INDEX

abrupt junction, 103, 108, 251
active devices, 245, 262–270, 278
Ampère’s law, 22, 34
amplifiers
 class A, 259–261
class B, 17, 260–261
class C, 261–262
gain, 256, 264
high power, 96, 200–205
low noise, 94, 141, 195, 200
solid state, 18
stability, 258
temperature, 18
amplitude and phase matching, 15
anechoic chamber, 419, 420
antenna
efficient area, 59, 338, 417
efficiency and directivity, 58, 59, 417
gain, 5, 59, 214, 419
impedance, 59, 65, 390
antenna array
 array directivity, 83, 84
 array factor, 80–82
 array feed network, 87, 294
 array nulls, 81–83
 array radiation pattern, 80–82
 array resonant frequency, 319, 330, 331, 336, 366, 370, 381, 398
 broadside array, 82
 electromagnetic field substrate, 61, 119, 348, 384
 end fire array, 83
 half power beam width, 83
 Ka band microstrip antenna array, 86–88
 measured antenna gain, 85, 86, 119, 122, 216
 microstrip antenna arrays, 83–88, 294
 millimeter wave arrays, 80
 patch resonator, 327–329
 performance of 32-element array, 80, 81
 performance of 64-element array, 87

antenna array (cont’d)
phased arrays, 60, 69, 270–277
power combiner/splitter, 86
printed arrays, 80, 83, 86
radiation pattern, 58, 62, 133–136
resonator, 348, 349, 354, 355, 357, 359, 360
series fed microstrip array, 86
stacked Ku band microstrip antenna, 86
stacked microstrip array, 83–86
VSWR, 29
antenna measurements
angular range, 58, 416
Cartesian coordinate, 415
far field, 402, 415
Fraunhofer distance, 415
gain measurements, 419
near field, 124, 333, 401, 415
radiation pattern measurements, 415–417, 419
side lobes, 58, 417
typical antenna parameters, 58–60, 414
antenna theory
aperture antennas, 66–69
azimuth, 58
beam width, 119
Cassegrain reflector, 69
dipole antenna
dipole directivity, 64–65
dipole E plane radiation pattern, 62, 63
dipole H plane radiation pattern, 62, 63
dipole impedance, 65
electric potential function, 60
elementary dipole, 61
folded dipole, 323, 381
directivity, 59, 417
effective area, 59, 417
elevation, 80, 220, 243
horn antennas
directivity, 72, 77
E plane sectorial horn, 70–75
Fresnel integers, 8, 72–73
horn length, 71, 75
H plane sectorial horn, 75–78
pyramidal horn, 79
hybrid antenna system, 60
parabolic reflector antennas, 66
parameters, 58–60
radiated power, 58
radiator, 58, 80
range, 58, 419
reflector antennas, 69
reflector directivity, 67–69
steerable antennas, 60
aperture antennas
parabolic reflector antennas, 66, 212, 214
reflector aperture efficiency, 68
reflector directivity, 67–69
automatic scanning array, 285
automatic tracking system
Ku band antennas, 212–218
link budget calculations, 210–213
baseband frequency, 15
Bessel equations, 49
bipolar junction transistor (BJT), 102, 108
bi-static radar, 16
BJT see bipolar junction transistor (BJT)
Boltzmann’s constant, 10, 16
boresight, 58, 209, 215, 216
towel dipole, 294
broadside arrays, 82
Brownian fractal, 345
built in test (BIT), 168–169, 233
bulk micromachining, 282–284
Cassegrain reflector, 69
ceramics, 40, 300
chaff dispersers, 341–344
chaotic fractal, 345
chemical mechanical polish (CMP), 106
chemical vapor deposition (CVD), 106
circular waveguide
Bessel function, 49
cutoff frequencies, 35, 54
electric field, 49, 50
Helmholtz equation, 48
magnetic field, 50, 52
Maxwell equations, 50
TE waves, 50–52
tM waves, 52–54
class A amplifiers, 259–261
class B amplifiers, 17, 260–261
class C amplifiers, 261–262
class D amplifiers, 262
class F amplifiers, 262
coaxial transmission lines
 advantages, 34
cables, 34
cutoff frequency, 34, 35
disadvantages, 34
 industry coaxial cables, 35
 Poynting vector, 35
co-fired ceramics, 300
communication applications
 medical applications, 333, 334
