INDEX

absolute error
 of extinction coefficient caused by signal
distortions, 106
 of retrieved extinction coefficient, 34–35
acquisition time, 29
additive distortion of lidar signal, 6
additive range-independent component in lidar
signal, 2–6
aerosol extinction and backscattering, Raman lidar
profiling of, 80–82
aerosol-polluted atmosphere, Fernald’s solution
for, 15
aerosol layer boundary, determining, 175
afterpulsing effect, 68
algorithmic uncertainty, 24
Angstrom exponential dependence, 81
 in atmospheric investigations, 90–91
aposteriori simulation, 22, 31, 64, 121, 136, 198,
244
apriori
 assumptions, 132–133
 of backscatter-to-extinction ratio, 13, 30
 in nonstationary atmosphere, 25
 in extinction-coefficient profiles derived from
 Raman lidars, 90
 in Kano and Hamilton inversion technique, 199
 selection of backscatter-to-extinction
 ratio, 13, 15, 17, 30
atmosphere profiling, using Kano–Hamilton
inversion technique
 basics, 188–195
 essentials and specifics of methodology,
 195–199
atmosphere profiling with scanning lidar
 comparison of uncertainty in backscatter
 coefficient and optical depth profiles,
 221–223
 essentials and issues of, 230–235
 extraction of vertical extinction coefficient by
 equalizing alternative transmittance
 profiles, 224–225
atmospheric heterogeneity height indicator
 (AHHI), 252–253
atmospheric layer with increased backscattering,
 174–187
 boundary determination using isoclinic lines,
 183–187
 criteria for determining the boundaries, 175
 determination, 253–259
 general principles of monitoring, 177–180
 images of scanning lidar data and their
 quantification, 249–253
 maximum height, determination of, 180–183
 procedure of finding the boundaries of,
 176–177

© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
auxiliary function for determining atmospheric layer boundary, 176
backscatter lidar signal, 4–6
backscatter signal distortions and corresponding inversion errors, 41–48
low-frequency distortion component, 41
zones of minimum systematic errors, 45–46
backscatter-to-extinction ratio, 12
extinction-coefficient profiles retrieved with different, 30
boundary-point solution, 15
Cabannes scattering spectrum, 84, 104
calibration of incomplete overlap function, 74
classic lidar-equation solutions, 3–4
column-integrated lidar ratio, 138, 140, 143, 149
using equal length intervals, 148–154
using range-dependent overlapping intervals, 154–158
computational solution models, 22
condition number (CN), 32
constant offset in recorded lidar signal, determining, 48–55
algorithm and solution uncertainty, 49–51
numerical simulations and experimental data, 51–55
uncertainty in retrieved extinction-coefficient profiles, 54–55
derived particulate extinction coefficient, distortions in, 141–145
differential absorption lidar (DIAL), inversion algorithm for signals of, 85–87
backscatter corrections, 87
estimation of correction term, 87
main assumptions and implicit premises, 88
uncertainty sources, 86–87
direct multiangle solution
advantages of, 247
direct solution for high spectral resolution lidar, 247–249
essentials in data processing, 236–241
numerical simulation for a virtual lidar, 237–239
selection of maximum range for inverted signals of scanning lidar, 241–247
direct numerical differentiation, 107–109
distortion functions in the lidar signal, 70–71
distortions in derived particulate extinction coefficient, 141–145
distortions in extinction-coefficient profile derived from HSRL signal, 100–106
error sources, 100–101
distortions in elastic lidar signal, 4–10
actual total signal components, 4, 9
estimated offset, 6
range-dependent multiplicative component, 4, 6–7
distortions inherent to optical-depth solution, 89–99
in derived extinction coefficient due to uncertainty of Angstrom exponent, 90–95
in derived extinction-coefficient profile due to distortions in lidar signal, 97–99
in derived optical depth profile, errors in, 95–97
fractional errors of derived extinction coefficient, 90–91
effective overlap
definition and derivation algorithm, 213–216
divergence of, 216–220
elastic-lidar signal
backscatter-to-extinction ratio, 12
basic inversion principle for single-wavelength elastic lidar, 13–14
classic (ideal) lidar equation, 4
Fernald boundary-point solution, 15–16
implicit premises and mandatory assumptions required for inversion, 18–21
particulate and molecular backscatter-to-extinction ratios, 12
power-law relationship between particulate backscattering and extinction, 15
electromagnetic low-frequency noise component, 116–117
error factor in lidar data inversion, 31–40
in homogeneous atmosphere, 35
in retrieved extinction coefficient, 34
ersors
in derived optical depth profile, 95–97
in derived extinction coefficient, 97–100
experimental uncertainty, 24–29
extinction coefficient, 14. see also retrieved extinction-coefficient profiles
within intervals selected a priori, 148–158
piecewise continuous profiles, 148–158
profiling using optical-depth profiles and backscatter-coefficient profile, 137–148
retrieved through numerical differentiation of optical depth, 118–119
retrieved using uncertainly boundaries of inverted optical depth, 158–174
extraordinary smoothing, 18
extrapolation of optical depth, 129–131
INDEX

