INDEX

A
Absolute entropy (S), 16
Activation energy, 48, 69–71, 73
 of nucleation, 207–210
 for solid-state diffusion, 135–136
 units of, 275
Activation theory, 68–71
Active gas corrosion, 157–166
 diffusion control, 161–163
 mixed control, 163–166
 snowpack evolution, 174–175
 surface reaction control, 158–160
Active oxidation, 179
Adsorption, 78, 151–157
ALD (atomic layer deposition), 176–178
Anisotropic surface properties, 257–258
Annealing process, 7
Atmospheric temperature, standard, 20
Atomic layer deposition (ALD), 176–178
Availability of energy, 18
Avalanches, 174–175
Avrami equation, 230

B
Balance, equilibrium as, 15
Ballistic transport, 153–154
Binary gas diffusivity, 130
Boundaries, see Grain boundaries;
 Interfaces (boundaries)
Boundary conditions. See also Transient
 diffusion
Fick’s second law, 96
 when surface concentration is not
 fixed, 113–114

C
Capillary forces (microstructural
 evolution), 251–254
Carbon monoxide (CO) poisoning
 reaction, 75–77
Catalysts:
 defined, 72
 effects on heterogeneous reactions,
 72–74
Cellular growth (solidification), 235–237
INDEX

Ceramics, 197
Charge flux, 86
Chemical potential, 22–25
Chemical pressure, 26
Chemical reactions, 48–49
Chemical reaction kinetics, 6, 48–81
 heterogeneous chemical reactions, 72–78
catalyst effects, 72–74
defined, 50
difference between homogeneous reactions and, 50
gas–solid surface reaction processes, 75–78
homogeneous chemical reactions, 51–68
defined, 50
difference between heterogeneous reactions and, 50
first-order reactions, 54–58
incomplete reactions/equilibrium reactions, 64–68
order of reaction, 51–53
reaction rate equation and k, 51
second-order reactions, 58–64
zero-order reactions, 53–54
homogeneous vs. heterogeneous reactions, 50
order of reaction, 49, 51–53
temperature dependence of (activation theory), 68–71
Chemical vapor deposition (CVD), 166–175
diffusion control, 170–171
halogen light bulbs, 173–174
mixed control, 171–173
snowpack evolution, 174–175
surface reaction control, 168–170
tuning growth conditions, 176
Chill zone, 233
Cloud seeding, 216
CMOS (complimentary metal–oxide–semiconductor) transistors, 180, 181
Coarsening:
in annealing, 7
defined, 258
microstructural evolution, 258–260
diffusion-limited, 258–259
source/sink-limited, 259–260
Columnar zone, 233
Complementary error function, 98–100
Complimentary metal–oxide–semiconductor (CMOS) transistors, 180, 181
Composition, as driving force for phase transformations, 192–197
Concentrations:
calculating, 36–43
from crystallographic information, 41–42
gas concentrations, 35
for mixtures of multiple phases/compounds, 39–40
in pure materials, 36–37
site fractions, 42–43
in stoichiometric compounds or dilute solutions, 37–39
viable nuclei concentrations, 210–212
reaction rates and, 49
time-dependent, 54, 60
Concentration-dependent diffusion, 117
Condensation, 31
Condensed-matter phases, applying ideal gas law to calculating concentrations, 36
Condensed-matter phase transformations, 190–192. See also Phase transformations
Conservation of energy, 17–18
Constants, 275
Continuous phase transformations, 191–192
diffusional, 191
spinodal decomposition, 197–199
Convection:
diffusion vs., 89
force/flux pairs, 88
Coordination number (atoms), 201
CO (carbon monoxide) poisoning reaction, 75–77
Corrosion, see Active gas corrosion
Coupled transport processes:
 diffusion, 120, 122–125
 electrodiffusion, 122–124
 stress-driven diffusion, 124–125
 thermodiffusion, 124
 driving forces for, 87
electrical conduction and heat conduction, 87
Crystallographic information,
calculating densities/concentrations from, 41–42
Cube root of time, coarsening and, 259
CVD, see Chemical vapor deposition

