CONTENTS

Acknowledgments xiii
Author Biography xv
Preface xxv

1 Electromagnetic Wave Propagation and Applications 1
 1.1 Electromagnetic Spectrum, 1
 1.2 Free-Space Propagation, 4
 1.3 Friis Transmission Formula, 6
 1.4 Link Budget Examples, 8
 1.5 Noise, 9
 1.6 Communication System Link Budget, 11
 1.7 Path Loss, 13
 1.8 Receiver Sensitivity, 13
 1.9 Receivers: Definitions and Features, 14
 1.10 Types of Radars, 16
 1.11 Transmitters: Definitions and Features, 16
 References, 18

2 Electromagnetic Theory and Transmission Lines for RF Designers 19
 2.1 Definitions, 19
 2.2 Electromagnetic Waves, 20
 2.3 Transmission Lines, 25
 2.4 Matching Techniques, 29
 2.5 Coaxial Transmission Line, 34
CONTENTS

2.6 Microstrip Line, 36
2.7 Materials, 39
2.8 Waveguides, 43
2.9 Circular Waveguide, 48
References, 54

3 Basic Antennas for Communication Systems 57
3.1 Introduction to Antennas, 57
3.2 Antenna Parameters, 58
3.3 Dipole Antenna, 60
3.4 Basic Aperture Antennas, 66
3.5 Horn Antennas, 69
3.6 Antenna Arrays for Communication Systems, 80
References, 88

4 MIC and MMIC Microwave and Millimeter Wave Technologies 91
4.1 Introduction, 91
4.2 Microwave Integrated Circuits Modules, 92
4.3 Development and Fabrication of a Compact Integrated RF Head for Inmarsat-M Ground Terminal, 92
4.4 Monolithic Microwave Integrated Circuits, 100
4.5 Conclusions, 111
References, 111

5 Printed Antennas for Wireless Communication Systems 113
5.1 Printed Antennas, 113
5.2 Two Layers Stacked Microstrip Antennas, 119
5.3 Stacked Monopulse Ku Band Patch Antenna, 122
5.4 Loop Antennas, 123
5.5 Wired Loop Antenna, 132
5.6 Radiation Pattern of a Loop Antenna Near a Metal Sheet, 133
5.7 Planar Inverted-F Antenna, 136
References, 140

6 MIC and MMIC Millimeter-Wave Receiving Channel Modules 141
6.1 18–40 GHz Compact RF Modules, 141
6.2 18–40 GHz Front End, 141
6.3 18–40 GHz Integrated Compact Switched Filter Bank Module, 154
6.4 FSU Performance, 163
6.5 FSU Design and Analysis, 171
6.6 FSU Fabrication, 181
6.7 Conclusions, 184
References, 185
7 Integrated Outdoor Unit for Millimeter-Wave Satellite Communication Applications

7.1 The ODU Description, 187
7.2 The Low Noise Unit: LNB, 191
7.3 SSPA Output Power Requirements, 191
7.4 Isolation Between Receiving and Transmitting Channels, 192
7.5 SSPA, 192
7.6 The ODU Mechanical Package, 194
7.7 Low Noise and Low-cost K-band Compact Receiving Channel for VSAT Satellite Communication Ground Terminal, 195
7.8 Ka-band Integrated High Power Amplifiers, SSPA, for VSAT Satellite Communication Ground Terminal, 200
7.9 Conclusions, 205
References, 206

8 MIC and MMIC Integrated RF Heads

8.1 Integrated Ku-band Automatic Tracking System, 209
8.2 Super Compact X-band Monopulse Transceiver, 233
References, 243

9 MIC and MMIC Components and Modules Design

9.1 Introduction, 245
9.2 Passive Elements, 245
9.3 Power Dividers and Combiners, 249
9.4 RF Amplifiers, 256
9.5 Linearity of RF Amplifiers and Active Devices, 262
9.6 Wideband Phased Array Direction Finding System, 270
9.7 Conclusions, 277
References, 279

10 Microelectromechanical Systems (MEMS) Technology

10.1 Introduction, 281
10.2 MEMS Technology, 281
10.3 W-band MEMS Detection Array, 285
10.4 Array Fabrication and Measurement, 291
10.5 Mutual Coupling Effects Between Pixels, 293
10.6 MEMS Bow-tie Dipole with Bolometer, 294
10.7 220 GHz Microstrip Patch Antenna, 294
10.8 Conclusions, 294
References, 297
CONTENTS

11 Low-Temperature Cofired Ceramic (LTCC) Technology
11.1 Introduction, 299
11.2 LTCC and HTCC Technology Features, 300
11.3 LTCC and HTCC Technology Process, 301
11.4 Design of High-pass LTCC Filters, 301
11.5 Comparison of Single-layer and Multilayer Microstrip Circuits, 305
11.6 LTCC Multilayer Technology Design Considerations, 308
11.7 Capacitor and Inductor Quality (Q) Factor, 310
11.8 Summary of LTCC Process Advantages and Limitations, 312
11.9 Conclusions, 312
References, 313

12 Advanced Antenna Technologies for Communication System
12.1 New Wideband Wearable Metamaterial Antennas for Communication Applications, 315
12.2 Stacked Patch Antenna Loaded with SRR, 325
12.3 Patch Antenna Loaded with Split Ring Resonators, 327
12.4 Metamaterial Antenna Characteristics in Vicinity to the Human Body, 329
12.5 Metamaterial Wearable Antennas, 333
12.6 Wideband Stacked Patch with SRR, 336
12.7 Fractal Printed Antennas, 338
12.8 Antiradar Fractals and/or Multilevel Chaff Dispersers, 341
12.9 Definition of Multilevel Fractal Structure, 342
12.10 Advanced Antenna System, 344
12.11 Applications of Fractal Printed Antennas, 348
12.12 Conclusions, 364
References, 367

13 Wearable Communication and Medical Systems
13.1 Wearable Antennas for Communication and Medical Applications, 369
13.2 Dually Polarized Wearable 434 MHz Printed Antenna, 370
13.3 Loop Antenna with Ground Plane, 374
13.4 Antenna S11 Variation as Function of Distance from Body, 377
13.5 Wearable Antennas, 381
13.6 Compact Dual-Polarized Printed Antenna, 385
13.7 Compact Wearable RFID Antennas, 385
13.8 434 MHz Receiving Channel for Communication and Medical Systems, 394
13.9 Conclusions, 395
References, 398