Contents

About the Authors xiii
Series Preface xv
Acknowledgements xvi
Glossary xvii

1 Introduction 1
1.1 General 1
1.2 Systems Development 3
1.3 Skills 7
1.4 Overview 9
References 11
Further Reading 11

2 The Aircraft Systems 13
2.1 Introduction 13
2.2 Definitions 13
2.3 Everyday Examples of Systems 14
2.4 Aircraft Systems of Interest 17
2.4.1 Airframe Systems 22
2.4.2 Vehicle Systems 22
2.4.3 Interface Characteristics of Vehicle Systems 24
2.4.4 Avionics Systems 25
2.4.5 Characteristics of Vehicle and Avionics Systems 26
2.4.6 Mission Systems 26
2.4.7 Interface Characteristics of Mission Systems 27
2.5 Ground Systems 27
2.6 Generic System Definition 28
References 31
Further Reading 31
3 The Design and Development Process

3.1 Introduction

3.2 Definitions

3.3 The Product Life Cycle

3.4 Concept Phase
 3.4.1 Engineering Process
 3.4.2 Engineering Skills

3.5 Definition Phase
 3.5.1 Engineering Process
 3.5.2 Engineering Skills

3.6 Design Phase
 3.6.1 Engineering Process
 3.6.2 Engineering Skills

3.7 Build Phase
 3.7.1 Engineering Process
 3.7.2 Engineering Skills

3.8 Test Phase
 3.8.1 Engineering Process
 3.8.2 Engineering Skills

3.9 Operate Phase
 3.9.1 Engineering Process
 3.9.2 Engineering Skills

3.10 Disposal or Retirement Phase
 3.10.1 Engineering Process
 3.10.2 Engineering Skills

3.11 Refurbishment Phase
 3.11.1 Engineering Process
 3.11.2 Engineering Skills

3.12 Whole Life Cycle Tasks

Exercises

References

Further Reading

4 Design Drivers

4.1 Introduction

4.2 Design Drivers in the Business Environment
 4.2.1 Customer
 4.2.2 Market and Competition
 4.2.3 Capacity
 4.2.4 Financial Issues
 4.2.5 Defence Policy
 4.2.6 Leisure and Business Interests
 4.2.7 Politics
 4.2.8 Technology
4.3 Design Drivers in the Project Environment

4.3.1 Standards and Regulations

4.3.2 Availability

4.3.3 Cost

4.3.4 Programme

4.3.5 Performance

4.3.6 Skills and Resources

4.3.7 Health, Safety and Environmental Issues

4.3.8 Risk

4.4 Design Drivers in the Product Environment

4.4.1 Functional Performance

4.4.2 Human/Machine Interface

4.4.3 Crew and Passengers

4.4.4 Stores and Cargo

4.4.5 Structure

4.4.6 Safety

4.4.7 Quality

4.4.8 Environmental Conditions

4.5 Drivers in the Product Operating Environment

4.5.1 Heat

4.5.2 Noise

4.5.3 RF Radiation

4.5.4 Solar Energy

4.5.5 Altitude

4.5.6 Temperature

4.5.7 Contaminants/Destructive Substances

4.5.8 Lightning

4.5.9 Nuclear, Biological and Chemical

4.5.10 Vibration

4.5.11 Shock

4.6 Interfaces with the Sub-System Environment

4.6.1 Physical Interfaces

4.6.2 Power Interfaces

4.6.3 Data Communication Interfaces

4.6.4 Input/Output Interfaces

4.6.5 Status/Discrete Data

4.7 Obsolescence

4.7.1 The Threat of Obsolescence in the Product Life Cycle

4.7.2 Managing Obsolescence

References

Further Reading
Contents

5.3 Systems Architectures 88
 5.3.1 General Systems 92
 5.3.2 Avionic Systems 92
 5.3.3 Mission Systems 92
 5.3.4 Cabin Systems 92
 5.3.5 Data Bus 92

5.4 Architecture Modelling and Trade-off 93

5.5 Example of a Developing Architecture 95

5.6 Evolution of Avionics Architectures 96
 5.6.1 Distributed Analogue Architecture 98
 5.6.2 Distributed Digital Architecture 100
 5.6.3 Federated Digital Architecture 101
 5.6.4 Integrated Modular Architecture 103

References 106

Further Reading 106

6 Systems Integration 107

6.1 Introduction 107

6.2 Definitions 109

6.3 Examples of Systems Integration 109
 6.3.1 Integration at the Component Level 109
 6.3.2 Integration at the System Level 110
 6.3.3 Integration at the Process Level 117
 6.3.4 Integration at the Functional Level 120
 6.3.5 Integration at the Information Level 123
 6.3.6 Integration at the Prime Contractor Level 123
 6.3.7 Integration Arising from Emergent Properties 124