D

D, see Diffusivity
Deal, Bruce, 181
Deal–Grove model (passive oxidation), 181
Dendritic growth (solidification), 235–237
Densification, sintering with/without, 263–264
Densities:
calculating, 36
 from crystallographic information, 41–42
 for mixtures of multiple phases/compounds, 39–40
 in pure materials, 36–37
 in stoichiometric compounds or dilute solutions, 37–39
mass, 36
molar, 36
Deposition processes:
 atomic layer deposition, 176–178
 chemical vapor deposition, 166–175
 diffusion control, 170–171
 halogen light bulbs, 173–174
 mixed control, 171–173
 snowpack evolution, 174–175
 surface reaction control, 168–170
 silver onto window glass, 154–156
Desorption (evaporation), 151–157
Diamond, 5, 6
Differential rate law, 51, 52
 first-order reactions, 55–58
 pseudo-first-order reactions, 62–63
 second-order reactions, 59
 zero-order reactions, 53
Diffusion. See also Transport kinetics
concentration-dependent, 117
convection vs., 89
electrodiffusion (electromigration), 87, 122–124
impingement vs., 153–154
at phase boundaries, 119–120
reaction vs., 7–9
solid-state, 7, 130–138
 diffusion in liquids vs. gases vs., 125–126
 high-diffusivity paths, 135–138
 mechanisms of, 130–131
 as rate-limiting step, 7, 8
 surface evolution by, 256–257
 theory of, 131–135
steady-state (Fick’s first law), 91–93
Kirkendall effect, 118–119
modeling, 90–91
moving interface problems, 118–120
stress-driven, 87, 124–125
thermodiffusion, 87, 123, 124
transient (Fick’s second law), 94–121
boundary conditions, 96
derivation, 95
finite (symmetric) planar diffusion, 110–114
finite (symmetric) spherical diffusion, 114–115
infinite diffusion of an arbitrary concentration profile, 109–110
infinite diffusion of a rectangular source, 107–108
INDEX

Diffusion. See also Transport kinetics
(continued)
infinite diffusion of a thin layer, 108–109
initial conditions, 96
interdiffusion in two semi-infinite bodies, 104–107
Kirkendal effect, 118–119
modeling, 90–91
moving interface problems, 118–120
semi-infinite diffusion, 97–104
Diffusional phase transformations, 190–191. See also Phase transformations
Diffusion coefficient, 7. See also Diffusivity
Diffusion control:
active gas corrosion, 161–163
chemical vapor deposition, 170–171
passive oxidation, 181, 182
Diffusion half-depth, 101
Diffusionless phase transformations, 190–191. See also Phase transformations
Diffusion-limited coarsening, 258–259
Diffusion zone, 161
Diffusivity (D), 7, 8, 89
binary gas, 130
in different states, 92, 125–126
directionally-dependent, 124
gas-phase, 129
high-diffusivity paths in solids, 135–138
self-, 130
Dilute (ideal) solutions:
calculating densities/concentrations in, 37–39
calculating state-dependent activity of, 23
Discontinuous phase transformations, 191–192
Disorder, see Entropy (S)
Driving forces:
coupled diffusion processes, 124–125
for diffusion, 124
of microstructural evolution, 251
for phase transformations, 31–32,
192–197, 205, 251
and solid-state diffusion, 130
in thermodynamics, 5, 14
transport processes, 87–89
Dynamic equilibrium, 14–15
incomplete reactions and, 64
solid-state diffusion, 130

