Index

\(a \)
acid digestion 135, 137, 177, 252, 327, 428
alkaline digestion 241, 271, 327, 435
aluminium (Al)
 – analytical procedures 252, 256
 – blood serum 255
 – physiological concentrations 256
 – pre-treatment 251
 – sample storage 251
 – sampling 251
 – soluble fraction 251
 – speciation analysis 251
 – acid rain 250
 – anthropogenic sources 250
 Alzheimer’s disease (AD), see metals, in Alzheimer’s disease (AD)
amyloid precursor protein (APP) metabolism 384, 390
AQUACHECK proficiency testing scheme 79, 80
arsenic speciation, in seafood, see marine food arsenic speciation
arsenobetaine (AB) 196
arsenolipids
 – biochemical approach 222, 226
 – capelin oil 222, 226
 – derivatisations 226, 231
 – extraction and solvent partitioning 223, 227
 – HPLC/MS 227, 233
 – research activity 222, 227
 – solid phase extraction 225, 229
arsenosugars 184, 197, 222, 226
As(GS)\(_3\)complexes 216, 220
As-phytochelatin complexes
 – detoxification role 217, 221
 – rice cultivars 217, 221
 – speciation analysis 217, 221

\(b \)
background electrolyte (BGE) 348
bioinformatic approaches 10, 14
Brunauer–Emmett–Teller measurement (BET) 332

\(c \)
cancerostatic platinum compounds (CPC) 305, 306, 311, 312, 314
capillary electrophoresis (CE) 25, 191, 294
capillary electrophoresis with ICP-MS (CE-ICP-MS) 25, 52, 191
capillary zone electrophoresis (CZE) 27, 348
cathodic stripping voltammetry 141, 142
certified reference materials (CRMs) 141, 142, 402, 410
chromatograms 270
chromium (Cr)
 – biological samples 239, 248
 – environmental compartment 238
 – environmental impacts 237
 – glucose and lipids metabolism 237
 – instrumental analysis 243
 – oxidation 238
 – sample pre-treatment steps 239
 – sampling and sample storage 239
cisplatin-N-acetylcysteine-adduct 122
collision induced dissociation (CID) 40
collision/reaction cell ICP-MS 34
colloidal particles 321
Comet and SMART assay 415, 423
complementary genome and metabolite analysis 11, 12
confocal Raman microscopy (CRM) 434, 442
convective-interaction media
methacrylate-based monolithic anion-exchange diethyl amino ethane (CIM DEAE) columns 258
 coupling techniques 9
 – analytical challenges 18
 – CEMS, see capillary electrophoresis with ICP-MS (CE-ICP-MS)
 – GCMS, see gas chromatography-ICP-MS
 – LAMS, see laser ablation-ICP-MS
 – LCMS, see liquid chromatography hyphenated to ICP-MS
 critical micelle concentration (CMC) 327
 CRMs, see certified reference materials (CRMs)
cryo-fixation 101
cryo-substitution 103
d 2-dimethylarsinothioyl acetic acid 208, 212
dimethylthioarsinoyl glutathione 216, 220
direct injection high efficiency nebulizer (DIHEN) 24, 51, 54
direct injection nebulizer (DIN) 54
dynamic reaction cell (DRC) technology 34, 244, 397, 446
electrochemistry coupled to mass spectrometry (EC-MS)
 – cisplatin-N-acetylcysteine-adduct 122
 – experimental setup and principle 119
 – thiols 119
electron capture dissociation (ECD) 42
electron paramagnetic resonance (EPR) 394, 401
electron transfer dissociation (ETD) 41
electronic microscopy (EM) 332
electroosmotic flow (EOF) 26
electrophoretic mobility 25
electrospray ionization mass spectrometry (ESI-MS) 38, 395, 402
 – As–phytochelatin complexes 218, 222
 – high resolution mass analysers 41
 – operating principle 38
 – quadrupole linear ion traps 41
 – triple quadrupole mass analysers 40
electrothermal atomic absorption spectrometry (ETAAS) 136, 137, 249
 elemental speciation analysis 131, 132
 environmental sample speciation analysis
 – extraction procedures 137–139
 – legislation 142, 143
 – nanotechnology 142, 143
 – need for 131, 132
 – quality control 141, 142
 – quantification techniques 136, 137
 – sample collection and storage 132, 133
 – separation/preconcentration techniques 141, 142
 enzymatic digestion 327
 enzymatic hydrolysis 178
 European Food Safety Authority (EFSA) 78, 286

