Contents

Contributors

Contributors xiv

Contributors

Preface xviii

Preface

1 The Visible Flavonoids or Anthocyanins: From Research to Applications

Raymond Brouillard, Stefan Chassaing, Géraldine Isorez, Marie Kueny-Stotz, and Paulo Figueiredo

1.1 Introduction 1

1.2 Copigmentation of anthocyanins 5

1.3 Formation of inclusion complexes 6

1.4 Ion-pair formation 7

1.5 Metalloanthocyanins 7

1.6 Z-Chalcones: unexpected open cavities for the ferric cation 11

1.7 Anthocyanin biological activity 14

1.8 Some thoughts on applications 15

1.9 References 17

2 Flavonoid Chemistry of the Leguminosae

Nigel C. Veitch

2.1 Introduction 23

2.1.1 Classification and nomenclature of the Leguminosae: a brief synopsis 24

2.2 Flavonoid structures in the Leguminosae: trends and distribution 26

2.2.1 Occurrence of 5-deoxyflavonoids in the Leguminosae 28

2.2.2 Isoflavonoids in subfamily Papilionoideae 30

2.2.2.1 Recent advances in biosynthetic studies 32

2.2.2.2 Isoflavonoid glycosides 35

2.2.2.3 Isoflavone glucosyltransferases 35

2.2.2.4 Acylated isoflavone glycosides 36

2.2.3 Leguminosae anthocyanins: malonyltransferases of *Clitoria ternatea* 38

2.3 Advances in analytical methodology applied to Leguminosae flavonoids 38

2.3.1 Hyphenated MS techniques 40
2.3.2 Hyphenated NMR techniques and miniaturization 41
2.3.3 Chirooptical methods 43
2.4 Leguminosae flavonoids and chemosystematics 44
2.4.1 The disputed position of the Swartzieae: subfamily Caesalpinioideae or Papilionoideae? 44
2.4.2 Generic delimitation in the aldinoid clade of swartzioid legumes: Cordyla and Dupuya 47
2.4.3 Species-level studies of the isoflavonoid chemistry of Cicer 50
2.5 Concluding remarks 52
2.6 Acknowledgments 52
2.7 References 52

3 Updating Wine Pigments 59
Victor A.P. de Freitas and Nuno Mateus

3.1 General overview 59
3.2 Factors that affect wine color intensity and stability 60
3.3 Chemical transformations of flavonoids 63
 3.3.1 Condensation between anthocyanins and flavanols mediated by aldehydes 65
 3.3.2 Reaction between flavanols and aldehydes 67
 3.3.3 Direct condensation between flavanols and anthocyanins 68
 3.3.4 Pyranoanthocyanins 69
 3.3.4.1 Reaction between anthocyanins and vinyl compounds 70
 3.3.4.2 Yeast metabolites involved in anthocyanin transformations 72
 3.3.5 Vinylpyranoanthocyanins (portisins) 74
3.4 Final remarks 75
3.5 Acknowledgments 76
3.6 References 76

4 Ellagitannins – An Underestimated Class of Plant Polyphenols: Chemical Reactivity of C-Glucosidic Ellagitannins in Relation to Wine Chemistry and Biological Activity 81
Stéphane Quideau, Michael Jourdes, Dorothée Lefeuvre, Patrick Pardon, Cédric Saucier, Pierre-Louis Teissedre, and Yves Glories

4.1 Ellagitannins: an underestuated class of bioactive plant polyphenols 81
4.2 C-Glucosidic ellagitannins: a special subclass of ellagitannins 95
 4.2.1 Major C-glucosidic ellagitannins in oak and chestnut heartwoods 100
 4.2.2 Complex C-glucosidic ellagitannins 102
4.2.3 Biosynthesis of C-glucosidic ellagitannins 107
4.2.4 Chemical reactivity of vescalagin and castalagin 110
4.2.5 Diastereofacial differentiation of the vescalagin-derived benzylic cation 113
4.3 Implications of C-glucosidic ellagitannins in wine chemistry 114
 4.3.1 Hemisynthesis of acutissimins and their occurrence in wine 115
 4.3.2 Condensation reaction between vescalagin and glutathione 118
 4.3.3 Hemisynthesis of anthocyano-ellagitannins: possible influence on wine color 119
 4.3.4 Oxidative conversion of acutissimin A into mongolicain A 120
4.4 Biological activity of C-glucosidic ellagitannins 122
 4.4.1 Antiviral activity of C-glucosidic ellagitannins 123
 4.4.2 Antitumor activity of C-glucosidic ellagitannins 124
4.5 Conclusion 125
4.6 Acknowledgments 126
4.7 References 126