6.4 System Integration Skills 126

6.5 Management of Systems Integration 128
 6.5.1 Major Activities 128
 6.5.2 Major Milestones 129
 6.5.3 Decomposition and Definition Process 131
 6.5.4 Integration and Verification Process 131
 6.5.5 Component Engineering 131

6.6 Highly Integrated Systems 132
 6.6.1 Integration of Primary Flight Control Systems 134

6.7 Discussion 135

References 137

Further Reading 137

7 Verification of System Requirements 139

7.1 Introduction 139

7.2 Gathering Qualification Evidence in the Life Cycle 140

7.3 Test Methods 143
 7.3.1 Inspection of Design 143
 7.3.2 Calculation 143
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.3 Analogy</td>
<td>144</td>
</tr>
<tr>
<td>7.3.4 Modelling and Simulation</td>
<td>144</td>
</tr>
<tr>
<td>7.3.5 Test Rigs</td>
<td>158</td>
</tr>
<tr>
<td>7.3.6 Environmental Testing</td>
<td>159</td>
</tr>
<tr>
<td>7.3.7 Integration Test Rigs</td>
<td>159</td>
</tr>
<tr>
<td>7.3.8 Flight Test</td>
<td>161</td>
</tr>
<tr>
<td>7.3.9 Trials</td>
<td>162</td>
</tr>
<tr>
<td>7.3.10 Operational Test</td>
<td>163</td>
</tr>
<tr>
<td>7.3.11 Demonstrations</td>
<td>163</td>
</tr>
<tr>
<td>7.4 An Example Using a Radar System</td>
<td>163</td>
</tr>
<tr>
<td>References</td>
<td>166</td>
</tr>
<tr>
<td>Further Reading</td>
<td>166</td>
</tr>
<tr>
<td>8 Practical Considerations</td>
<td>167</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>167</td>
</tr>
<tr>
<td>8.2 Stakeholders</td>
<td>167</td>
</tr>
<tr>
<td>8.2.1 Identification of Stakeholders</td>
<td>167</td>
</tr>
<tr>
<td>8.2.2 Classification of Stakeholders</td>
<td>169</td>
</tr>
<tr>
<td>8.3 Communications</td>
<td>170</td>
</tr>
<tr>
<td>8.3.1 The Nature of Communication</td>
<td>171</td>
</tr>
<tr>
<td>8.3.2 Examples of Organisation Communication Media</td>
<td>173</td>
</tr>
<tr>
<td>8.3.3 The Cost of Poor Communication</td>
<td>174</td>
</tr>
<tr>
<td>8.3.4 A Lesson Learned</td>
<td>174</td>
</tr>
<tr>
<td>8.4 Giving and Receiving Criticism</td>
<td>177</td>
</tr>
<tr>
<td>8.4.1 The Need for Criticism in the Design Process</td>
<td>177</td>
</tr>
<tr>
<td>8.4.2 The Nature of Criticism</td>
<td>178</td>
</tr>
<tr>
<td>8.4.3 Behaviours Associated with Criticism</td>
<td>178</td>
</tr>
<tr>
<td>8.4.4 Conclusions</td>
<td>179</td>
</tr>
<tr>
<td>8.5 Supplier Relationships</td>
<td>179</td>
</tr>
<tr>
<td>8.6 Engineering Judgement</td>
<td>181</td>
</tr>
<tr>
<td>8.7 Complexity</td>
<td>181</td>
</tr>
<tr>
<td>8.8 Emergent Properties</td>
<td>182</td>
</tr>
<tr>
<td>8.9 Aircraft Wiring and Connectors</td>
<td>183</td>
</tr>
<tr>
<td>8.9.1 Aircraft Wiring</td>
<td>183</td>
</tr>
<tr>
<td>8.9.2 Aircraft Breaks</td>
<td>183</td>
</tr>
<tr>
<td>8.9.3 Wiring Bundle Definition</td>
<td>185</td>
</tr>
<tr>
<td>8.9.4 Wiring Routing</td>
<td>185</td>
</tr>
<tr>
<td>8.9.5 Wiring Sizing</td>
<td>186</td>
</tr>
<tr>
<td>8.9.6 Aircraft Electrical Signal Types</td>
<td>187</td>
</tr>
<tr>
<td>8.9.7 Electrical Segregation</td>
<td>188</td>
</tr>
<tr>
<td>8.9.8 The Nature of Aircraft Wiring and Connectors</td>
<td>189</td>
</tr>
<tr>
<td>8.9.9 Use of Twisted Pairs and Quads</td>
<td>190</td>
</tr>
<tr>
<td>8.10 Bonding and Grounding</td>
<td>192</td>
</tr>
<tr>
<td>References</td>
<td>194</td>
</tr>
<tr>
<td>Further Reading</td>
<td>194</td>
</tr>
</tbody>
</table>
9 Configuration Control