f food selenium speciation analysis
 – identification 72
 – quantitation 71, 72
 Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) 42, 43
gas chromatography (GC) 30, 294
gas chromatography-ICP-MS 57
gaseous analytical detector (GAS) 427, 435
gel electrophoresis (GE) 28
genomics 4

h high-performance liquid chromatography (HPLC) 294
high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS) 381, 386
 – chromium speciation 79, 80
 – marine food arsenic speciation 184
high resolution ESI-MS 42
high-resolution double-focusing sector field ICP-MS 34
HPLC-ICP-MS, see high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS)
young generation atomic fluorescence spectrometry (YG-AFS) 136, 137
hydrophilic interaction liquid chromatography (HILIC) 415, 423

i IC-ICP-MS chromatogram 247
ICP-MS, see inductively coupled plasma mass spectrometry (ICP-MS)
immobilized metal ion affinity chromatography (IMAC) 342, 349
inductively coupled plasma mass spectrometry (ICP-MS) 8, 136, 137, 393, 401
 - sample storage 310
 - waste water samples 309
 - As–pytochelatin complexes 218, 222
 - collision/reaction cell mass analysers 34
 - detectable elements 33
 - element specific detection 31
 - high-resolution mass analysers 34
 - multicolonlector sector-field mass analysers 37
 - quadrupole mass analysers 34
 - triple quadrupole mass analysers 36
inductively coupled plasma sector field mass spectrometry (ICP-SFMS) 306
infrared multiphoton dissociation (IRMPD) 42
International Agency for Research on Cancer (IARC) 173, 176, 286
ionomics 11
isotachophoretic preconcentration (ITP) 27
isotope dilution analysis (IDA) 32, 70, 244, 350
isotope dilution mass spectrometry (IDMS) 293, 309
kinetic energy discrimination (KED) 35
LA-ICP-MS, see laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
landfill leachate 264, 268
laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 9, 55, 83
 - elemental bioimaging 85
 - principle 84
 - proteomic bioimaging 88
 - quantitative bioimaging 87
 - selenoproteins 165, 167, 169
 - 3D distribution 90
LC-MALDI-TOF/TOF 47
limit of detection (LOD) 260
liquid chromatography (LC) 20, 140, 141
liquid chromatography hyphenated to ICP-MS (LC-ICP-MS) 8, 49
liquid–liquid extraction (LLE) 327
localized surface plasmon resonance (LSPR) peak 430, 439
low molecular mass (LMM) organic acids 253
lyophilisation 103
MALDI-TOF/TOF mass analyser 47
manganese (Mn)
 - brain and serum 377, 456
 - chronic PARP-1 inhibition 365, 444
 - deficiency 363, 443
 - iron (II)/(III) 375, 455
 - neurotoxicity 364, 443
 - oxidative stress 365, 444
 - physiology and pathophysiology 363, 442
 - speciation, in animal samples 370, 449
 - speciation, in human samples 366, 445
marine food arsenic speciation
 - analytical techniques 178
 - bioaccessibility 193
 - bioavailability 192, 193
 - extraction methods 177, 179
 - HPLC conditions 185
 - nomenclature and molecular formula 174
 - sample preparation 177
 - storage and cooking effects 196
marine mussels 271
mass spectrometric ionization techniques
 - capabilities 30
 - ESI, see electrospray ionization mass spectrometry (ESI-MS)
 - ICP, see inductively coupled plasma mass spectrometry (ICP-MS)
 - MALDI, see matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS)
mass spectrometry 231, 237
metallome subgroups 7, 8
matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS)
 - frequently used 43
 - LC coupling instruments 47
 - principle 43
 - reflectron instruments 46
 - simple linear system 45
 - time of flight system 45
 - TOF-TOF instruments 47
matrix solid phase dispersion (MSPD) 178
Mattoch–Herzog ICP-MS (MH-ICP-MS) 37
mercury (Hg)
 - biomarker exposure 288
 - CE 294
 - chromatographic separation tools 296
 - dental amalgam fillings 285
 - detoxification process, in mammals 296
 - earth’s crust 285
 - elemental mercury 287
 - environment and biological samples 286
Index

mercury (Hg) (contd.)
- field-flow fractionation (FFF) 296
- GC 294
- HPLC 294
- IDMS 293
- inorganic mercuric mercury 287
- medical and cosmetic products 285
- methylmercury 287
- phytochelatins and thimerosal 297
- sample preparation 291
- speciation analysis 291
- thin layer chromatography (TLC) 293
- thiomersal 288
- tolerable weekly intake (TWI) 286
- toxic effects 289
- XAS 296