Fernald boundary-point solution, 15–16
fractional errors of derived extinction coefficient, 90–91, 93–94
function \(q(r) \), 2

high spectral resolution lidar (HSRL), 82–83, 248–249
HSRL signals, 83–84
direct solution in multangle mode, 247–249
inversion algorithm for signals of, 82–85
normalized function of iodine vapor transmission, 84
particulate backscattering in molecular channel of, 100
temperature- and pressure-dependent attenuation factor, 84

ideal lidar signal transformation, 4
ill-conditioned solution, 32, 34
in situ instrumentation, 18
interpolation or extrapolation uncertainty, 24
inversion algorithm for signals of high spectral resolution lidar (HSRL), 82–85
for signals of Raman lidar, 80–82
inversion procedure for elastic-lidar signal implicit premises and mandatory assumptions, 18–21
extraordinary smoothing, 18
overfitting, 18
inverted data, numerical differentiation basics, 107–111
as a filtering procedure, 113–119
nonlinear fit in numerical differentiation, 111–113

Kano–Hamilton inversion technique, 188–190
basic assumptions or implicit premises, 209
basics, 188–195
combined azimuthal–vertical searching, 196
distortion components, 199–200
essentials and specifics of methodology, 195–199
issues in practical application, 199–213
multiplicative and additive distortions of backscatter signal, 199–206
near-end distortions of optical depth, 201
optical profiles, 199–206
retrieved optical parameters, 190–195
selection of minimum and maximum heights, 197–198

Klett–Fernald’s solution, 15
Kootenai Creek Fire, 257–259
Lagrange remainder, 108–109

least squares method, 36, 38, 111
lidar backscatter signal, determination of, 3
multiplicative and additive distortions, 4–10
lidar equation for homogeneous atmosphere, 33
lidar operative range for optical depth solution, 16
lidar overlap function, issues in examining additive and multiplicative distortions, 65–66
alignment issues, 70
in an inhomogeneous atmosphere, 69–70
 calibration issues, 74–76
distortion in linear fit, 72
effective, determination and specifics of, 213–220
issues of signal inversion within incomplete overlap area, 73–77
level of distortion in, 72–73
lidar profiling as simulation, 21–22, 31
random systematic error in, 24–25, 27–29
lidar-signal recording time in non-stationary atmosphere, 26
linear approximation for transmission profile, 147–148
low-frequency noise components

numerical differentiation and uncertainty in inverted data, 115–116
uncertainty in retrieved extinction-coefficient, 116