 wearable antennas, 333
communication systems, 14, 29, 57–88,
 113–141, 184, 195, 200, 209, 249,
 315, 340, 344, 369, 402
compact antennas
 compact dual polarized antennas, 386,
 388, 389
 compact RFID antennas, 385–394
 compact wearable antennas, 385–394
complementary metal oxide semiconductors
 (CMOS), 102–104, 110, 282, 286
compression
 IP2, 269–270, 410–412
 IP3, 269–270, 410–413
 1dB compression point, 15, 142, 146, 192,
 221, 223, 228, 230, 264, 275
computer aided design (CAD), 283
conductor
 conductivity, 38, 118
 conductor loss, 38, 118
 resistivity, 309
conservation of energy law, 24
contact lithography, 106
CVD see chemical vapor deposition (CVD)
definition
 angular frequency, 20
 antenna, 20
 field, 19
 frequency, 19
 phase velocity, 20
 polarization, 20
 wavelength, 19
 wavenumber, 20
deterministic fractal, 345
device under test, 270, 407, 411
diode, 92, 102, 103, 108–110, 153
diplexer, 94–99, 210, 256
dipole antenna
 dipole directivity, 64–65
 dipole E plane radiation pattern,
 62–63
 dipole H plane radiation pattern,
 62–63
 dipole impedance, 65
electric potential function, 60
 elementary dipole, 61
 folded dipole, 323
 radiation from small dipole, 61
directivity
 antenna directivity, 417
doppler radar, 16
dry etching, 105, 284
dual polarized
 tunable antennas, 385
 wearable antennas, 370–373
dynamic range, 9, 15
effective isotropic radiated power (EIRP),
 4–7, 6, 189, 191, 192, 212, 213
em electromagnetic spectrum
 electromagnetic spectrum and
 applications, 2, 3
electromagnetic theory
 circular waveguide
 Bessel function, 49
 cutoff frequencies, 35, 54
 electric field, 49, 50
 Helmholtz equation, 48
 magnetic field, 50, 52
 Maxwell equations, 50
 TE waves, 50–52
 TM waves, 52–54
coaxial transmission lines
 advantages, 34
cables, 34
cutoff frequency, 34, 35
disadvantages, 34
 industry coaxial cables, 35
 Poynting vector, 35
definition
 angular frequency, 20
 antenna, 20
 field, 19
 frequency, 19
electromagnetic theory (cont’d)
 phase velocity, 20
 polarization, 20
 wavelength, 19
 wavenumber, 20
electromagnetic waves
 Ampère’s law, 22, 34
 boundary conditions, 24, 25, 46, 53
 conductors, 34
 conservation of energy law, 24
 Faraday’s law, 22–23
 Gauss’s law, 22
matching techniques
 quarter wave transformer, 32–33
 reflection coefficient, 29
 single stub matching, 33–34
 smith chart, 30, 31
 transmission lines, 25–29
 VSWR, 29–31
 wideband matching, 33
materials
 hard materials, 39–40
 MIC, 39
 MMIC, 39
 soft materials, 39–40
Maxwell equations, 20–21
 wave equation, 23–25
microstrip lines
 advantages, 36
 characteristic impedance, 37
 conductor loss, 38
 cutoff frequency, 37
 dielectric constant, 36–37
 dielectric loss, 38–39
 effective dielectric constant, 36–37
 higher order modes, 37–38
 losses in microstrip lines, 38
transmission lines
 characteristic admittance, 26
 characteristic impedance, 27
 input impedance, 29
 Maxwell equations, 25
 reflection coefficient, 28
 VSWR, 29
waveguide
 circular waveguide, 48
 cutoff frequency, 45
 Helmholtz equation, 43
 Maxwell equations, 43
 rectangular waveguide, 43, 46
 TE modes, 44–46
 TM modes, 46–48
electron beam lithography, 106
elementary dipole, 61
element pattern (EP), 80
euclidian and fractal antennas
 Brownian fractal, 345
 chaotic fractal, 345
 deterministic fractal, 345
 fractal geometry, 345
 exact fractal, 345
 Faraday’s law, 22–23
 feed-forward amplifiers, 262
feed line
 parallel feed network, 83–84, 86–88
 series feed network, 83–84, 86–88, 116
 feed point, 66, 114, 117, 417
field effect transistor (FET), 17, 18, 94, 100, 102, 103, 108
filter
 bandpass filter, 197
 high pass filter, 303–305
