Index

Page numbers followed by f and t refer to figures and tables, respectively.

ABC training software, 427–430
Abraham, Jay, 63
Abrahamson, S., 26
Accountability, in success pyramid, 382, 383, 383f
Acknowledgment, 439. See also Recognition
Additions to product family, 22, 22f
Add-ons, 21, 22f
Advanced development projects, 92
Advanced Micro Devices (AMD), 311–313
Aesthetic value, 437–438, 450–451, 458
Agile, 36–48
 in ABC training software development, 428
 at Deloitte, 37–45, 39f
 at IBM, 379–381
 at Integrated Computer Solutions, Inc., 393–400, 394f, 395f, 398f, 399f
 objective and principles of, 36–37
Scaled Agile Framework, 389
 at Star Alliance, 46–48, 403f, 404
 steps in, 283f, 284f
 tools/methodologies for, 403f, 404
 at UNICEF USA, 389–391
 at Wärtsilä Energy Solutions, 426–427
Agile Master Plan: Five Key Tracks, 393–395, 395f
 innovation sprint, 393–394, 394f
 at Integrated Computer Solutions, 393–400, 394f, 395f, 398f, 399f
Agile project management, 153, 154, 160
Agility, 379
Airbus, 33–34
 and Boeing 787, 493
 core innovation capability case study, 230–240, 232t
 open innovation at, 33–35
 safety issues for, 490–491, 494
Airbus Space and Defence, 418–421, 419f, 420f
Airbus Technocampus EMC², 34
Air India, 493
Alexander, Jack, 246
Allen, Paul G., 66
Alliance strategy, 65
All Nippon Airways (ANA), 30, 491–494
Alt-Simmons, Rachel, 360
Altura Ventures, 378
Al-Waleed, Prince, 469
Amazon.com, 306
Ambiguity, 120, 121, 121f, 279, 334
AMD (Advanced Micro Devices), 311–313
American Airlines, 491
American Productivity and Quality Center (APQC), 28
Ampore Faucet Company (case study), 503–506
ANA (All Nippon Airways), 30
Analysis-paralysis, 336
Anderson, Ken, 445, 446, 448
Apple, 375–377
Application engineering strategy, 90
Applied research projects, 92
Approximate (top-down) estimates, 175
APQC (American Productivity and Quality Center), 28
Arcadis, 179–187, 186f
Ariely, Dan, 288
Arup, Ove, 499, 502, 503
Ashworth, Harry Ingham, 502
Askin, Robert, 501
Assumptions, 167–169, 169f
 in business case, 165
 changes in, 166, 168
 in customer value
 management, 260
documenting, 168–169, 169f
 explicit and implicit, 167–168
 over life-cycle of
 project, 302, 303
 too many, 334
 tracking and challenging, 324, 325, 325f
 tracking and validating, 336
Atencio, Xavier, 448, 453, 455
Autonomy, 15
Baham, J., 448
Bait and hook business
 model, 306
Baker, Buddy, 455
Balanced R&D/marketing
 companies, 101
Balanced scorecard, 146–147
Balancing Individual
 and Organizational
 Values (Hultman and
 Gellerman), 246
Barreto, I., 150
Basic research projects, 92
Bauer, Michael, 190
BCG model, see Boston
 Consulting Group
 portfolio model
BDPR, see Business-drive
 program Roadmap
Bel, Roland, 126
Benchmarking, 9–10
Benefits, 248–249
 combining value and,
 248–249
 converted to value, 253f
 harvesting, 364–365
Benefit realization plan, 165, 166
Benefits realization
 management, 249
Ben Mahmoud-Jouini, S., 137
Bennahum, David, 510, 512,
 522, 524–525
Bertiger, Bary, 508–510, 520
Bessant, J., 14
Best practices, 160, 161, 323
Bettesworth, Gary, 380, 381
BI (business intelligence),
 134, 300–301
“Big hairy audacious goals”
 (BHAGs), 170
Blockbuster, 305, 319
“Blue sky” brainstorming, 434, 435
Board of directors, 11, 59
Boeing:
 737 MAX 8 jetliners, 533–534
 777, co-creation of, 30, 297
 787 Dreamliner, 297,
 354, 489–496
 Boland, Jim, 379, 381
 Bontis, N., 254
 Bootlegged projects,
 91–92, 127–128
