Contents

Preface xvii
Acknowledgments xix
Acronyms xxi
Contributors xxv

1 Antenna Basics 1
Luigi Boccia and Olav Breinbjerg

1.1 Introduction 1
1.2 Antenna Performance Parameters 2
 1.2.1 Reflection Coefficient and Voltage Standing Wave Ratio 2
 1.2.2 Antenna Impedance 3
 1.2.3 Radiation Pattern and Coverage 4
 1.2.4 Polarization 6
 1.2.5 Directivity 7
 1.2.6 Gain and Realized Gain 8
 1.2.7 Equivalent Isotropically Radiated Power 8
 1.2.8 Effective Area 9
 1.2.9 Phase Center 9
 1.2.10 Bandwidth 9
 1.2.11 Antenna Noise Temperature 9
1.3 Basic Antenna Elements 10
 1.3.1 Wire Antennas 10
 1.3.2 Horn Antennas 10
 1.3.3 Reflectors 15
 1.3.4 Helical Antennas 17
 1.3.5 Printed Antennas 19
1.4 Arrays 26
 1.4.1 Array Configurations 28
1.5 Basic Effects of Antennas in the Space Environment 30
 1.5.1 Multipaction 30
 1.5.2 Passive Inter-modulation 31
 1.5.3 Outgassing 31
References 32
2 Space Antenna Modeling

Jian Feng Zhang, Xue Wei Ping, Wen Ming Yu, Xiao Yang Zhou, and Tie Jun Cui

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>36</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Maxwell’s Equations</td>
<td>37</td>
</tr>
<tr>
<td>2.1.2</td>
<td>CEM</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>Methods of Antenna Modeling</td>
<td>39</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Basic Theory</td>
<td>39</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Method of Moments</td>
<td>40</td>
</tr>
<tr>
<td>2.2.3</td>
<td>FEM</td>
<td>45</td>
</tr>
<tr>
<td>2.2.4</td>
<td>FDTD Method</td>
<td>49</td>
</tr>
<tr>
<td>2.3</td>
<td>Fast Algorithms for Large Space Antenna Modeling</td>
<td>54</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Introduction</td>
<td>54</td>
</tr>
<tr>
<td>2.3.2</td>
<td>MLFMA</td>
<td>54</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Hierarchical Basis for the FEM</td>
<td>62</td>
</tr>
<tr>
<td>2.4</td>
<td>Case Studies: Effects of the Satellite Body on the Radiation Patterns of Antennas</td>
<td>68</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary</td>
<td>73</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>73</td>
</tr>
</tbody>
</table>

