Table of Contents

Preface XI

A Personal Foreword XIII

List of Contributors XV

Abbreviations and Terminology XX

I General Concepts 1

1 **Historical Background and Introduction** 3

2 **The Nature of Constitutive Activity and Inverse Agonism** 11
 2.1 Historical Perspective 11
 2.2 Theoretical Basis of Inverse Agonism: Relevance of Receptor Type 13
 2.3 The Interaction of Systems with Ligands 18
 2.4 Inverse Agonism as a Phenotypic Behavior 23
 2.5 Conclusion 25

3 **Molecular Mechanisms of GPCR Activation** 27
 3.1 Introduction 27
 3.2 GPCR Structure and Ligand Recognition 28
 3.3 Conformational Changes in the GPCR Activation Process 29
 3.4 Conversion to the Active Receptor State Involves
 Release of Stabilizing Intramolecular Interactions 35
 3.5 Kinetics of Agonist Binding and Receptor Activation 37
 3.6 GPCR Activation in an Oligomeric Context 38

4 **Molecular and Cellular Determinants of GPCR Splice Variant
 Constitutive Activity** 43
 4.1 Introduction 43
4.2 Constitutive Activation of Second Messenger Production by C-Terminal Splice Variants of GPCRs 45
4.2.1 The Constitutive Activities of C-Terminal 5-HT_4 Receptor Splice Variants: the Shortest, the Strongest 45
4.2.2 The Constitutive Activities of mGlu_1R and mGlu_5R C-t Splice Variants: a Case for which a Physiological Control does exist 48
4.2.3 Other Examples of GPCR C-t Splice Variants with Different Constitutive Activities 50
4.3 Differential Constitutive Internalization of C-t GPCR Splice Variants 50
4.3.1 The Thromboxane A2 Receptor TP_β R, but not the TP_α R Splice Variant, is Constitutively Internalized by Clathrin-dependent, GRK- and Arrestin-independent Mechanisms 51
4.3.2 The Prostaglandin F_2α Receptor FP_β R, but not the FP_α R C-Terminal Splice Variant, is Constitutively Internalized by a Clathrin-independent, PI3-Kinase-dependent Mechanism 52
4.4 Conclusion 53

5 Naturally Occurring Constitutively Active Receptors: Physiological and Pharmacological Implications 55
5.1 Introduction 55
5.2 Wild-type Interspecies Homologues 56
5.3 Wild-type Receptor Subtypes within a Given Species 57
5.4 Wild-type Alternatively Spliced Receptors 57
5.5 Polymorphisms in GPCRs 57
5.6 GPCR Mutation-induced Disease 59
5.7 Future Challenges 60

6 The Impact of G Proteins on Constitutive GPCR Activity 63
6.1 Introduction 63
6.2 The Contribution of G proteins to Constitutive Activity 64
6.2.1 Basic Features 64
6.2.2 The Distribution of G Proteins in the Plasma Membrane 65
6.3 GPCR–G Protein Fusion Proteins 66
6.3.1 Basic Features 66
6.3.2 Modulation of the GPCR–G Protein Interface Alters Constitutive Activity 66
6.3.3 Use of G Protein Variation to Detect Ligand Efficacy 68
6.4 Conclusions 69

7 (Patho)physiological and Therapeutic Relevance of Constitutive Activity and Inverse Agonism at G Protein-Coupled Receptors 71
7.1 Introduction 71
7.2 Physiological Relevance of Constitutive Activity of GPCRs 72
7.3 Constitutive Activity of GPCRs and Pathophysiology of Disease 73
7.4 Physiological Relevance of Inverse Agonists 76
7.5 Inverse Agonists as Drugs 77
7.6 Conclusions 79

8 Methodological Approaches 81
8.1 Introduction 81
8.2 Analysis of Constitutive GPCR Activity in Membranes and Intact Cells 82
8.2.1 Procedure for Sf9 Cell Culture and Membrane Preparation 84
8.2.2 GPCR Radioligand Binding Studies 86
8.2.3 GTPase Assay 90
8.2.4 \[^{35}\text{S}]\text{GTP}_{\text{S}}\text{ Binding Assay} 96
8.2.5 Adenylyl Cyclase Assay 101
8.3 Measurement of Constitutive Activity of GPCRs in Intact Cells 106
8.3.1 Quantitative Determination of cAMP Concentrations in Cell Culture Lysates 109
8.3.2 Determination of Inositol Phosphate Formation in Living Cells 110
8.3.3 Determination of G Protein Activation by SRF-mediated Gene Transcription 113
8.3.4 Deorphanization and Constitutive Activity of GPCRs by Aequorin-based Ca\(^{2+}\) Determinations 115