 switch filter bank (SFB), 155, 156, 158, 160, 161
 switching time, 155
flicker noise, 10
folded dipole
 computed radiation pattern of, 323
 current distribution of, 371–373
 dimensions, 323
 impedance, 391
 meta-material antenna, 323–324
 tunable antenna, 126, 331, 375
 wearable antenna, 381
folded dual polarized antenna
 computed radiation pattern of, 323
 current distribution of, 371–373
 dimensions, 23
 impedance, 391
 meta-material antenna, 323–324
 tunable antenna, 126, 331, 375
 wearable antenna, 381
fractal antennas
 advanced antennas, 344
 antiradar fractal multilevel chaff dispersers
 definition of chaff, 341
 effective area, 340
 geometry of disperser, 342
radar cross section, 342
applications
8 GHz fractal antenna, 357–360
fractal antenna patch, 349
fractal stacked patch, 350
modified fractal stacked patch, 348, 352
radiator of fractal stacked patch, 354
space filling perimeter, 341
stacked patch 2.5 GHz fractal antenna, 352–357
stacked patch 7.4 GHz fractal antenna, 360–364
2.5 GHz fractal antenna with space filling perimeter, 348–352
definition of multilevel structure
dispersers, 343
radar chaff, 342, 343
set of polygons, 342
double layer Hilbert curves
antenna efficiency, 344, 346
computed radiation pattern of, 323
fractal stacked patch radiation pattern, 118
Hilbert curves on resonator layer, 348
Euclidean and fractal antennas
Brownian fractal, 345
chaotic fractal, 345
deterministic fractal, 345
fractal geometries group, 345
quality factor, 344
radiation resistance, 344, 345
random fractal, 345
fractal structures
folded fractal structure, 339
Koch snowflake, 339
self-similar object, 338
space filling curves
multilevel and space filling ground plane, 345–346
multilevel geometry, 346
Fraunhofer distance, 415
free space
loss, 6, 211–213
propagation, 4–5
frequency-modulated/continuous-wave (FMCW) radar, 16
frequency source unit (FSU)
design and analysis, 171–181
fabrication, 181–184
isolation, 168–169
requirements, 163–165
thermal analysis, 174–175
Fresnel integers, 72, 73, 78
Friis transmission formula, 6–8
front end
design of, 142–153
high gain front end design, 148–153
high gain front end module, 147–148
requirements of, 142
FSU see frequency source unit (FSU)
full wave analysis, 260
gain
antenna gain, 419
measurements, 419
gallium arsenide (GaAs), 18, 37–40, 94, 101–105, 107, 108, 110, 312
Gauss’s law, 22
gold, 39, 286, 291, 309
grounded quarter wavelength patch, 136–138, 416
gunn diodes, 103, 108
gysel power divider, 249, 252
half power beamwidth (HPBW), 5, 64, 83, 84
hard materials, 39, 40
harmonic load pull, 19
harmonics, 164, 192, 229, 262, 266
Hata formula, 13
Hata model, 13
Helmholtz equation, 43, 48
HEMT see high-electron mobility transistor (HEMT)
HFSS software, 133, 289, 293
high-electron mobility transistor (HEMT), 102, 104, 108
high pass LTCC filter, 301–305
high temperature cofired ceramic (HTCC), 300–305, 308, 309, 311, 312
Hilbert curves
fractal antenna patch
Euclidean and fractal antennas, 344–345
fractal stacked patch, 348, 349, 351
modified fractal stacked patch, 348, 352
radiator of fractal stacked patch, 348, 354
new fractal printed antennas, 352, 360
resonator layer, 348
HMIC see hybrid microwave integrated circuit (HMIC)
horn antenna
 aperture antennas, 5, 66–67
directivity, 72
E-plane sectorial horn, 70–72
Fresnel integers, 72–73
directivity, 72
horn length, 71, 75
H plane sectorial horn, 75–78
pyramidal horn, 79
human body
 electrical properties, 329, 330, 333
 helix antenna performance on, 398
human body tissues, 329, 330, 378, 379, 391
meta material characteristic, 316
hybrid antenna system, 60
hybrid microwave integrated circuit (HMIC), 92