3 System Architectures of Satellite Communication, Radar, Navigation and Remote Sensing

Michael A. Thorburn

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>76</td>
</tr>
<tr>
<td>3.2</td>
<td>Elements of Satellite System Architecture</td>
<td>76</td>
</tr>
<tr>
<td>3.3</td>
<td>Satellite Missions</td>
<td>77</td>
</tr>
<tr>
<td>3.4</td>
<td>Communications Satellites</td>
<td>77</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Fixed Satellite Services</td>
<td>77</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Broadcast Satellite Services (Direct Broadcast Services)</td>
<td>78</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Digital Audio Radio Services</td>
<td>78</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Direct to Home Broadband Services</td>
<td>78</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Mobile Communications Services</td>
<td>78</td>
</tr>
<tr>
<td>3.5</td>
<td>Radar Satellites</td>
<td>79</td>
</tr>
<tr>
<td>3.6</td>
<td>Navigational Satellites</td>
<td>79</td>
</tr>
<tr>
<td>3.7</td>
<td>Remote Sensing Satellites</td>
<td>80</td>
</tr>
<tr>
<td>3.8</td>
<td>Architecture of Satellite Command and Control</td>
<td>80</td>
</tr>
<tr>
<td>3.9</td>
<td>The Communications Payload Transponder</td>
<td>80</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Bent-Pipe Transponders</td>
<td>81</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Digital Transponders</td>
<td>81</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Regenerative Repeater</td>
<td>81</td>
</tr>
<tr>
<td>3.10</td>
<td>Satellite Functional Requirements</td>
<td>81</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Key Performance Concepts: Coverage, Frequency Allocations</td>
<td>82</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Architecture of the Communications Payload</td>
<td>82</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Satellite Communications System Performance Requirements</td>
<td>83</td>
</tr>
<tr>
<td>3.11</td>
<td>The Satellite Link Equation</td>
<td>83</td>
</tr>
<tr>
<td>3.12</td>
<td>The Microwave Transmitter Block</td>
<td>84</td>
</tr>
<tr>
<td>3.12.1</td>
<td>Intercept Point</td>
<td>85</td>
</tr>
<tr>
<td>3.12.2</td>
<td>Output Backoff</td>
<td>86</td>
</tr>
<tr>
<td>3.12.3</td>
<td>The Transmit Antenna and EIRP</td>
<td>87</td>
</tr>
</tbody>
</table>
3.13 Rx Front-End Block 88
3.13.1 Noise Figure and Noise Temperature 88
3.14 Received Power in the Communications System’s RF Link 90
3.14.1 The Angular Dependencies of the Uplink and Downlink 91
3.15 Additional Losses in the Satellite and Antenna 91
3.15.1 Additional Losses due to Propagation Effects and the Atmosphere 91
3.15.2 Ionospheric Effects – Scintillation and Polarization Rotation 93
3.16 Thermal Noise and the Antenna Noise Temperature 93
3.16.1 The Interface between the Antenna and the Communications System 93
3.16.2 The Uplink Signal to Noise 94
3.17 The SNR Equation and Minimum Detectable Signal 94
3.18 Power Flux Density, Saturation Flux Density and Dynamic Range 95
3.18.1 Important Relationship between PFD and Gain State of the Satellite Transponder 95
3.19 Full-Duplex Operation and Passive Intermodulation 96
3.20 Gain and Gain Variation 96
3.21 Pointing Error 97
3.22 Remaining Elements of Satellite System Architecture 98
3.23 Orbits and Orbital Considerations 98
3.24 Spacecraft Introduction 100
3.25 Spacecraft Budgets (Mass, Power, Thermal) 101
3.25.1 Satellite Mass 101
3.25.2 Satellite Power 101
3.25.3 Satellite Thermal Dissipation 101
3.26 Orbital Mission Life and Launch Vehicle Considerations 102
3.27 Environment Management (Thermal, Radiation) 102
3.28 Spacecraft Structure (Acoustic/Dynamic) 103
3.29 Satellite Positioning (Station Keeping) 103
3.30 Satellite Positioning (Attitude Control) 104
3.31 Power Subsystem 104
3.32 Tracking, Telemetry, Command and Monitoring 105
References 105

4 Space Environment and Materials 106

J. Santiago-Prowald and L. Salghetti Drioli 106

4.1 Introduction 106
4.2 The Space Environment of Antennas 106
4.2.1 The Radiation Environment 107
4.2.2 The Plasma Environment 109
4.2.3 The Neutral Environment 110
4.2.4 Space Environment for Typical Spacecraft Orbits 111
4.2.5 Thermal Environment 111
4.2.6 Launch Environment 113
4.3 Selection of Materials in Relation to Their Electromagnetic Properties 117
4.3.1 RF Transparent Materials and Their Use 117
4.3.2 RF Conducting Materials and Their Use 117
4.3.3 Material Selection Golden Rules for PIM Control 118
Contents

4.4 Space Materials and Manufacturing Processes 118
 4.4.1 Metals and Their Alloys 118
 4.4.2 Polymer Matrix Composites 121
 4.4.3 Ceramics and Ceramic Matrix Composites 125

4.5 Characterization of Mechanical and Thermal Behaviour 127
 4.5.1 Thermal Vacuum Environment and Outgassing Screening 127
 4.5.2 Fundamental Characterization Tests of Polymers and Composites 128
 4.5.3 Characterization of Mechanical Properties 130
 4.5.4 Thermal and Thermoelastic Characterization 131