E
Effective charge, 123
Effusion, 111
Electrical conduction:
force/flux pairs, 88
heat conduction coupled with, 87
Electrical conductivity, 89
Electrodiffusion (electromigration), 87, 122–124
"Electron wind," 122
Elementary reaction steps, 52
Endothermic processes, 15
Endothermic reactions, temperature dependence of K, 29
Energetics, 14. See also Thermodynamics
Energetic favorability of thermodynamic processes, 16
Energy:
activation, 48, 69–71, 73
of nucleation, 207–210
for solid-state diffusion, 135–136
units of, 275
availability of, 18
conservation of, 17–18
free, see Gibbs free energy units of, 274
Energy per mol, 275
Energy states, in thermodynamics, 5
Enthalpy (H), 15
changes in, 16–17
computing changes, 20
Entropy (S), 15
- Absolute, 16
- Changes in, 16–18
- Total net change in, 16

Equilibrium:
- Changes affecting, 15
- Defined, 14
- Dynamic, 14–15
 - Incomplete reactions and, 64
 - Solid-state diffusion, 130
- Le Chatelier’s principle, 26–27
 - In phase transformations, 232, 233
- In thermodynamics, 5

Equilibrium constant (K), 25–28
- And forward/reverse reaction rate ratios, 67, 78
- Temperature dependence of, 28–30

Equilibrium reactions, homogeneous, 64, 67–68

Error function, 98–100

Etching, see Active gas corrosion

Eutectic interfaces, 119–120

Eutectic lamellae (solidification), 237–240

Evaporation (desorption), 151–157

Exothermic processes, 15

Exothermic reactions, temperature dependence of K, 29

Extensive properties, 18–19

F

Fick’s first law, 91–93. See also
- Steady-state diffusion
- Force/flux pair relations, 88
 - With large variations in concentration, 117

Fick’s second law, 94. See also
- Transient diffusion
 - In alternative coordinate systems, 114
 - Boundary conditions and initial conditions, 96
 - Derivation of, 95
 - With large variations in concentration, 117
 - Treating diffusion phenomena with, 96

G

G, see Gibbs free energy

Gases:
- Kinetic theory of, 126–129,
 - 151–152
- Thermodynamic standard state for, 20
- Transport kinetics (diffusion), 126–130
 - Binary gas diffusivity, 130
 - Diffusion in liquids vs. solids vs. gases, 125–126
 - Kinetic theory of gases, 126–129

Gas concentrations, calculating, 35

Gas–gas kinetic processes, 9, 10

Gas–liquid kinetic processes, 9, 10
INDEX

Gas–solid kinetic processes, 9, 10, 151–187
active gas corrosion, 157–166
diffusion control, 161–163
mixed control, 163–166
surface reaction control, 158–160
adsorption/desorption, 151–157
atomic layer deposition, 176–178
chemical vapor deposition, 166–175
diffusion control, 170–171
halogen light bulbs, 173–174
mixed control, 171–173
snowpack evolution, 174–175
surface reaction control, 168–170
heterogeneous reactions, 75–78
passive oxidation, 179–184
diffusion control, 181, 182
interfacial reaction control, 181
mixed control, 182–183
thickness as function of time, 183–184
Gibbs free energy \((G)\), 15, 16
changes in, 16–18
and chemical potential, 22–25
molar, 18–19
in spinodal decomposition, 198
standard-state, 21
Grain boundaries:
in annealing, 7
diffusion at, 136–138
heterogeneous nucleation at, 217–218
Grain growth:
factors affecting, 262
microstructural evolution, 261–263
of single-phase materials, 192
Granite, 228
Graphite, 5, 6
Green’s functions, 110
Grove, Andy, 181
Growth (phase transformations), 221–225
and attachment of mass to interface, 222
heat-transport-limited, 224–225
nucleation and growth combined, 226–232
as discontinuous phase
transformation, 191–193
energy cost, 200
microstructure effects of nucleation
rate vs. growth rate, 226–228
overall rate of transformation, 226,
229–230
time–temperature–transformation
diagrams, 230–231
stable, 233–235
unstable, 235–237
Growth rate, 226–228