5 Strategies to Optimize the Flavonoid Content of Tomato Fruit 138
 Arnaud G. Bovy, Victoria Gómez-Roldán, and Robert D. Hall

5.1 Introduction 138
5.2 The metabolic route to flavonoids in tomato fruit 140
5.3 The natural biodiversity of flavonoids in tomato 141
 5.3.1 Flavonoid biodiversity I: commercially available genotypes 142
 5.3.2 Flavonoid biodiversity II: wild tomato species 142
 5.3.3 Flavonoid biodiversity III: information from specific tomato mutants 143
5.4 Metabolic engineering of the flavonoid pathway 145
 5.4.1 Exploitation of the transgenic approach using upregulation of structural genes 145
 5.4.2 Using RNAi to block targeted steps in the flavonoid pathway 146
 5.4.3 Production of novel tomato flavonoids by introducing new branches of the flavonoid pathway: flavonoid-related stilbenes 147
 5.4.4 Production of novel tomato flavonoids by introducing new branches of the flavonoid pathway: deoxyxychalcones 148
 5.4.5 Production of novel tomato flavonoids by introducing new branches of the flavonoid pathway: flavones, isoflavones, and aurones 149
 5.4.6 Modifying the flavonoid pathway using regulatory genes 150
5.5 Metabolomics-assisted breeding 154
5.6 Conclusions and future prospects 156
5.7 Acknowledgments 156
5.8 References 156
6 Biological Activity of Phenolics in Plant Cells
Luc P.R. Bidé, Marc Coumans, Yves Baissac, Patrick Doumas, and Christian Jay-Allemand

6.1 Introduction 163
6.2 Synthesis and transports 164
 6.2.1 Metabolic channeling at the endoplasmic reticulum (ER) level 164
 6.2.2 Endomembrane carriers 165
 6.2.3 Vesicle trafficking 166
 6.2.4 Long-distance transport 166
6.3 Phenolics interact with plasmalemma components 167
 6.3.1 Biophysical interactions with phospholipid bilayers 167
 6.3.2 Interactions with plasma membrane-associated proteins 169
 6.3.3 Flavonoids prevent and alleviate oxidative burst 172
 6.3.4 Phenolics modulate plasma membrane carriers 172
6.4 Phenolics in apoplast 175
 6.4.1 Phenolics as a major player in mechanical tissue rigidification 175
 6.4.2 Phenolics as major components of apoplastic chemical protection 175
 6.4.3 Phenolics as apoplastic allelochemical signals 177
6.5 Phenolics in hyaloplasm 177
 6.5.1 Phenolics interact with cytoskeleton 178
 6.5.2 Phenolics inhibit carbohydrate catabolism 178
 6.5.3 Many flavonoids prevent and alleviate oxidative and nitrosative stresses 178
 6.5.4 Salicylic acid promotes oxidative stress signaling pathway 179
6.6 Phenolics in vacuoles 180
 6.6.1 Sunscreen role for vacuolar phenolics 180
 6.6.2 Are vacuolar phenolics effective buffers? 180
 6.6.3 Are vacuolar phenolics effective chelators? 182
6.7 Phenolics in mitochondria and chloroplasts 183
 6.7.1 Inhibitory effects 183
 6.7.2 Protecting effects 183
 6.7.3 Putative phenolic photoreceptors 183
6.8 Phenolics have many emergent roles within the nucleus 184
 6.8.1 Presence of phenolics within the nucleus 184
 6.8.2 Flavonoids prevent DNA damages 184
 6.8.3 Prooxidative actions of phenolics on DNA 186
 6.8.4 Flavonoids affect histone acetylation and phosphorylation 186
 6.8.5 Flavonoids inhibit DNA methylation 187
 6.8.6 Phenolics affect cell cycle 187
 6.8.7 Phenolics inhibit replication 188
 6.8.8 Phenolics promote or repress transcription 189
6.9 Conclusion 190
6.10 References 191
7 Muriel Wheldale Onslow and the Rediscovery of Anthocyanin Function in Plants
Kevin S. Gould