Acknowledgements 131
References 131

5 Mechanical and Thermal Design of Space Antennas 133
 J. Santiago-Prowald and Heiko Ritter

5.1 Introduction: The Mechanical–Thermal–Electrical Triangle 133
 5.1.1 Antenna Product 134
 5.1.2 Configuration, Materials and Processes 135
 5.1.3 Review of Requirements and Their Verification 136

5.2 Design of Antenna Structures 136
 5.2.1 Typical Design Solutions for Reflectors 136
 5.2.2 Structural Description of the Sandwich Plate Architecture 143
 5.2.3 Thermal Description of the Sandwich Plate Architecture 143
 5.2.4 Electrical Description of the Sandwich Plate Architecture in Relation to Thermo-mechanical Design 144

5.3 Structural Modelling and Analysis 144
 5.3.1 First-Order Plate Theory 145
 5.3.2 Higher Order Plate Theories 148
 5.3.3 Classical Laminated Plate Theory 148
 5.3.4 Homogeneous Isotropic Plate Versus Symmetric Sandwich Plate 149
 5.3.5 Skins Made of Composite Material 150
 5.3.6 Honeycomb Core Characteristics 152
 5.3.7 Failure Modes of Sandwich Plates 152
 5.3.8 Mass Optimization of Sandwich Plate Architecture for Antennas 154
 5.3.9 Finite Element Analysis 156
 5.3.10 Acoustic Loads on Antennas 159

5.4 Thermal and Thermoelastic Analysis 166
 5.4.1 The Thermal Environment of Space Antennas 166
 5.4.2 Transverse Thermal Conductance Model of the Sandwich Plate 167
 5.4.3 Thermal Balance of the Flat Sandwich Plate 168
 5.4.4 Thermal Distortions of a Flat Plate in Space 169
 5.4.5 Thermoelastic Stability of an Offset Parabolic Reflector 171
 5.4.6 Thermal Analysis Tools 172
 5.4.7 Thermal Analysis Cases 173
 5.4.8 Thermal Model Uncertainty and Margins 173

5.5 Thermal Control Strategies 173
 5.5.1 Requirements and Principal Design Choices 173
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.2</td>
<td>Thermal Control Components</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Thermal Design Examples</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>177</td>
</tr>
<tr>
<td>References</td>
<td>178</td>
</tr>
<tr>
<td>6</td>
<td>Testing of Antennas for Space</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2</td>
<td>Testing as a Development and Verification Tool</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Engineering for Test</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Model Philosophy and Definitions</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Electrical Model Correlation</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Thermal Testing and Model Correlation</td>
</tr>
<tr>
<td>6.3</td>
<td>Antenna Testing Facilities</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Far-Field Antenna Test Ranges</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Compact Antenna Test Ranges</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Near-Field Measurements and Facilities</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Environmental Test Facilities and Mechanical Testing</td>
</tr>
<tr>
<td>6.3.5</td>
<td>PIM Testing</td>
</tr>
<tr>
<td>6.4</td>
<td>Case Study: SMOS</td>
</tr>
<tr>
<td>6.4.1</td>
<td>The SMOS MIRAS Instrument</td>
</tr>
<tr>
<td>6.4.2</td>
<td>SMOS Model Philosophy</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Antenna Pattern Test Campaign</td>
</tr>
<tr>
<td>References</td>
<td>248</td>
</tr>
<tr>
<td>7</td>
<td>Historical Overview of the Development of Space Antennas</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>The Early Days</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Wire and Slot Antennas on Simple Satellite Bodies</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Antenna Computer Modelling Takes Off</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Existing/Classical Antenna Designs Adapted for Space</td>
</tr>
<tr>
<td>7.3</td>
<td>Larger Reflectors with Complex Feeding Systems</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Multi-frequency Antennas</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Large Unfurlable Antennas</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Solid Surface Deployable Reflector Antennas</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Polarization-Sensitive and Shaped Reflectors</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Multi-feed Antennas</td>
</tr>
<tr>
<td>7.4</td>
<td>Array Antennas</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Conformal Arrays on Spin-Stabilized Satellites</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Arrays for Remote Sensing</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Arrays for Telecommunications</td>
</tr>
<tr>
<td>7.5</td>
<td>Conclusions</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>307</td>
</tr>
<tr>
<td>References</td>
<td>307</td>
</tr>
</tbody>
</table>
8 Deployable Mesh Reflector Antennas for Space Applications: RF Characterizations 314
Paolo Focardi, Paula R. Brown, and Yahya Rahmat-Samii