II Constitutive Activity of Selected GPCR Systems 121

9 Constitutive Activity of \(\beta\)-Adrenoceptors: Analysis in Membrane Systems 123
9.1 Introduction 123
9.2 Analysis of \(\beta\)AR/G\(_{\text{S}}\) Protein Coupling in Membranes 124
9.3 Development of the Concept that \(\beta\)ARs are Constitutively Active 127
9.4 Probing Models of GPCR Activation with \(\beta_2\)AR\(_{\text{wt}}\) and \(\beta_2\)AR\(_{\text{CAM}}\) with Inverse Agonists 128
9.5 Probing Models of GPCR Activation with \(\beta_2\)AR\(_{\text{wt}}\) and \(\beta_2\)AR\(_{\text{CAM}}\) and with Partial and Full Agonists 130
9.6 Probing Models of GPCR Activation with \(\beta_2\)AR\(_{\text{wt}}\) and Purine Nucleotides 131
9.7 Constitutive Activity of the \(\beta_2\)AR Coupled to Various G\(_{\text{S}}\) Proteins 133
9.8 Probing Models of GPCR Activation with \(\beta_2\)AR Coupled to Various Classes of G proteins 135
9.9 Comparison of the Constitutive Activities of the \(\beta_1\)AR and the \(\beta_2\)AR 135
9.10 Conclusions 136

10 Constitutive Activity of \(\beta\)-Adrenoceptors: Analysis by Physiological Methods 141
10.1 Introduction 141
10.2 Constitutive Activity and Inverse Agonism: Definition and Detection 142
10.3 \(\beta_1\)-Adrenoceptors 143
10.3.1 Constitutive Activity of Overexpressed \(\beta_1\)ARs 143
10.3.2 Is there any Evidence for a Physiological Effect of Constitutively Active Receptors in Normal Cardiomyocytes? 145
10.3.3 Substates of the β1AR: the Putative β4AR 147
10.4 β2-Adrenoceptors 148
10.4.1 Constitutive Activity of Overexpressed β2ARs 148
10.4.2 Inverse Agonism at the β2AR 150
10.4.3 βAR Antagonists: Inverse Agonists at β2AR-Gs or Full Agonists at β2AR-Gi? 152
10.4.4 Involvement of the β2AR in the “Putative β4AR” Effect 153
10.5 Homo- and Heterodimerization of β1- and β2ARs 154
10.6 Conclusions 154

11 Constitute Activity at the α1-Adrenoceptors: Past and Future Implications 159
11.1 Introduction 159
11.1.1 The α1-Adrenoceptors: Main Structure–Functional Features 159
11.1.2 The Discovery of Constitutively Activating Mutations and its Implications 161
11.2 Theoretical and Experimental Approaches for Study of Constitutive GPCR Activity 162
11.2.1 Theoretical Analysis of CAM GPCR Pharmacology 162
11.2.2 Computational Modeling of the α1BAR 163
11.2.3 Measuring Constitutive Activity of the α1AR Subtypes 165
11.3 Constitutively Activating Mutations of the α1AR Subtypes 166
11.3.1 Where the Mutations have been Found 166
11.3.2 Constitutive Activation of Multiple Signaling Pathways 169
11.4 A Putative Model of Receptor Activation for the α1BAR 169
11.5 Constitutive Activity of Wild-type α1ARs and Inverse Agonism 171
11.5.1 Constitutive Activity of Wild-type α1AR Subtypes 171
11.5.2 Inverse Agonism at the α1ARs 172
11.6 Receptor Regulation and Constitutive Activity of the α1ARs 173
11.7 Conclusions 174

12 Constitutive Activity of Muscarinic Acetylcholine Receptors: Implications for Receptor Activation and Physiological Relevance 177
12.1 Introduction 177
12.2 Constitutive Activity – Native Systems 178
12.3 Constitutive Activity – Recombinant Systems 178
12.4 Constitutive Activation by G Proteins 179
12.5 Structure–Function Analysis of Receptor Activation 180
12.5.1 Transmembrane Domain 3 182
12.5.2 Transmembrane Domain 6 183
12.5.3 Transmembrane Domain 7 185
12.5.4 Other Transmembrane Domains and Extracellular Domains 186
12.5.5 Cytoplasmic Domains 186
12.5.6 i3 Loop 187
15.2.2	Functional Characteristics of pUS28	249
15.2.3	Signaling Pathways Regulated by pUS28	249
15.2.4	Regulation of Transcriptional Activity by pUS28	250
15.2.5	Regulation of Constitutively Active pUS28	252
15.2.6	Cellular Functions of pUS28	253
15.3	The Human Kaposi’s Sarcoma Virus-encoded Chemokine Receptor KHSV-GPCR	255
15.3.1	Characteristics of Human Kaposi’s Sarcoma Virus Infection	255
15.3.2	Functional Characteristics of KHSV-GPCR	255
15.3.3	Signaling Pathways Regulated by KHSV-GPCR	256
15.3.4	Regulation of Transcriptional Activity by KHSV-GPCR	256
15.3.5	Regulation of KHSV Activity by Chemokines	258
15.3.6	Structure–Function Relationships of KHSV-GPCR	258
15.3.7	Cellular Functions of KHSV-GPCR in vivo	259
15.4	Conclusions	260

Index 265