metabolomics 6
metal resistance analysis 11, 12
metal-based anticancer drugs
- biological tissue 402, 409
- cellular and sub-cellular level 406, 414
- DNA adducts studies 414, 422
- elemental speciation analysis 409, 416, 417, 424
- hydrolysis products 415, 423
- LA-ICP-MS
- - aerosol 403, 410
- - applications 404, 412
- - biomarkers 406, 414
- - carbon 403, 411
- - CRMs 402, 410
- - oxaliplatin 405, 413
- - scanning frequencies 406, 413
- NanoSIMS 407, 415
- protein interaction 409, 417
- X-ray based imaging techniques 408, 416
metallo-biomolecules 7, 8
metallomics, definition of 6
metalloproteins
- A priori 341
- chemical reactions 341
- ESI-MS 348
- ICP-MS 345, 348
- IEC 346
- IMAC 342
- intact metalloproteins 342
- isolation, immunochemical reactions 344
- metal-binding pocket 342
- pre-concentration strategies 343
- quantitative strategies 341, 349
- RPC 347
- SEC 346
- tissue solubilisation 343
metallothiolomics 11, 13
metallothioneins 6
metals, in Alzheimer's disease (AD)
- aluminum 378, 384
- APP metabolism 378, 384
- copper 378, 384
- iron and zinc 378, 384
- manganese 380, 384
- mitochondrial Mn superoxide dismutase enzyme (MnSOD) 380, 385
- oxidative stress 378, 384
- aluminum 383, 389
- biological samples 379, 385
- copper 382, 388
- HPLC-ICP-MS 381, 386
- inter-element and inter-fraction ratios and MCI 381, 387
- iron 382, 388
- lithium 384, 390
- manganese 383, 389
- neuroprotective effect 380, 386
- neurotransmitter 380, 386
- oligoelements 380, 386
- selenium 383, 389
- vanadium concentration 384, 390
- zinc 382, 388
mild cognitive impairment (MCI) 381, 387
miniaturized LC separation columns 22
monomethylarsonic phytochelatin-2 complex 216, 220
multicollector sector-field ICP-MS (MC-ICP-MS) 37
multidimensional protein identification technology (MudPIT) 416, 424
multiple reaction monitoring (MRM) 41

n
nanoparticles
- coupling and multi-technique approach 333
- definition 319
- environmental fate and biological effects 321
- light scattering-based spectroscopy 331
- microscopy imaging 331
- on-line separation 328
- organic/inorganic composite particles 321
- sample preparation 326
nanosecondary ion mass spectrometry (NanoSIMS) 10, 83, 407, 415
- applications 92
- biological sample analysis 92
- cryo-fixation 102
- ion sources 91
- metal analysis 93
Index

- principle 90
- sample preparation 99
- ultramicrotomy sectioning 103

Noccaea caerulescens 11

nuclear magnetic resonance (NMR) 394, 402

o

on line IDMS 73

Orbitrap systems 43

organotin compounds (OTCs)
- biological samples 271
- environmental and biological samples 262
- environmental samples 263
- extraction and derivatization procedures 262
- sampling and sample storage 262
- trisubstituted OTCs 261

p

phytochelatins (PCs) 297

platin (Pt)-based anti-cancer drugs
- EC-MS, see electrochemistry coupled to mass spectrometry (EC-MS)
- side effects 117

platinum emission
- cisplatin and monoaquacisplatin 312
- diaqua cisplatin 313
- elemental speciation analysis 306
- ICP-MS 309
- quantification strategies 309
- speciation strategies 312

poly(ADP-ribose)polymerase 1 (PARP-1) activation 365, 444

post translational modifications (PTM) 40

proteomics 5

q

quadrupole ICP-MS 34

quadrupole linear ion trap ESI-MS 41

quadrupole time-of-flight (Q-TOF) mass spectrometry 42

r

reactive oxygen and nitrogen species (RONS) 364, 444

reactive oxygen species (ROS) 323

reflector MALDI-TOF 46

s

secondary ion mass spectrometry (SIMS) 90

secondary ion multipliers (SEMs) 38

sediments 267

selective sequential hydride generation (SSHG) 215, 219

selenium
- cellular/tissue imaging 368, 373
- history 359, 364
- Se deficiency 360, 365
- terrestrial food 360, 365
- tissue distribution, in human 360, 365
- total selenium content 365, 371