8.1 Introduction 314
8.2 History of Deployable Mesh Reflectors 315
8.3 Design Considerations Specific to Mesh Reflectors 320
8.4 The SMAP Mission – A Representative Case Study 320
8.4.1 Mission Overview 320
8.4.2 Key Antenna Design Drivers and Constraints 322
8.4.3 RF Performance Determination of Reflector Surface Materials 327
8.4.4 RF Modeling of the Antenna Radiation Pattern 329
8.4.5 Feed Assembly Design 338
8.4.6 Performance Verification 340
8.5 Conclusion 341
Acknowledgments 341
References 341

9 Microstrip Array Technologies for Space Applications 344
Antonio Montesano, Luis F. de la Fuente, Fernando Monjas, Vicente García,
Luis E. Cuesta, Jennifer Campuzano, Ana Trastoy, Miguel Bustamante,
Francisco Casares, Eduardo Alonso, David Álvarez, Silvia Arenas,
José Luis Serrano, and Margarita Naranjo

9.1 Introduction 344
9.2 Basics of Array Antennas 345
9.2.1 Functional (Driving) Requirements and Array Design Solutions 345
9.2.2 Materials for Passive Arrays Versus Environmental and Design Requirements 347
9.2.3 Array Optimization Methods and Criteria 349
9.3 Passive Arrays 350
9.3.1 Radiating Panels for SAR Antennas 350
9.3.2 Navigation Antennas 354
9.3.3 Passive Antennas for Deep Space 361
9.4 Active Arrays 363
9.4.1 Key Active Elements in Active Antennas: Amplifiers 363
9.4.2 Active Hybrids 366
9.4.3 The Thermal Dissipation Design Solution 367
9.4.4 Active Array Control 369
9.4.5 Active Arrays for Communications and Data Transmission 370
9.5 Summary 383
Acknowledgements 383
References 384

10 Printed Reflectarray Antennas for Space Applications 385
Jose A. Encinar

10.1 Introduction 385
10.2 Principle of Operation and Reflectarray Element Performance 388
10.3 Analysis and Design Techniques 391
10.3.1 Analysis and Design of Reflectarray Elements 391
10.3.2 Design and Analysis of Reflectarray Antennas 393
10.3.3 Broadband Techniques 396
10.4 Reflectarray Antennas for Telecommunication and Broadcasting Satellites 400
10.4.1 Contoured-Beam Reflectarrays 400
10.4.2 Dual-Coverage Transmit Antenna 402
10.4.3 Transmit–Receive Antenna for Coverage of South America 405
10.5 Recent and Future Developments for Space Applications 414
10.5.1 Large-Aperture Reflectarrays 414
10.5.2 Inflatable Reflectarrays 415
10.5.3 High-Gain Antennas for Deep Space Communications 416
10.5.4 Multibeam Reflectarrays 418
10.5.5 Dual-Reflector Configurations 420
10.5.6 Reconfigurable and Steerable Beam Reflectarrays 424
10.5.7 Conclusions and Future Developments 428
Acknowledgments 428
References 429