 Booz, Allen, and
 Hamilton, 106, 107
Boston Consulting Group (BCG)
 portfolio model, 68–69, 69f,
 71–73, 95, 95f
Boundary boxes:
 target, for metrics, 268, 269f
 triple constraints with,
 357–358, 358f
 value measurement
 vs., 256, 256f
Bower, Joseph, 316
Bowman, Douglas, 120
Brainstorming, 105, 138–141,
 334, 433–435
Brand value strategy, 65
Bricks and clicks business
 model, 306
Brier, David, 95
Brown, Brene, 4
Buchen, Irving, 384
Budgeting, 67, 175–176
Buffett, Warren, 251
Business case, 117, 118, 121
 assumptions in, 302
 development of, 164–167
failure of, 368
 for Iridium, 513–514
 success and early termination
 criteria in, 358
 in traditional vs. innovation
 environments, 330
Business-drive program Roadmap
 (BDPR), 418–421, 419f, 420f
Business intelligence (BI),
 134, 300–301
Business models, 295–313
 of Apple, 376
 Boeing 787 Dreamliner (case
 study), 489–496
 and business
 intelligence, 300–301
 change in, 297
 characteristics of, 299
 co-creation built into, 32–33
 critical issues/
 challenges with, 313
 for Disney projects, 457.
 See also Global business
 model innovation (Disney
 case studies)
 for Disney Tokyo, 459, 463
 disruption of, 317–319
 enhancements for, 303–305, 305f
 failure of, 310
 identifying threats to,
 308–309, 309f
 Iridium business model failure
 (case study), 508–534, 526f
 and lawsuits, 310–313
 project manager as designer
 of, 297–298
 skills for innovators of,
 301–303, 303f
 and strategic alliances, 308
 and strategic partnerships, 300
 and success of innovation
 projects, 368
 types of, 305–307
 for UNICEF Kid Power
 development, 390
 use of term, 296
 and value, 298–299
Business need, 4–7, 165
Business ownership, changes in, 166
Business process innovation, 368
Business side of success:
innovation success, 363–364, 364f
traditional success, 354–355
Business value, 10, 219, 249, 295, 355, 364–365, 364f
Cahill, Joseph, 496, 498
Calabretta, G., 161
Candidate Experience Platform (CEx), 38–45
Capacity planning, 66–67
Caputo, Michele A., 190
Carlton, Richard P., 385
Carnelós, Carlos, 381
Carr, Martin, 500
Case studies, 431–534. See also
Innovation in action
Airbus core innovation capability, 230–240, 232f
Ampore Faucet Company views on innovation, 503–506
Boeing 787 Dreamliner business model, 489–496
Disney culture and global innovation opportunities, 456–475, 462f, 465f–466f, 471f, 472f
Disney innovation creation, 441–456, 443f
Disney innovation project management skills, 431–441
Disney partnerships in global business model, 476–489, 481f, 482f, 488f
IdeaSpace, 231–240
Iridium business model failure, 508–534, 526f
Leckey-Firefly, 225–226
Magneti Marelli, 222–223
multiple innovation sponsors, 506–507
National Health Service of the UK, 227–228
Redwood Credit Union, 223–224
Sydney Opera House, 496–503
Total France, 228–229
Cash cows (in BCG model), 69, 69f, 71
Cash flow, as roadblock to innovation, 335
Catmull, Edwin, 1
Cauley, L., 523
CCB (change control board), 177–178
CEX (Candidate Experience Platform), 38–45
Chaney, Chris, 508
Change control board (CCB), 177–178
Change cycle, 345–348, 347f, 348f
Cheng, J. Y., 59
Chesbrough, H. W., 34, 241, 422
Choi, Quan, 387
Christensen, C., 23, 315, 316, 318
Claircom, 524, 527
Clark, K. B., 23
Classification systems:
for innovation, 8, 58–59
for projects, 8–9, 91–92
Closed innovation, 23–25, 376
Coats, Claude, 431, 439, 447
Co-creation, 27–33, 28f
at Airbus, 33–35
change control board with, 177–178