IMPATT diodes, 108
impedance
 antenna impedance, 59–60, 65
 impedance matching, 29
 impedance of folded dipole, 65–66
Inmarsat-M ground terminal, 92–99
integrated Ku band tracking system, 209–232
integrated outdoor unit, 188–206
integrated switched filter bank module, 154–163
interception point
 IP₂, 269–270
 IP₃, 269–270
intermodulation
 IP₂, 269–270
 IP₃, 269–270
introduction to microstrip antennas, 113–115
ion implantation, 100, 105, 108
IP₂ and IP₃ measurements, 269–270
isotropic radiator, 4, 58, 59, 65, 80, 419

Ka band microstrip antenna arrays
 antenna configuration, 88
 configuration of, 86–87
 performance of, 86–87
 Ka band non-reflective SPDT, 109–110

Ka band upconverter, 109–110
Koch snowflake, 339
Ku band patch antenna, 122–123

law of conservation of energy, 24
LDMOS transistor, 108
light emitting diode (LED), 190, 221, 228, 230
linearity of RF amplifiers, 262–270
linear ratio vs. logarithmic ratio, 7–8
link budget, 8–9, 11–12, 210–213
lithography
 electron beam lithography, 106
load
 calibration, 406
 impedance, 29, 30, 257, 258
 matching
 quarter wavelength transformer, 86
 single stub matching, 33–34
 power transferred to, 30
load pull, 17
local area network (LAN), 2, 20, 57
logarithmic relations
 linear ratio vs. logarithmic ratio, 7–8
loop antenna
 dual of the dipole, 124
 magnetic fields, 123, 124
 new loop antenna, 127–132
 ohmic loss, 124
 printed loop, 125–127
 radiation pattern of, 127, 129
 radiation resistance, 124
 radio frequency identification loop, 385
 small loop antenna, 123–124
 square four turn loop antenna, 128
 tunable loop antenna, 126
 varactors, 126
loss sources, 11
low temperature cofired ceramic (LTCC)
 advantages, 312
 breakthrough for LTCC fabrication, 300
 cofiring, 300
 high pass filter, 303–305
 line loss, 301, 303
 material characteristics, 301, 303
 module, 300
 multilayer, 308–310
 process, 302, 312
 substrates, 301
INDEX

tolerance check, 304
low visibility microstrip antennas
array performance, 86, 87
ductor loss, 38, 118
design of feed network, 119
discontinuities, 86, 87
evaluation of feed network loss, 115
evaluation of radiation loss, 65
gold plating, 309
multiport network model, 402
pointing vector, 124
radiation loss, 38, 117
S matrix, 403, 407
Y matrix, 402
Z matrix, 402
low visibility printed antennas
loop antenna
dual of the dipole, 124
magnetic fields, 123, 124
new loop antenna, 127–132
ohmic los, 124
printed loop, 125–127
radiation pattern of, 127, 129
radiation resistance, 124
radio frequency identification loop, 20, 100, 299
small loop antenna, 123–124
square four turn loop antenna, 128
tunable loop antenna, 126
varactors, 126
microstrip antennas
antenna gain, 419
arrays, 83
efficiency and, 119
impedance, 123, 124
planar inverted-F antenna
dual band antennas, 138
grounded quarter wavelength patch, 136–138
new double layer PIFA antenna, 136–140
radiation pattern of, 136, 138
rat race coupler, 122–123
resonator, 122
stacked mono-pulse antenna, 122
series fed microstrip array
array feed network, 87
array resonant frequency, 317
patch resonator, 118–119
radiation pattern of, 121
stacked microstrip antenna, 119–121
stacked monopulse Ku antenna, 122–123
two layers stacked microstrip antenna
antenna bandwidth, 119, 121