H

\(H\), see Enthalpy
Half-life, 56–58
Halogen light bulbs, 173–174
Heat conduction:
electrical conduction coupled
with, 87
force/flux pairs, 88
thermal conductivity, 89
"Heat death" of the universe, 18
Heat flux, 18, 86
Heat of transport, 124
Heat value, see Enthalpy \((H)\)
Herring scaling laws, 265
Heterogeneity (term), 6
Heterogeneous chemical reactions,
72–78
catalyst effects, 72–74
defined, 50
difference between homogeneous
reactions and, 50
gas–solid surface reaction processes,
75–78
Heterogeneous kinetics, 6–7
Heterogeneous nucleation, 166,
212–218
INDEX

cloud seeding, 216
at grain boundaries, 217–218
High-diffusivity paths (diffusion in solids), 135–138
Homogeneous chemical reactions, 51–68
defined, 50
difference between heterogeneous reactions and, 50
first-order reactions, 54–58
incomplete reactions/equilibrium reactions, 64–68
order of reaction, 51–53
pseudo-first-order reactions, 62–64
reaction rate equation and k, 51
second-order reactions, 58–64
zero-order reactions, 53–54
Homogeneous kinetics, 6
Homogeneous nucleation, 166, 206–212
concentration of viable nuclei calculation, 210–212
minimum viable nucleus size and nucleation activation energy calculation, 207–210
Hopping rate (atoms), 130–134

I
Ideal gas law, 34–36
calculating state-dependent activity, 22
example, 35–36
Ideal (dilute) solutions:
calculating densities/concentrations in, 37–39
calculating state-dependent activity of, 23
Igneous rocks, 227–228
Imperial-based units, 273
Impingement rate, 153–154
Incandescent light bulbs, 173
Incomplete reactions, homogeneous, 64–67

Infinite transient diffusion:
applications, 97
Fick’s second law:
of an arbitrary concentration profile, 109–110
of a rectangular source, 107–108
of a thin layer, 108–109
Infusion, 111
Integrated rate law:
first-order reactions, 55–58
second-order reactions, 59–60
zero-order reactions, 54
Interdiffusion in two semi-infinite bodies (Fick’s second law), 104–107
Interfaces (boundaries):
moving interface problems, 118–120
passive oxidation interfacial reaction control, 181
phase transformations, 199–200
estimating surface energies, 200–203
interfacial energy balances, 203–205
reducing area/curvature of, 261, 263
in solids, 7
Intermediate species (in reactions), 52–53

J
Johnson–Mehl equation, 229–230

K

K, see Equilibrium constant
k, see Reaction rate constant
Kinetics, 3–4
classification of processes, 9–10
evolution of field, 6
materials, see Materials kinetics
thermodynamics vs., 4–6
Kinetic theory of gases, 126–129, 151–152
Kirkendal effect, 118–119
INDEX

L
Lamellae, eutectic, 237–240
Langmuir isotherm, 78
Le Châtelier’s principle, 26–27
Light bulbs, 173–174
Linear superposition concept, 109–110
Liquids:
calculating concentrations, 36–40
for mixtures of multiple phases/compounds, 39–40
in pure materials, 36–37
in stoichiometric compounds or dilute solutions, 37–39
diffusion in gases vs. solids vs., 125–126
thermodynamic standard state for, 20
Liquid–liquid kinetic processes, 9, 10
Liquid–solid kinetic processes, 9, 10
Liquid–solid phase transformations, 232
Liquid–vapor phase changes, 31