measurement uncertainty, sources of, 9
modeling and simulation, 23
model inadequacy, 24
models of multiplicative and additive distortions in lidar signals, 4–5
Montana’s I-90 Fire, 125, 151
multiplicative distortion of lidar signal, 4–10
sources of, 7
multi-scattering component of lidar signal, 7–8
problems with estimation, 8
noise-corrupted optical depth, 118–119, 121–123
nonidealized photodetector signal, transformation of, 9
nonlinear fit in numerical differentiation, 111–113
nonstationary atmosphere, experimental uncertainty in, 25–29
numerical differentiation, direct extraction of the extinction coefficient with, 108–110
numerical differentiation and uncertainty in inverted data accuracy of, 108, 109
basics, 107–109
as a filtering procedure, 113–119
general assumptions used in, 113
linear approximation, 110
numerical differentiation and uncertainty in inverted data (Continued)
nonlinear fit in, 111–113
use of weight functions, 111
using Taylor’s series, 108
numerical simulation, 23
offset in backscatter signal, estimation of, 55–65.
see also recorded lidar signal, constant offset in
in integrated signals, 56–57
method for discriminating and reducing systematic signal distortions, 59–63
optical-depth profiles, 107
distortions in, 89–99
errors in derived optical depth profile, 95–97
in the near zone of lidar searching, 129–137
polynomial function and level of approximation, 112–113
profiling of extinction coefficient using, 137–148
range-resolution interval, 110
removal of erroneous bulges and concavities in, 121–125
shaped profile of, 121–122
optical parameters of atmosphere
aposteriori simulation, 22
apriori assumption, 21
random systematic errors of derived atmospheric profiles, 24–31
optimal maximum height, estimating, 125–128
overfitting, 18
overlap function, 2
parameter uncertainty, 24
parameter uncertainty in boundary-point solution, 29–31
particulate and molecular backscatter-to-extinction ratios, 12
particulate backscatter-coefficient profile estimation, 142
particulate extinction coefficient solution for, 14
photomultiplier photocathode spatial non-uniformity and lidar signal distortion, 7
Raman lidar
atmospheric profiling using, 80–81
errors in derived extinction-coefficient profiles, 89–99
inversion algorithm for signals of, 80–82
random noise in lidar signal, 5
random systematic error, 25
random systematic error in lidar profiling of atmosphere, 24–25
random systematic errors of derived extinction-coefficient profiles, 24–31
assumption of a “frozen” atmosphere, 26–27
range-height indicator (RHI), 250–251
range-independent lidar ratio, 137–139
real signal recorded by the lidar instrument, 2, 4
real square-range-corrected backscatter signal, 9
recorded lidar signal, 3
constant offset in. see constant offset in recorded lidar signal, determining simplified model of, 4–5
relative error and error factor of backscatter coefficient, 35
relative error and error factor of extinction coefficient, 34, 104
retrieved extinction-coefficient profiles, 28–29, 44
absolute and relative errors, 34–35
calculated with different backscatter-to-extinction ratios, 30
high-frequency variations in, 114–115
low-frequency noise in, 116
reversed backscatter-to-extinction ratios, 13
separation of backscatter and transmission components
general principle for, 78
high spectral resolution lidar (HSRL), inversion algorithm for signals of, 82–85
principal drawbacks, 79
Raman lidar, inversion algorithm for signals of, 80–82
splitting-lidar inversion techniques, 79
using scanning elastic lidar, 79
shaped profile of optical depth, 121–123
extinction coefficient, 124
principle for selecting h_{max} for, 125–128
shaping procedures, 120–123
signal-induced noise, 7
signal inversion, assumptions and implicit premises in, 10–11
signal smoothing, 5
real backscatter signal after, 6
signal-to-background ratio (SBR), 46
signal-to-noise ratio (SNR), 46–47, 68, 73, 100, 113
signal-to-offset ratio (SOR), 46–47, 96
simulated lidar signals, 43, 47
single backscatter signal, classical form, 1
single-wavelength elastic lidar, basic inversion algorithm for, 12–14
smoothed optical depth, 122–123
smoothed square-range-corrected signal, 58
smoothing technique, 120
splitting-lidar inversion techniques, 79
splitting lidars, 79
splitting mode, 79
square-range-corrected lidar signal
 after removal of offset, 53–54
 corrupted by high-frequency random noise and
 constant, offset, 56
 integral of, 56–57, 60–64
 overlap function, determination of, 70–71
 simulated noise-corrupted signal, 54
 slope of linear fit, 37–38
 substantial quasi-random random noise in,
 61–63
 transformation into special function before
 inversion, 13
square-range-corrected signal, 3
derivatives of, 80, 84–85
 schematic of ideal transformation of light
 energy to, 4
standard deviation (STD) of signal, 46, 48
systematic distortions
 in derived optical profiles, 96, 201–205
 in retrieved extinction-coefficient profile, 27–31
Taylor’s theorem, 108
temporal smoothing of recorded signals, 3
transformation function for elastic lidar signal, 13
transformed elastic lidar signal, 14
two-way transmittance function, 2, 227, 233–234
 in direct multangle solution, 236, 243–244
 uncertainly boundaries of inverted optical depth,
 158–174
 computational model, 159–163
 essentials of the data processing technique,
 163–169
 experimental data obtained from clear
 atmospheres, 169–174
 need for determining, 159
undistorted square-range-corrected backscatter
 signal, integral of, 57
upper boundary of increased backscattering area,
 determination of, 253–259
virtual zenith-directed lidar
 backscatter signal measured in incomplete
 overlap range, 67–69
 distorted profiles of lidar signals averaged in
 time, 27
 “weighted” extinction coefficient components, 14,
 39
 “weighted” optical depth components, 40
 well-conditioned solution, 32, 34
zenith-directed lidar, 17, 177
height interval requirement for determining
 constant, B, 50
numerical simulations, 44–45
 boundary-point solution of, 15–16