antenna feed network, 119, 120
circular polarization of, 119
stacked microstrip antenna, 119–121
wired loop antenna
quality factor, 133
seven turn loop antenna, 132
wired seven turn loop antenna, 132
matching techniques
quarter wavelength transformer, 86
quarter wave transformer, 32–33
reflection coefficient, 29
single stub matching, 33–34
transmission lines, 25–29
VSWR, 29–31
wideband matching, 33
maxwell equations
circular waveguide, 50, 52
electromagnetic fields, 402, 415
microstrip antennas, 59, 83
patch resonator, 114
radiation pattern of, 83, 84
transmission lines, 43
waveguide, 43–44
MBE see molecular beam epitaxy (MBE)
medical applications
antenna bandwidth, 370, 371
antenna impedance, 390
antenna S11, 377–381
comparison of loop antennas, 391
dual polarized antenna, 383, 384
folded antenna, 373, 374
folded dual polarized antenna, 383, 384
human body, 370
loop antennas, 375
medical applications for low visibility antennas, 370
radiation pattern, 372, 374
VSWR, 370, 371
MESFET transistors, 108
meta-material antenna
wearable metamaterial antennas, 315–324
microelectromechanical systems (MEMS) actuator, 285
advantages, 282
bio MEMS, 285
bulk micromachining, 282, 283
CAD, 283
components, 284–285
micromachining, 282
optical MEMS, 285
process, 282–284
RF MEMS, 285
sensors, 284
microstrip antennas
antenna bandwidth, 119, 121, 122, 129
antenna impedance, 59, 65, 390
antenna S11, 127, 139, 348, 377–381
cutoff frequency, 38, 65, 118, 248
cutoff frequency, 34–37, 46, 47, 54, 103, 104, 117
dielectric loss, 38–39, 65, 113, 118, 119, 248
effective dielectric constant, 36–37, 114, 117–118
evaluation of feed network loss, 85, 86
evaluation of radiation loss, 38, 65, 117
feed point, 66, 114, 117, 417
higher order modes, 37
losses, 118
medical applications of
antenna bandwidth, 119, 121, 122, 129
antenna impedance, 59, 65, 390
antenna S11, 127, 139, 348, 377–381
dual polarized antenna, 316, 323, 386, 388, 389, 396, 398
folded antenna, 323, 324, 331–333, 373, 374, 379, 382
folded dual polarized antenna, 323, 324, 383
human body, 329–333, 377–382, 386
loop antennas, 123–132, 390, 395, 398
low visibility antennas, 334, 370, 383–385
microstrip antenna shapes, 115
patch radiation pattern, 118–119
radiation pattern, 121, 325, 326
transmission line model of, 115–117
VSWR, 119, 121, 122, 125, 129, 131
microstrip antenna arrays, 85–88, 294
microstrip lines
advantages, 114
characteristic impedance, 27, 31, 32, 37
conductor loss, 38, 65, 118, 248
cutoff frequency, 34–37, 46, 47, 54, 103, 104, 117
dielectric loss, 38–39, 65, 113, 118, 119, 248
effective dielectric constant, 36–37, 114, 117–118
higher order modes, 37
losses, 38, 80
microwave and mm waves techniques
HTCC technology
base materials for, 300, 301
LTCC technology
advantages, 300, 312
breakthrough for, 300
co-firing, 300
comparison of single layer and multilayer, 305–308
design of high pass LTCC filter, 301–305
line loss, 301, 303
materials, 301
module, 300
multilayer microstrip coupler, 305, 307
process, 301, 302, 307, 309, 312
substrates, 301
tolerance, 304, 309
MEMS technology
actuator, 285
advantages, 282
bio MEMS, 285
bulk micromachining, 282, 283
CAD, 283
components, 284–285
micromachining, 282
optical MEMS, 285
process, 282–284
INDEX