11 Emerging Antenna Technologies for Space Applications 435
Safieddin Safavi-Naeini and Mohammad Fakharzadeh
11.1 Introduction 435
11.2 On-Chip/In-Package Antennas for Emerging Millimeter-Wave Systems 436
11.2.1 Recent Advances in On-Chip Antenna Technology 436
11.2.2 Silicon IC Substrate Limitations for On-Chip Antennas 437
11.2.3 On-Chip Antenna on Integrated Passive Silicon Technology 439
11.3 Integrated Planar Waveguide Technologies 441
11.4 Microwave/mmW MEMS-Based Circuit Technologies for Antenna Applications 445
11.4.1 RF/Microwave MEMS-Based Phase Shifter 447
11.4.2 Reflective-Type Phase Shifters for mmW Beam-Forming Applications 447
11.5 Emerging THz Antenna Systems and Integrated Structures 448
11.5.1 THz Photonics Techniques: THz Generation Using Photo-mixing Antennas 451
11.5.2 THz Generation Using a Photo-mixing Antenna Array 453
11.6 Case Study: Low-Cost/Complexity Antenna Technologies for Land-Mobile Satellite Communications 454
11.6.1 System-Level Requirements 454
11.6.2 Reconfigurable Very Low-Profile Antenna Array Technologies 454
11.6.3 Beam Steering Techniques 455
11.6.4 Robust Zero-Knowledge Beam Control Algorithm 457
11.6.5 A Ku-band Low-Profile, Low-Cost Array System for Vehicular Communication 458
11.7 Conclusions 462
References 462

12 Antennas for Satellite Communications 466
Eric Amyotte and Luís Martins Camelo
12.1 Introduction and Design Requirements 466
12.1.1 Link Budget Considerations 467
13.2 Challenges of Antenna Design for SAR

13.2.1 Reflector Antennas

13.2.2 Active Antennas and Subsystems

13.3 A Review of the Development of Antennas for Spaceborne SAR

- **13.3.1 TecSAR**
- **13.3.2 SAR- Lupe**
- **13.3.3 ASAR (EnviSat)**
- **13.3.4 Radarsat 1**
- **13.3.5 Radarsat 2**
- **13.3.6 Palsar (ALOS)**
- **13.3.7 TerraSAR-X**
- **13.3.8 COSMO (SkyMed)**

13.4 Case Studies of Antennas for Spaceborne SAR

- **13.4.1 Instrument Design**
- **13.4.2 SAR Antenna**

13.5 Ongoing Developments in SAR Antennas

- **13.5.1 Sentinel 1**
- **13.5.2 Saocom Mission**
- **13.5.3 ALOS 2**
- **13.5.4 COSMO Second Generation**

13.6 Acknowledgments

14 Antennas for Global Navigation Satellite System Receivers

Chi-Chih Chen, Steven (Shichang) Gao, and Moazam Maqsood

14.1 Introduction

14.2 RF Requirements of GNSS Receiving Antenna

- **14.2.1 General RF Requirements**
- **14.2.2 Advanced Requirements for Enhanced Position Accuracy and Multipath Signal Suppression**

14.3 Design Challenges and Solutions for GNSS Antennas

- **14.3.1 Wide Frequency Coverage**
- **14.3.2 Antenna Delay Variation with Frequency and Angle**
- **14.3.3 Antenna Size Reduction**
- **14.3.4 Antenna Platform Scattering Effect**

14.4 Common and Novel GNSS Antennas

- **14.4.1 Single-Element Antenna**
- **14.4.2 Multi-element Antenna Array**

14.5 Spaceborne GNSS Antennas

- **14.5.1 Requirements for Antennas On Board Spaceborne GNSS Receivers**
- **14.5.2 A Review of Antennas Developed for Spaceborne GNSS Receivers**

14.6 Case Study: Dual-Band Microstrip Patch Antenna for Spacecraft Precise Orbit Determination Applications

- **14.6.1 Antenna Development**
- **14.6.2 Results and Discussions**

14.7 Summary

References
15 Antennas for Small Satellites
Steven (Shichang) Gao, Keith Clark, Jan Zackrisson, Kevin Maynard, Luigi Boccia, and Jiadong Xu