innovation project management in, 4–5
value attributed with, 274, 274f
Co-creation strategy, 65
Co-creation team, 151
Collaboration, 132, 221, 332, 379, 390
Collective belief, 516–517
Collective business model, 306
Collins, Jim, 303–304
Co-located teams, 152–153
COMAU, 400–408, 401f–407f
Commercial intelligence, 66
Communication:
at Arcadis, 179–187, 186f
as leadership skill, 132
traditional vs. innovative management of, 178
X + Y + Z = D (Shabatat Theory) of, 180–182
Competencies. See also Core competencies
Eli Lilly competency model, 77–88
enhancing/destroying, 366–367, 367f
innovation, 16
Competitive Advantage (Porter), 266
Complexity, 120–122, 165, 334, 443, 444
Conference papers/presentations, 333
Confidentiality agreements, 103
Configuration management, 176, 177
Connecting, 132
Constraints, 244
changes in, 166
competing, 365, 442, 458–459
at Disney, 433, 442–452, 458
and enterprise environmental factors, 458–459
modified triple constraints, 356, 357f
prioritized, 365–366, 366f
triple, 356–358, 356f, 358f, 442
Contract (outsourced) R&D, 101–102
Control:
with life-cycle phases, 171–172
as roadblock to innovation, 335–336, 336f
scope change, 176–178
Coombs, R., 9
Core competencies, 74–77, 305, 305f, 366–368, 367f
Corporate culture, see Organizational/corporate culture
Cost:
as Disney constraint, 450, 458
in Earned Value Measurement System, 355–356
on government projects, 356
in iron triangle, 354
in triple constraints, 356, 356f, 357f
with value harvesting, 365
in value metrics, 268
Cost-reduction efforts, 21
Coupling, 98–99, 98f, 99f
Creative destruction, 21, 34
in brainstorming, 138–141
fears related to, 143–144
and innovation, 334
practices that destroy, 124
stifled by culture, 331
Cremer, Lothar, 500
Crisis-driven innovation, 58
Crisis management, 120, 122–123
Critical assumptions, 168
Critical success factors (CSFs), 150–151, 257, 264, 357, 358
CRM (customer relations management), 28, 258
Crowdsourcing, 26–27, 377
Crump, Rolly, 447, 451
CSFs, see Critical success factors
Culture(s), 123. See also
Innovation culture;
Organizational/corporate culture
creativity stifled by, 331
differences among, 461–462, 462f
diversity of student groups, 350
and enterprise environmental factors, 458
and global innovation opportunities (case study), 456–475, 462f, 465t–466f, 471f, 472f
impact of, 465–466, 465t–466f
of integrated product/project teams, 323
Cuomo, Andrew, 312
Curl, Tony, 23
Customer approval milestones, 173–174
Customers/consumers:
categories of, 68
co-creation with, 29–31
mapping needs of, 135, 136f
success defined by, 360
types of, 317
and value metrics, 257–258
Customer-driven innovation, 35
Customer life-cycle, 197–198, 197f
Customer relations, 356, 357f
Customer relations management (CRM), 28, 258
Customer value management (CVM), 28, 258–261, 259t, 292
Cutting out the middleman model, 306
CVM, see Customer value management
Daikin, 53–54
Data discovery, 134
Davis, Alice Estes, 445
Davis, David, 516–517
Davis, Marc, 445, 447
Defensive innovation, 57, 95–96, 95f
Definitive estimates, 176
Deliverables, 248–251, 353, 354
Dell Computer, 306, 312–313
Deloitte Central Europe, 37–45
Department of Defense (DOD), 323, 355
Desch, Matt, 533–534
Design freeze milestones, 172–173
Design star, 343, 344f
Design thinking, 135–138, 136f, 379–381
Development:
research and development ratio, 93–94
research vs., 92–93
Diener, K., 304
Direct sales model, 306
Discontinuities, 309, 309f