9.1 Introduction

9.2 Configuration Control Process

9.3 A Simple Portrayal of a System

9.4 Varying System Configurations

- **9.4.1 System Configuration A**
- **9.4.2 System Configuration B**
- **9.4.3 System Configuration C**

9.5 Forwards and Backwards Compatibility

- **9.5.1 Forwards Compatibility**
- **9.5.2 Backwards Compatibility**

9.6 Factors Affecting Compatibility

- **9.6.1 Hardware**
- **9.6.2 Software**
- **9.6.3 Wiring**

9.7 System Evolution

9.8 Configuration Control

- **9.8.1 Airbus A380 Example**

9.9 Interface Control

- **9.9.1 Interface Control Document**
- **9.9.2 Aircraft Level Data Bus Data**
- **9.9.3 System Internal Data Bus Data**
- **9.9.4 Internal System Input/Output Data**
- **9.9.5 Fuel Component Interfaces**

10 Aircraft System Examples

10.1 Introduction

10.2 Design Considerations

10.3 Safety and Economic Considerations

10.4 Failure Severity Categorisation

10.5 Design Assurance Levels

10.6 Redundancy

- **10.6.1 Architecture Options**
- **10.6.2 System Examples**

10.7 Integration of Aircraft Systems

- **10.7.1 Engine Control System**
- **10.7.2 Flight Control System**
- **10.7.3 Attitude Measurement System**
- **10.7.4 Air Data System**
- **10.7.5 Electrical Power System**
- **10.7.6 Hydraulic Power System**

10.8 Integration of Avionics Systems

References
Contents

11 Power Systems Issues

11.1 Introduction 239

11.2 Electrical System Description 239

11.3 Electrical Power Distribution System

11.3.1 Power Generation 241

11.3.2 Primary Power Distribution 242

11.3.3 Power Conversion 242

11.3.4 Secondary Power Distribution 242

11.4 Electrical System Design Issues

11.4.1 Engine Power Off-Takes 244

11.4.2 The Generator 244

11.4.3 Power Feeders 244

11.4.4 Generation Control 245

11.4.5 Power Switching 245

11.5 Hydraulic System Description

11.5.1 Engine-Driven Pump (EDP) 246

11.5.2 Hydraulic Accumulator 247

11.5.3 System Users 247

11.5.4 Power Transfer Unit 247

11.6 Hydraulic System Design Considerations

11.6.1 Hydraulic Power Generation 248

11.6.2 System Level Issues 249

11.6.3 Hydraulic Fluid 249

11.7 Aircraft System Energy Losses 250

11.8 Electrical System Power Dissipation

11.8.1 Constant Frequency System 252

11.8.2 Variable Frequency System 254

11.9 Hydraulic System Power Dissipation

11.9.1 Hydraulic Power Calculations 254

11.9.2 Operating Pressure 256

11.9.3 Rated Delivery Capacity 256

11.9.4 Boeing 767 – Entry into Service: 1982 (United Airlines) 258

11.9.5 Boeing 787 – Entry into Service: 2011 [All Nippon Airways] 258

11.9.6 Simple Hydraulic Power Models 259

11.10 More-Electric Aircraft Considerations

References 261

12 Key Characteristics of Aircraft Systems

12.1 Introduction 265

12.2 Aircraft Systems 267

12.3 Avionic Systems 280

12.4 Mission Systems 287

12.5 Sizing and Scoping Systems 292
Contents

12.6 Analysis of the Fuel Penalties of Aircraft Systems 294
 12.6.1 Introduction 294
 12.6.2 Basic Formulation of Fuel Weight Penalties of Systems 295
 12.6.3 Application of Fuel Weight Penalties Formulation to Multi-Phase Flight 297
 12.6.4 Analysis of Fuel Weight Penalties Formulation for Multi-Phase Flight 298
 12.6.5 Use of Fuel Weight Penalties to Compare Systems 298
 12.6.6 Determining Input Data for Systems Weight Penalties Analysis 299
Nomenclature Used 302
References 303

13 Conclusions 305
 A Historical Footnote 306
 References 307

Index 309