15.1 Introduction to Small Satellites
15.1.1 Small Satellites and Their Classification
15.1.2 Microsatellites and Constellations of Small Satellites
15.1.3 Cube Satellites
15.1.4 Formation Flying of Multiple Small Satellites

15.2 The Challenges of Designing Antennas for Small Satellites
15.2.1 Choice of Operating Frequencies
15.2.2 Small Ground Planes Compared with the Operational Wavelength
15.2.3 Coupling between Antennas and Structural Elements
15.2.4 Antenna Pattern
15.2.5 Orbital Height
15.2.6 Development Cost
15.2.7 Production Costs
15.2.8 Testing Costs
15.2.9 Deployment Systems
15.2.10 Volume
15.2.11 Mass
15.2.12 Shock and Vibration Loads
15.2.13 Material Degradation
15.2.14 Atomic Oxygen
15.2.15 Material Outgassing
15.2.16 Creep
15.2.17 Material Charging
15.2.18 The Interaction between Satellite Antennas and Structure

15.3 Review of Antenna Development for Small Satellites
15.3.1 Antennas for Telemetry, Tracking and Command (TT&C)
15.3.2 Antennas for High-Rate Data Downlink
15.3.3 Antennas for Global Navigation Satellite System (GNSS) Receivers and Reflectometry
15.3.4 Antennas for Intersatellite Links
15.3.5 Other Antennas

15.4 Case Studies
15.4.1 Case Study 1: Antenna Pointing Mechanism and Horn Antenna
15.4.2 Case Study 2: X-band Downlink Helix Antenna

15.5 Conclusions
References

16 Space Antennas for Radio Astronomy
Paul F. Goldsmith

16.1 Introduction
16.2 Overview of Radio Astronomy and the Role of Space Antennas
16.3 Space Antennas for Cosmic Microwave Background Studies
16.3.1 The Microwave Background
18.4.3 Promising Antenna Concepts and Technologies
18.5 Increase Telecommunication Satellite Throughput
18.5.1 Problem Area and Challenges
18.5.2 Present and Expected Future Space Missions
18.5.3 Promising Antenna Concepts and Technologies
18.6 Enable Sharing the Same Aperture for Multiband and Multipurpose Antennas
18.6.1 Problem Area and Challenges
18.6.2 Present and Expected Future Space Missions
18.6.3 Promising Antenna Concepts and Technologies
18.7 Increase the Competitiveness of Well-Established Antenna Products
18.7.1 Problem Area and Challenges
18.7.2 Present and Expected Future Space Missions
18.7.3 Promising Antenna Concepts and Technologies
18.8 Enable Single-Beam In-Flight Coverage/Polarization Reconfiguration
18.8.1 Problem Area and Challenges
18.8.2 Present and Expected Future Space Missions
18.8.3 Promising Antenna Concepts and Technologies
18.9 Enable Active Antennas at Affordable Cost
18.9.1 Problem Area and Challenges
18.9.2 Present and Expected Future Space Missions
18.9.3 Promising Antenna Concepts and Technologies
18.10 Develop Innovative Antennas for Future Earth Observation and Science Instruments
18.10.1 Problem Area and Challenges
18.10.2 Present and Expected Future Space Missions
18.10.3 Promising Antenna Concepts and Technologies
18.11 Evolve Towards Mass Production of Satellite and User Terminal Antennas
18.11.1 Problem Area and Challenges
18.11.2 Present and Expected Future Space Missions
18.11.3 Promising Antenna Concepts and Technologies
18.12 Technology Push for Enabling New Missions
18.12.1 Problem Area and Challenges
18.12.2 Promising Antenna Concepts and Technologies
18.13 Develop New Approaches for Satellite/Antenna Modelling and Testing
18.13.1 Problem Area and Challenges
18.13.2 Promising Antenna Concepts and Technologies
18.14 Conclusions
Acronyms
Acknowledgements
References
Index