RF MEMS, 285
sensors, 284
HMIC, 92
semiconductors, 108
MIMIC see monolithic microwave integrated circuit (MIMIC)
mobile phone downlink, 9
mobile phone uplink, 9
molecular beam epitaxy (MBE), 106
monolithic microwave integrated circuit (MIMIC)
BJT, 102, 108
capacitor, 107
circuit examples, 109–111
CMOS, 101–104
CMP, 106
contact lithography, 106
cost, 109, 110
CVD, 106
design facts, 100–101
dry etching, 105
electron beam lithography, 106
fabrication, 104–108
FET, 103, 108
GaAs vs. silicon, 103–104
generation of microwave signals, 108–109
gunn diodes, 103, 108
HEMT, 102, 104
IMPATT diodes, 108
ion etch, 106, 108
ion implantation, 100, 105, 108
Ka band nonreflective SPDT, 110
Ka band upconverter, 110
LDMOS transistor, 108
light emitting diodes, 190, 221, 228, 230
lithography, 106
MBE, 106
MESFET transistor, 104, 105, 107, 108
MMIC cost, 110
oxidation, 105
PVD, 106
quadrature phase shift modulation, 71, 77
radio frequency modules, 91, 100
rapid thermal anneal, 105
resistor cross section, 107
RIE, 106
semi-conductor technology, 103, 104
TWT, 109
wet etching, 105
mono-pulse Ku antenna
stacked mono-pulse antenna, 122–123, 216
stacked mono-pulse Ku antenna, 122–123
mono-pulse transceiver, 233–243
multiport network model with N-ports
currents, 402–403
electromagnetic field, 402
S matrix, 403, 404, 407
voltages, 402, 403
Y matrix, 402
Z matrix, 402
multistage noise figure, 11
network analyzer, 238, 373, 404–406
noise, 9–11
noise figure (NF), 11, 15–18, 94, 96, 142, 146, 147, 150, 173, 196, 197, 199, 227–229
measurements setup, 414
noise sources
flicker noise, 10
mixer noise, 10
random noise, 10
thermal noise, 10, 14, 15, 188
outdoor unit (ODU), 187–206
output power and linearity measurements, 409
oxidation, 105
parabolic reflector antennas, 66–67, 69, 212–217
passive devices, 91, 100, 281, 300
path losses, 11
phantom, 333, 372, 373
phased array, 60, 69, 270–277
phased array direction finding system, 270–277
wide band phased array, 195, 200
physical vapor deposition (PVD), 106
planar inverted F antenna (PIFA) antenna, 136–140, 340
dual band antennas, 138
grounded quarter wavelength patch, 136–138, 416
planar inverted F antenna (PIFA) (cont’d)
new double layer PIFA antenna, 136–140
radiation pattern of, 136, 138, 139
rat race coupler, 122–123, 214–216, 251–252
resonator, 348
stacked mono-pulse antenna, 122, 216
two layers stacked microstrip antenna antenna bandwidth, 119, 121, 122
antenna feed network, 119, 120
circular polarization of, 119
stacked microstrip antenna, 83–86, 119–122
power combiner, 86, 109, 200–203, 205, 206, 223–225
power density, 4, 17, 340
power splitter, 86
Poynting vector, 35, 46, 61, 64
coaxial transmission lines, 34–36
dipole antenna, 60–66, 124, 316, 323, 333, 370, 385, 388
low visibility microstrip antennas, 113–140
printed antennas
array directivity, 83, 84
array feed network, 87, 294
array resonant frequency, 126, 129, 138, 140
half power beam width, 119
low visibility microstrip antennas, 113–140
medical applications, 113, 123
microstrip antenna arrays, 115, 116
patch resonator, 114–123
performance of, 83
power combiner/splitter, 86, 109, 200–203, 205, 206, 223–225
radiation pattern, 121, 325, 326
series fed microstrip array, 86
stacked Ku band microstrip antenna, 83, 85
stacked microstrip array, 83–86, 119–122
substrate, 83, 85, 119, 122, 215, 216
PVD see physical vapor deposition (PVD)
pyramidal horn, 70, 79
QAM see quadrature amplitude modulation (QAM)
QPSK see quadrature phase shift modulation (QPSK)
quarter wave transformer, 32–33, 251, 254
radar cross section (RCS), 342
radiation efficiency, 59, 113, 347, 417–418
radiation loss, 38, 65
radiation pattern measurements, 415–417, 419
radio frequency (RF), 281, 299, 401–420
modules, 91, 100, 101, 141, 142, 150, 184, 245, 277, 281, 299
radio frequency head, 92–100, 233–237, 239, 241–243, 394, 406, 414
radio frequency identification (RFID) antennas, 385–394
dual polarized antenna, 384, 386, 389, 396, 398
matching network, 390, 391, 395
microstrip antenna impedance, 383–386, 391, 393
varying the antenna feed, 389–390
wearable antenna, 385–394
radio frequency measurements
antenna measurements
anechoic chamber, 419, 420
angular range, 416
antenna efficiency and directivity, 417
antenna gain, 419
Cartesian coordinate, 415
far field antenna range, 415
Fraunhofer distance, 415
gain measurements, 419
near field measurements, 401
radiation efficiency, 417–418
radiation pattern measurements, 415–417, 419
sidelobes, 417, 418
antenna range setup
electromagnetic fields, 402, 415
voltages and currents, 402, 403
Y matrix, 402
Z matrix, 402
output power and linearity measurements
network analyzer, 404–406
reciprocal microwave network, 404
reflection coefficient, 403
scattering matrix, 403–404
VSWR, 403
S parameter measurements
large signal, 407
network analyzer, 404–406