M
Martensitic transformations, 241–242
Mass flux, 85
"Material-averaged" quantities, calculating, 39–40
Materials kinetics, 3–11. See also Kinetics; specific topics
classification of kinetic processes, 9–10
heterogeneous, 6–7
homogeneous, 6
reaction vs. diffusion, 7–9
thermodynamics vs., 4–6
units and unit conversions, 10
Maxwell-Boltzmann distribution, 127
Melting point:
in nanoparticles, 254–256
phase transformation, 31
Metal hydrides, 114–115
Metric system, 273–274
Microstructural evolution, 7, 251–268
capillary forces, 251–254
coarsening, 258–260
diffusion-limited, 258–259
source/sink-limited, 259–260
grain growth, 261–263
melting point depression in nanoparticles, 254–256
sintering, 263–265
surface evolution, 256–257
by solid-state diffusion, 256–257
surface faceting, 257–258
by vapor-phase transport, 257
Microstructure(s):
effects of nucleation rate vs. growth rate on, 226–228
when casting (solidifying), 233
Minimum viable nucleus size, calculation of, 207–210
Mixed control:
active gas corrosion, 163–166
chemical vapor deposition, 171–173
passive oxidation, 182–183
Mixed-order reactions, 52
Mixtures of multiple phases/compounds, calculating densities/concentrations for, 39–40
Molar enthalpy of reaction, 20
Molar flux, 85, 86
Molar quantities, 18–19
Molar volume, 194
Morphological evolution, see
Microstructural evolution
Moving interface problems, 118–120

N
Nanoparticles, melting point depression in, 254–256
Negative feedback, 174, 197
Nonequilibrium thermodynamics (NET), 120. See also Coupled transport processes
Nonideal gas law, calculating state-dependent activity of, 22
Nonideal solutions, calculating state-dependent activity of, 23
Nuclear decay processes, 55–58
Nucleation:
- heterogeneous, 166, 212–218
- cloud seeding, 216
- at grain boundaries, 217–218
- homogeneous, 166, 206–212
- concentration of viable nuclei calculation, 210–212
- minimum viable nucleus size and nucleation activation energy calculation, 207–210
- martensitic transformations, 241–242
- nucleation and growth combined, 226–232
- as discontinuous phase transformation, 191–193
- energy cost, 200
- microstructure effects of nucleation rate vs. growth rate, 226–228
- overall rate of transformation, 226, 229–230
- time–temperature–transformation diagrams, 230–231
- nucleation rate, 218–221

Nucleation barrier, 205
Nucleation rate, 218–221, 226–228
Number flux, 86

O
Obsidian, 228
Ohm’s law, 88

Order of reaction (homogeneous reactions), 51–53
- first-order, 49, 54–58, 68
- equilibrium reactions, 67–68
- incomplete reactions and, 64–65
- pseudo-first-order reactions, 62–64
- mixed-order, 52
- pseudo-first-order, 62–64
- and reaction mechanism, 52–53
- second-order, 49, 58–64, 68
- first order with respect to two reactants, 58, 60–61
- incomplete reactions and, 64–65
- pseudo-first-order reactions, 62–64

with respect to a single reactant, 58–62
- third-order or higher, 51
- zero-order, 49, 53–54, 64, 68

Overall rate law, 53

Oxidation, 3, 4
- active, 179
- as heterogeneous process, 6–7
- parallel pathways in, 8
- passive, 179–184
- diffusion control, 181, 182
- interfacial reaction control, 181
- mixed control, 182–183
- thickness as function of time, 183–184

P
Palladium (Pd), 90–93
Parabolic oxidation law, 183–184
Parallel pathways, 8
Partitioning (solidification), 234
Passive oxidation, 179–184
- diffusion control, 181, 182
- interfacial reaction control, 181
- mixed control, 182–183
- of silicon, and CMOS revolution, 179–180
- thickness as function of time, 183–184

Pd (palladium), 90–93
Peltier effect, 87
Periodic table, 276–277
Peritectic solidification, 240–241
Phase boundaries, diffusion at, 119–120
Phase transformations, 190–247
- continuous, 191–192
- diffusional, 191
- spinodal decomposition, 197–199
- defined, 31
- growth, 221–225
- and attachment of mass to interface, 222
- heat-transport-limited, 224–225
- stable, 233–235
- unstable, 235–237
INDEX

