPIBs)
17.4 Example of a PPIB and Cellular Systems Biology Profiling
 17.4.1 Testing a First-Generation p53–HDM2 PPIB Based on Full Length and Protein Fragments
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4.2</td>
<td>Overexpression of a Labeled p53 Fusion Protein Modulates Multiple Cellular Systems: Testing a Critical Potential Problem</td>
<td>379</td>
</tr>
<tr>
<td>17.4.3</td>
<td>An Optimized p53–HDM2 PPIB</td>
<td>380</td>
</tr>
<tr>
<td>17.5</td>
<td>Summary and Prospects</td>
<td>384</td>
</tr>
<tr>
<td>17.6</td>
<td>Acknowledgments</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>385</td>
</tr>
</tbody>
</table>

Index

389