reciprocal microwave network, 404
reflection coefficient, 403
scattering matrix, 403–404
setup, 404–406
small signal, 407
VSWR, 403
transmission measurements
device under test, 407
Friis equation, 407
network analyzer, 404–406
scattering matrix, 403–404
setup, 404–406
random fractal, 345
rapid thermal anneal, 105
rat race coupler, 122–123, 214–216, 251–252
unequal rat race coupler, 252
RCS see radar cross section (RCS)
reactive ion etching (RIE), 106
receivers definitions, 14–16
receiver sensitivity, 11–14
basic receiver sensitivity calculation, 14
receiving channel, 92–94, 99, 141–185,
196–199, 272–274, 394–397, 412
power budget, 12
reflector antenna
Cassegrain reflector, 69
dimensions, 114, 115, 136, 138, 348, 357,
360, 370–372, 388, 389, 391, 415
directivity, 59, 417
efficiency of
aperture, 5, 68
blockage, 68
cross polarization, 68
spillover, 68
taper, 68
parabolic reflector, 66, 69, 212, 214
RF see radio frequency (RF)
RFID see radio frequency identification (RFID)
RIE see reactive ion etching (RIE)
saturated output power, 17, 142, 147, 265
scattering matrix
network analyzer
reciprocal microwave network, 404
reflection coefficient, 403
VSWR, 403
self-similar objects, 338
semiconductors, 104, 301
semiconductor technology, 103, 104
series fed microstrip array
array factor, 80–82
array nulls, 81–83
array radiation pattern, 80–82
broadside array, 82
end fire array, 83
Ka band microstrip antenna array, 86–88
millimeter wave arrays, 80
performance of 32-element array, 85
performance of 64-element array, 86
printed arrays, 80, 83, 86
SFC see space filling curves (SFC)
signal strength, 8, 9, 11, 15, 407
signal-to-noise ratio (SNR), 10, 15
single pole double through (SPDT), 109, 110,
142, 145, 154, 182
Smith chart
center of, 30–32
guidelines of, 32
uses of, 32
SNR see signal-to-noise ratio (SNR)
soft materials, 39, 41
solid state amplifiers, 18
solid state power amplifier (SSPA), 188, 191,
192, 200–205
solid state power amplifier (SSPA), 188, 191, 192, 200–205 (cont’d)
electrical design, 193–194
general description, 192
space filling curves (SFC)
characteristic of, 342, 346
definition of, 338
examples, 341
frequency response, 342, 343
self-crossing, 338
space filling ground plane, 345–348
S parameter measurements
large signal, 407
setup, 404–406
small signal, 407
SPDT see single pole double through (SPDT)
split ring resonators (SRR)
antenna directivity, 319, 321, 327
dual polarized antenna, 316, 323, 324
folded antenna, 323, 324, 331
folded dual polarized antenna, 323, 324
human body, 329–333
meta-material antenna, 316
patch antenna, 325–327
printed antenna, 316, 326, 338–341
radiation pattern of, 319–328, 331, 333, 336, 337
small antennas loaded with SRR, 316
stacked patch, 336–337
wideband antenna, 322
spurious, 98, 188, 192, 198, 410
SRR see split ring resonators (SRR)
SSPA see solid state power amplifier (SSPA)
stacked microstrip antenna
stacked Ku band microstrip antenna
fractal stacked patch, 348, 350–365
modified fractal stacked patch, 348, 352
radiator of fractal stacked patch, 348–352
stacked Ku band microstrip antenna, 83, 85
stacked patch 2.5 GHz fractal antenna, 348–352
stacked patch 7.4 GHz fractal antenna, 360–365
stacked microstrip array, 83–86
stacked mono-pulse Ku band antenna, 122–123
switching time measurements, 410
synthetic aperture radar (SAR), 16
TE see transverse electric mode (TE)
TEM see transverse electromagnetic mode (TEM)
third order model
for single tone, 266–267
for two tones, 267–269
TLM see transmission line model (TLM)
TM see transverse magnetic mode (TM)
tracking system
downconverter design, 228–229
down-up converter, 225–226
interface, 229–232
upconverter design, 226–228
transmission line model (TLM), 115–117
transmission lines
advantages, 34, 36
cables, 35–36
characteristic admittance, 26
characteristic impedance, 31, 32, 37
cutoff frequency, 35–36
disadvantages, 34, 36
industry coaxial cables, 35
input impedance, 29, 30
losses, 26, 38
Maxwell equations, 25, 34, 43
reflection coefficient, 28–31
TEM, 25
transmission measurements
device under test, 407
Friis equation, 407
setup, 404–406
VSWR, 29–31
transmitters definitions, 16–18
transmitting channel, 12, 93–99, 195, 200, 233, 256, 308
power budget, 12, 97
transverse electric mode (TE), 25
transverse electromagnetic mode (TEM), 25, 34, 44
transverse magnetic mode (TM), 25
traveling-wave tube (TWT), 109
tunable antenna
dual polarized, 316, 323, 385, 386, 396, 398
measurements of, 333, 373
medical application of, 375, 382–384
wearable tunable printed antennas, 329, 331
tunable bandwidth, 15
tunable loop antenna, 126, 375
two layers stacked microstrip antenna
antenna bandwidth, 119, 121, 122
antenna feed network, 119, 120
circular polarization of, 119
radiation pattern, 121, 325, 326
stacked microstrip antenna, 83–86
VSWR, 119, 121
TWT see traveling-wave tube (TWT)