Phase transformations, (continued)
- martensitic transformations, 241–242
- nucleation, 205–221
 - heterogeneous, 212–218
 - homogeneous, 206–212
 - nucleation rate, 218–221
- nucleation and growth combined, 226–232
 - as discontinuous phase transformation, 191–193
 - energy cost, 200
- microstructure effects of nucleation rate vs. growth rate, 226–228
- overall rate of transformation, 229–230
- time–temperature–transformation diagrams, 230–231
- overall rate of transformation, 229–230
- overall transformation rate, 226
- pressure-induced, 197
- solidification, 232–241
 - casting microstructures, 233
 - cellular or dendritic growth, 235–237
 - eutectic lamellae, 237–240
 - periodic, 240–241
 - plane front, 233–235
- surfaces and interfaces, 199–205
 - estimating surface energies, 200–203
 - interfacial energy balances, 203–205
- temperature and composition as driving forces for, 192–197
 - thermodynamics of, 31–34
 - types of, 190–192
- Planar diffusion, finite (symmetric), 110–114
- Plane front solidification, 233–235
- Platinum (Pt) catalysts, 73, 75–77
- Poiseuille’s law, 88
- Positive-feedback cycle, 174
- Pressure:
 - chemical, 26
 - in condensed-matter phase transformations, 190
 - standard temperature and pressure state, 20
 - units of, 274
 - viscosity, 89
- Pressure-induced phase transformation, 197
- Pseudo-first-order chemical reactions, 62–64
- Pt (platinum) catalysts, 73, 75–77
- Pure components, calculating state-dependent activity of, 23
- Pure materials, calculating densities/concentrations in, 36–37

Q
- Q (reaction quotient), 25–28
- Quantities, thermodynamic, calculating, 20–21

R
- Rate-limiting steps, 7, 8
- Reaction, diffusion vs., 7–9. See also specific types of reactions
- Reaction mechanisms, 52
- Reaction processes, 3. See also Chemical reaction kinetics
- Reaction quotient (Q), 25–28
- Reaction rate, 48–49
 - catalyst’s effect on, 72–74
 - CO adsorption process on Pt, 78
 - and equilibrium constant, 67
 - forward, 67, 78
 - reaction rate constant, 8–9, 51, 68
 - reaction rate equation, 51
 - reverse, 67, 78
- Reaction rate constant (k), 8–9
 - and reaction rate equation, 51
 - temperature dependence of, 69–71
 - units for, 68
- Reaction rate equation, 51
- Rectangular source, infinite diffusion of a, 107–108
Reverse Haber process, 53
Reverse reaction rate:
 CO adsorption process on Pt, 78
 and equilibrium constant, 67
Rhyolite, 228
Room temperature, standard, 20
Rule of six, 261

S
S, see Entropy
Scheil equation, 234–235
Second-order reactions, 49
 first order with respect to two
 reactants, 58, 60–61
 homogeneous, 58–64, 68
 incomplete reactions and, 64–65
 pseudo-first-order reactions, 62–64
 with respect to a single reactant,
 58–62
Seebeck effect, 87
Self-diffusivity, 130
Self-limiting processes:
 atomic layer deposition, 176
 gas–solid reaction with Pt catalyst, 76
 passive oxidation, 179
Self-similarity concept, 116
Semi-infinite transient diffusion:
 Fick’s second law, 97–104
 interdiffusion in two semi-infinite
 bodies, 104–107
Sigmoidal transformation, 229–230
Sink-limited coarsening, 259–260
Sintering, 263–265
 mechanisms of, 264
 of single-phase materials, 192
Site fractions, calculating
 concentrations from, 42–43
SI units, 273–274
Smoothing, 256
 by solid-state diffusion, 256–257
 by vapor-phase transport, 257
Snowpack evolution, 174–175
Solids. See also Solids
 calculating concentrations, 36–43
 from crystallographic information,
 41–42
 for mixtures of multiple
 phases/compounds, 39–40
 in pure materials, 36–37
 site fractions, 42–43
 in stoichiometric compounds or
 dilute solutions, 37–39
 thermodynamic standard state for, 20
 transport kinetics, 130–138
 diffusion in liquids vs. gases vs.
 solids, 125–126
 high-diffusivity paths, 135–138
 mechanisms of diffusion, 130–131
 theory of solid-state diffusion,
 131–135
Solidification, 31, 232–241
 casting microstructures, 233
 cellular or dendritic growth,
 235–237
 eutectic lamellae, 237–240
 heat-transport-limited, 225
 of igneous rocks, 227–228
 peritectic, 240–241
 plane front, 233–235
 transport in, 84
Solid–liquid phase changes, 31. See
 also Solidification
Solid–solid kinetic processes, 9, 10
Solid–solid phase transformations, 31,
 232
Solid state. See also Solids
 capillary force in, 251–252
 chemical reactions involving, 72. See
 also Heterogeneous chemical
 reactions
 manifestation of heterogeneity in, 7
 in materials kinetics, 6
 transport rates in, 84
Solid-state diffusion, 7, 130–138
 diffusion in liquids vs. gases vs.
 solids, 125–126
 high-diffusivity paths, 135–138
 mechanisms of, 130–131
 as rate-limiting step, 7, 8
INDEX