selenium and vitamin E cancer trial (SELECT) 360, 365

selenium speciation
- applications 132–134
- CRMs 142, 143
- extraction 138, 139
- IDMS 74
- plants and yeast, see selenometabolites
- see selenoproteins
- separation technique 140, 141
- storage 134, 135
- voltammetric quantification 137, 138

selenometabolites
- classes 152, 154
- controlled degradation 164, 166
- extraction 155, 165
- HPLC-ICP MS chromatograms 165–168
- molecular mass spectrometric characterization 165, 167, 168, 170
- plants and yeast 153, 155

selenomethionine (SeMet) 71, 72

selenoproteins
- biosynthesis 361, 366
- controlled degradation 164, 166
- enzymatic activities 366, 371
- extraction 156, 165
- function 361, 366
- gel electrophoresis 165, 167
- hierarchy 362, 367
- messenger RNAs (mRNAs) 366, 372
- molecular mass spectrometric characterization 167, 169
- molecular weight mapping 165, 167, 169
- in plants 154–156
- protein levels 367, 372
- in yeast 154, 156, 157

sewage sludge 269

silica 225, 229

silver (Ag)
- AgNPs dissolution, in wound fluid 429, 438
- AgSD gel 427, 435
- in vitro cultures 428, 436
- percutaneous penetration 431, 439
- physical and chemical characteristics 424, 433
- scaffolds and nanocomposites 424, 433
Index

silver (Ag) (contd.)
– skin penetration 434, 443
– skin physiology and wound healing 421, 430
– static Franz diffusion cell 424, 433
– systemic distribution 436, 444
– tetraorthosilicate (TEOS) – chitosan sol-gel 425, 434
– wound care 422, 431
simple linear MALDI-TOF system 45
solid phase extraction (SPE) 225, 229, 327
solid-liquid extraction (SLE) 328
species-specific IDA (SSIDA) 70
species-specific isotope dilution mass spectrometry (IDMS) 73
– chromium speciation 78
– plasma selenoproteins 76
– Se speciation 74
species-unspecific IDMS, see on line IDMS spectrophotometry 243
strong anion exchange (SAX) 23
surface-enhanced Raman scattering microscopy (SERS) 434, 442
sustained off resonance irradiation collisional induced dissociation 42
SXRF, see synchrotron based X-ray fluorescence (SXRF)
synchrotron based X-ray fluorescence (SXRF) 83
– applications 107
– data analysis 107
– principle 104
– sample preservation 106
synchrotron scanning transmission X-ray microscopy (STXM) 105

transmission electron microscopy (TEM) 408, 415
TEM/X-EDS, see transmission electron microscope coupled with electron dispersive X-ray spectroscopy (TEM/X-EDS)
tetramethylammonium hydroxide (TMAH) 327
thimerosal 297
thin layer chromatography (TLC) 293
thio-organoarsenicals
– role 208, 212
– speciation analysis 209, 213
thioarsenites 210, 214
thiolated arsenic compounds
– arsinothiyl metabolites, see thio-organoarsenicals
– hyphenated techniques 206, 210
– XAS 204, 208
time of flight MALDI 45
tin speciation
– applications 131–134
– extraction 137–139
– separation technique 140, 141
– storage 135, 136
total arsenic determination 177, 192, 196
transcriptomics 4
tranmission electron microscope coupled with electron dispersive X-ray spectroscopy (TEM/X-EDS) 83
– biological sample analysis 96
– principle 95
– sample preparation 99
– ultramicrotomy sectioning 104
transmission electron microscopy (TEM) analysis 429, 437
triple quadrupole ESI-MS 40
triple quadrupole ICP-MS 36
2D gel electrophoresis 28
ultrafiltration (UF) units 369, 448
ultrafine particles (UFP) 320, 321
vanadium
– abundance and chemistry 389, 395
– biomedical samples 393, 401
– cell cultures 397, 405
– direct techniques 394, 401
– hyphenated techniques 395, 402
– model solutions 395, 403
– pharmaceutical application 389, 396
– serum samples 396, 404
– uptake and metabolism 391, 398
Water framework directive (WFD) daughter directive 2009/90/EC [99] 261
World Health Organisation (WHO) 286
X-ray absorption near edge spectroscopy (XANES) 408, 416
X-ray absorption spectroscopy (XAS) 205, 206, 296
– As–thiol complexes 217, 222
zetameter 332