varactors
abrupt, 374, 398
bias voltage, 96, 99, 201, 261
capacitance, 126, 374
circuit frequency, 126
conductive plates, 136
diodes, 109
gallium arsenide (GaAs), 39, 94
hyper-abrupt varactors, 126, 374, 398
p-n junction, 103, 108, 251
theory of, 126
types of, 126
VCO see voltage controlled oscillator (VCO)

visibility
low visibility antennas, 388–389
low visibility printed antennas, 113, 136, 370, 388
voltage controlled oscillator (VCO), 271, 272, 274
voltages, 1, 25, 103, 168, 174, 201, 202, 274, 402, 403
bias voltage, 96, 99, 261
and currents, 1, 25, 168, 402, 403
voltage standing wave ratio (VSWR), 29–31, 119, 121, 122, 125, 129, 131, 316, 317, 319, 321, 323, 325, 327, 330, 336, 376, 379, 381, 403

waveguide
circular waveguide, 48–54
cutoff frequency, 34–37, 46, 54, 103, 104, 117
Helmholtz equation, 43, 48
Maxwell equations, 19–23, 25, 34, 43, 50, 52, 114
rectangular waveguide, 43, 46–48, 70, 75
TE modes, 25, 51
TM modes, 25, 53
wave equation, 23–26, 43, 48, 61
waves
electromagnetic waves
Ampère’s law, 22
array directivity, 83, 84
boundary conditions, 24, 25, 44–46, 51, 53
conductors, 34, 57, 60, 92, 246, 305, 309, 311, 312, 340, 385
conservation of energy law, 24
Faraday’s law, 22, 23
full wave analysis, 260
Gauss’s law, 22
Maxwell equations, 19–23, 25, 34, 43, 50, 52, 114
microstrip antenna arrays, 83–88, 294, 297
millimeter wave arrays, 80
printed arrays, 80, 83, 86
TE waves, 44, 50
TM waves, 44, 46–48, 52–54
wave equation, 23–26, 43, 48, 61
wavenumber, 20, 45, 51, 53
W band microstrip antenna
antenna coupled to resistor, 285, 286, 291, 294
antenna design, 287–289
array concept, 286, 287
bowtie dipole, 294
CMOS readout circuit, 286
dipole 3D radiation pattern, 289, 295
resistor configuration, 289, 290
resistor design, 285, 289–291
single array pixel, 286
220 GHz patch antenna, 294, 296, 297
wearable antennas
antenna S11 variation
air spacing, 379, 381
wearable antennas (cont’d)
folded antenna, 379, 380
properties of human body tissues, 378, 379
VSWR, 376, 379, 381
compact dual polarized antennas, 385
compact RFID antennas
matching network, 390, 391
microstrip antenna, 369, 370, 383–386, 391, 393
RFID wearable antenna, 390–392
substrate thickness, 370, 380, 388
varying the antenna feed network, 389–390
compact wearable antennas, 385–394
dual polarized wearable antennas
antenna dimensions, 370–372, 385, 388, 389, 391
computed radiation pattern, 372, 385, 388, 389, 391
folded dipole antenna, 373, 385
helix antenna performance, 398
loop antenna with ground, 374–378, 381, 385, 389–392
meander wearable antenna, 370
phantom electrical characteristics, 372, 373
printed patch antenna, 382
printed wearable antennas, 316
tunable loop antenna, 375
wearable tunable printed antennas
dual polarized tunable antennas
resonant frequency, 316, 317
varactor bias voltage, 96, 99, 201, 202, 261
VSWR, 316, 317, 319
folded dual polarized antenna, 323, 324
measurements of, 15, 287, 333, 375
medical application of, 126, 398
tunable antennas varactors, 126, 375, 398
varactor diodes, 92, 103, 108, 110
varactor theory
abrupt varactors, 374, 398
capacitance, 126, 374
circuit frequency, 126
conductive plates, 136
diodes basics, 109
gallium arsenide (GaAs), 39, 94
hyper-abrupt varactors, 126, 374, 398
p-n junction, 103, 108, 251
types of, 126
VCO, 271, 272, 274
wearable tunable antennas
air spacing, 379, 381
antenna S11 variation, 377–381
folded antenna, 379, 380
medical application of, 126, 398
properties of human body tissues, 329, 330, 378, 379, 391
VSWR, 376, 379, 381
wet etching, 105
wide band antennas, 195, 200
wide band five-way unequal power divider, 255
wide band matching, 33
wide band receiving direction finding system, 270, 272–274, 276, 278
wide band six-way unequal power divider, 254
wide band three-way unequal power divider, 252–254
wide band wearable metamaterial antenna
antenna bandwidth, 319, 321, 323, 325, 327, 336, 348, 352, 354
antenna gain, 317, 323, 325, 327, 336, 348, 366
antenna resonant frequency, 319, 330, 331, 336, 366
folded dipole metamaterial antenna with SRR, 323–324
metamaterials wearable antennas, 315–324
new antenna with SRR, 316–322
VSWR, 316, 317, 319, 321, 323, 325, 327, 330, 336
wearable antenna environment
patch antenna loaded with SRR, 325–327
printed antennas with SRR, 316, 326, 333, 338–341, 348–364
slot antenna, 316
small metamaterial antennas, 316, 319, 340–346
INDEX

split ring resonators, 327–329
stacked patch antenna loaded with SRR, 325–327
VSWR, 316, 317, 321, 323, 325, 327, 330, 336
wide band antenna, 195, 200
wide band stacked patch with SRR, 325–327
Wilkinson power divider, 249, 251
wired loop antenna, 132–133

Y matrix
currents, 402, 403

Z matrix
 currents, 402, 403
low visibility microstrip antenna, 402
multiport network model, 402–403
RF measurements, 403
voltages, 402, 403

multiport network model, 402–403
multiport networks with N-ports, 402–403
RF measurements, 403
voltages, 402, 403