Solid-state diffusion, (continued)
surface evolution by, 256–257
theory of, 131–135
SOLUTEs, thermodynamic standard state
for, 20
Source-limited coarsening, 259–260
Specific properties, 18–19
Speed of change, 5
Spherical diffusion, finite (symmetric),
114–115
Spinodal decomposition, 197–200
Spinodal phase transformation,
191, 192
Spontaneity of thermodynamic
processes, 16
Square-root dependence, in transient
diffusion processes, 101
Square root of time (coarsening), 259
Stable growth (phase transformations),
233–235
Standard molar entropy values, 21
Standard states, 19–20, 25
Standard temperature and pressure
(STP), 20
Steady state (term), 91
Steady-state diffusion, 91–93
concentration-dependent, 117
Kirkendal effect, 118–119
modeling, 90–91
moving interface problems,
118–120
Stoichiometric compounds, calculating
densities/concentrations in, 37–39
STP (standard temperature and
pressure), 20
Stress-driven diffusion, 87, 124–125
Supercooling, 193, 205
Superheating, 193, 205
Superimposing solutions, 107–108
Surfaces:
phase transformations, 199–203, 205
estimating surface energies,
200–203
interfacial energy balances,
203–205
reactions at atomic scale, 156–157
Surface energies, estimating, 200–203
Surface evolution, 256–258
by solid-state diffusion, 256–257
surface faceting, 257–258
by vapor-phase transport, 257
Surface faceting, 257–258
Surface reaction control:
active gas corrosion, 158–160
chemical vapor deposition, 168–170
Symmetric diffusion, see Finite
transient diffusion