7.1 Introduction 206
7.1.1 Muriel Wheldale Onslow: a brief biography 208
7.2 Functional hypotheses for anthocyanins in vegetative tissues 211
7.3 A modern spin on some old ideas 213
7.3.1 Photoprotection revisited 213
7.3.2 Anthocyanins, sugars, and autumn leaves 217
7.4 Concluding remarks 218
7.5 Acknowledgments 219
7.6 References 219

8 Plant Phenolic Compounds Controlling Leaf Movement
Minoru Ueda and Yoko Nakamura

8.1 Introduction 226
8.2 Endogenous bioactive substance controlling nyctinasty 227
8.3 The chemical mechanism of the rhythm in nyctinasty 228
8.4 Bioorganic studies of nyctinasty using functionalized leaf-movement factors as molecular probes 230
8.4.1 Fluorescence studies on nyctinasty 230
8.4.2 Photoaffinity labeling of the target protein for the leaf-movement factor 231
8.4.3 Are leaf-movement target proteins common to the same plant genus? 234
8.5 References 235

9 Red Clover Derived Isoflavones: Metabolism and Physiological Effects in Cattle and Sheep and their Concentration in Milk Produced for Human Consumption
Juhani Taponen, Eeva A. Mustonen, Lea Kontio, Ilkka Saastamoinen, Aila Vanhatalo, Hannu Saloniemi, and Kristiina Wähälä

9.1 Introduction 238
9.2 Phytoestrogens in ruminant feeds 238
9.3 Red clover as a source of isoflavones 239
9.4 Metabolism of isoflavones in ruminants 241
9.5 Equol: the most important metabolite 243
9.6 Physiological effects and regulatory mechanisms of endogenous estrogens
9.7 Effects of phytoestrogens in sheep reproduction
 9.7.1 Classical clover disease
 9.7.2 Temporary subfertility
 9.7.3 Permanent infertility
9.8 Effects of phytoestrogens in cattle reproduction
9.9 Antioxidant capacity of isoflavones
9.10 New outlook
9.11 References

10 Polyphenols as Biomarkers in Nutrition Research: Resveratrol
Metabolome a Useful Nutritional Marker of Moderate Wine Consumption
Raul Zamora-Ros and Cristina Andrés-Lacueva

10.1 Introduction
10.2 Characteristics of nutritional biomarkers
10.3 Strengths and limitations of biological biomarkers over dietary estimation
10.4 Resveratrol: a useful biomarker of wine consumption
10.5 References

11 Translation of Chemical Properties of Polyphenols into Biological
Activity with Impact on Human Health
João Laranjinha

11.1 Introduction
11.2 Polyphenols as antioxidants: the earlier notions
 11.2.1 The influence of redox potentials
 11.2.2 Redox cycles of polyphenols with vitamins E and C: the influence of solubility
11.3 Beyond “global” antioxidation: alternate biological activities for polyphenols with impact on human health
 11.3.1 Modulation of redox signaling pathways
 11.3.2 Modulation of nitric oxide metabolism
11.4 References

12 Mitigation of Oxidative Stress and Inflammatory Signaling by Fruit
and Walnut Polyphenols: Implications for Cognitive Aging
James A. Joseph, Barbara Shukitt-Hale, and Lauren M. Willis
12.1 Introduction 283
12.2 Oxidative stress/inflammatory interactions 284
 12.2.1 Oxidative stress 284
 12.2.2 Inflammation 284
 12.2.3 Intracellular signaling 285
 12.2.4 Calcium buffering capacity 286
 12.2.5 Neurogenesis 286
 12.2.6 Membrane changes 287
12.3 Nutritional interventions 287
 12.3.1 Fruit polyphenols as neuroprotective agents 287
 12.3.2 Polyunsaturated fatty acids and cognition: animal studies 289
12.4 References 291

13 Antiatherosclerotic Effects of Dietary Flavonoids: Insight into their Molecular Action Mechanism at the Target Site 299
 Junji Terao, Kaeko Murota, and Yoshichika Kawai

 13.1 Introduction 299
 13.2 Flavonoids in the diet and their antioxidant/prooxidant activity 300
 13.3 Absorption and metabolism of dietary flavonoids in the digestive system 304
 13.4 Oxidative LDL theory and antioxidant activity of flavonoids in plasma 307
 13.5 Antioxidant and “beyond” antioxidant activity of flavonoids in the artery 309
 13.6 Activated macrophages as potential targets of dietary flavonoids as antiatherosclerotic factors 312
 13.7 Conclusion 313
 13.8 References 314

Index 319