T

Temperature:
and chemical reaction rates, 49
and grain growth, 251
melting point, 31, 254–256
nanoparticle melting point, 254–256
and phase transformations:
and growth rate, 219–225
and microstructure change during
phase transformations,
226–227
temperature as driving force,
192–197
time–temperature–transformation
diagrams, 230–231
reaction rate and, 69–71
and solidification, 233
standard temperature and pressure
state, 20
Temperature dependence:
of chemical reactions:
activation theory, 68–71
reaction rates, 49
of equilibrium constant, 28–30
Thermal conductivity, 89
Thermadiffusion, 87, 123, 124
Thermodynamics, 14–46
calculating concentrations for liquids
or solids, 36–43
from crystallographic information,
41–42
for mixtures of multiple phases/compounds, 39–40
in pure materials, 36–37
site fractions, 42–43
in stoichiometric compounds or dilute solutions, 37–39
calculating quantities, 20–21
changes during thermodynamic process, 16–18
chemical potential, 22–25
defined, 14
dynamic equilibrium, 14–15
enthalpy, 15–17
entropy, 15–18
equilibrium constant, 25–28
first law of, 17
Gibbs free energy, 15–18
ideal gas law, 34–36
kinetics vs., 4–6
molar quantities, 18–19
of phase transformations, 31–34
reaction quotient, 25–28
second law of, 16
standard state, 19–20
temperature dependence of K, 28–30
Thermodynamic standard state, 20
Thin layer(s):
 atomic layer deposition, 176–178
 infinite diffusion of a, 108–109
 infinite diffusion of arbitrary concentration profile, 109–110
 silver deposition onto window glass, 154–156
Third-order reactions, 51
3D grain growth, 262
Time dependence:
 thickness in passive oxidation, 183–184
 time-dependent concentrations, 54, 60
Time–temperature–transformation (TTT) diagrams, 230–231
Transformational toughening, 197
Transient diffusion, 94–121
 boundary conditions, 96
 concentration-dependent, 117
derivation, 95
epsilon function and complementary function, 98–100
finite (symmetric) diffusion:
 planar, 110–114
 spherical, 114–115
infinite diffusion:
 of an arbitrary concentration profile, 109–110
 of a rectangular source, 107–108
 of a thin layer, 108–109
initial conditions, 96
interdiffusion in two semi-infinite bodies, 104–107
Kirkendall effect, 118–119
modeling, 90–91
moving interface problems, 118–120
semi-infinite diffusion, 97–104
Transport kinetics, 84–142. See also Diffusion
atomistic treatment of, 125–138
diffusion in gases vs. liquids vs. solids, 125–126
in gases, 126–130
in solids, 130–138
common transport modes (force/flux pairs), 88–89
coupled diffusion processes, 120, 122–125
electrodiffusion, 122–124
stress-driven diffusion, 124–125
thermodiffusion, 124
flux, 85–86
charge, 86
forces driving, 87
heat, 86
mass, 85
molar, 85, 86
number, 86
volume, 86
in gases, 126–130
binary gas diffusivity, 130
diffusion in liquids vs. solids vs., 125–126
INDEX

Transport kinetics, \textit{(continued)}

kinetic theory of gases, 126–129
Kirkendal effect, 118–119
in liquids, diffusion in gases vs. solids vs., 125–126
moving interface problems, 118–120
phenomenological treatment of, 90–125
coupled diffusion processes, 120, 122–125
moving interface problems, 118–120
steady-state diffusion (Fick’s first law), 91–93
transient diffusion (Fick’s second law), 94–121
in solids, 130–138
diffusion in liquids vs. gases vs., 125–126
high-diffusivity paths, 135–138
mechanisms of diffusion, 130–131
theory of solid-state diffusion, 131–135
steady-state diffusion (Fick’s first law), 91–93, 118–120
transient diffusion (Fick’s second law), 94–121
boundary conditions, 96
derivation, 95
finite (symmetric) planar diffusion, 110–114
finite (symmetric) spherical diffusion, 114–115
infinite diffusion of an arbitrary concentration profile, 109–110
infinite diffusion of a rectangular source, 107–108
infinite diffusion of a thin layer, 108–109
initial conditions, 96
interdiffusion in two semi-infinite bodies, 104–107
moving interface problems, 118–120
semi-infinite diffusion, 97–104
Transport processes, 3, 84
ballistic transport, 153–154
driving forces for, 87
in nonequilibrium conditions, 120
TTT (time–temperature–transformation) diagrams, 230–231
2D grain growth, 261

U
Units, 10, 273–275
for gas-phase diffusivity, 129
imperial-based vs. SI, 273
Unit conversions, 10
Universe, dissipating energy of, 18
Unstable growth (phase transformations), 235–237

V
Van’t Hoff isotherm, 23
Vaporization, 31
Vapor-phase transport, surface evolution by, 257
Viscosity, 89
Volume flux, 86

Z
Zero-order reactions, 49, 68
homogeneous, 53–54
incomplete reactions and, 64
Zirconia, 197