Discontinuous innovation, 57
Disney:
constraints at, 365
culture and global innovation opportunities (case study), 456–475, 462f, 465t–466f, 471f, 472f
Imagineering division, 139, 140, 431–441
innovation creation: Haunted Mansion (case study), 441–456, 443f
innovation project management skills (case study), 431–441
integrated services at, 463–464
partnerships in global business model innovation (case study), 476–489, 481t, 482t, 488f
Disney, Walt, 432, 433, 435, 445–448
Disney Book Group, 433, 438
Disruption, 318, 319
Disruptive innovation, 23, 58, 315–326
in action, 324–326, 325t, 326t
and business model disruption, 317–319
categories of, 319–321
critical issues/challenges with, 326
dark side of, 321
defined, 316
eyear early understanding of, 316–317
and integrated product/project teams, 321–324, 324t
steps in, 321
use of term, 320
Disruptive technologies, 316, 320
Distribution business model various fee in, free out, 306
Diversity, 350
DOD (Department of Defense), 323, 355
Dogs (in BCG model), 69, 69f, 71
Dovale, Tony, 27, 321
Drew, Richard, 128
Dru, J., 320–321
Drucker, Peter, 2, 4, 321
Dubai Customs, 202–207, 203f–206f
Durstewitz, Markus, 231–233, 235, 240
Dvir, D., 59
Earned Value Measurement System (EVMS), 355–356
Easy value metrics, 253–255, 253t, 254t
EBay, 306
Eco-innovation, 57
Economic evaluation of projects, 108–111, 110f, 111f
Egan, Bruce, 529
EI (emotional intelligence), 134–135
Eisner, Michael, 459, 462, 467, 470, 479
Eli Lilly competency model, 77–88
for leadership, 78, 84–88
for process skills, 77–78, 81–84
for scientific/technical expertise, 77–81
Emotional intelligence (EI), 134–135
Enders, Tom, 230
Engagement, improving, 221
Engineering changes, 93
Enhancements, 21
Enterprise environmental factors, 168, 169, 456–459
Enterprise project management, 304, 353
Entrepreneurial teams, 322
Entrepreneurship strategies, 97
Environment, 332
characteristics of, 120–123, 279
to search for ideas, 331
to search for ideas, 331
enterprise, 163, 164
enterprise environmental factors, 168, 169, 456–459
for innovation, 23, 115, 120–123
of traditional project management, 296
Environmental scanning, 75
Estimates, 175–176
Estimating manual, 176
Ethiopian Air, 493, 533
Evaluation recommendations, 165
EVMS (Earned Value Measurement System), 355–356
Evolutionary innovation, 315
Execution:
COMAU leaner processes for, 401–403, 403f
failures of, 368–369
Exit strategies, 165
Explicit assumptions, 167–168
Extrinsic rewards, 287–288
Facebook, 377–378
Facilitation (term), 343
Failure:
of business model innovation, 310
categories of, 359, 359f
causes of, 368–371
criteria for, 371, 372
cultural, 123
defining, 359
degrees of, 358–359, 359f
at Euro Disney, 467
GE portfolio model, 69–71, 70f, 71f
General Electric (GE) portfolio model, 306
Frees, Paul, 452
Franchise business model, 307
Gall, Arthur, 128
Full-scale development projects, 92
Functional prototypes, 142
Funding for innovation, 4–5, 335, 349–350, 385
Fuzzy back end, 117
Fuzzy front end (FFE), 117–118, 137, 161
Galileo, 278
Galvin, Christopher, 510, 514
Galvin, Robert, 510, 514, 516
Gänge, Konstantin, 233–235, 237, 240
GEA, 410–418, 411f–414f
Fuzzy front end, 117–118, 137, 161
Funding for innovation, 4–5, 335, 349–350, 385
Gerbstein, Mark, 515
Gibson, R., 325
Finance and accounting, SWOT analysis of, 76
Financial innovation, 57
Financial uncertainty, 335
Finnish Aid nontechnical innovation, 55–56
First to market strategy, 89, 99
Forecasting, 171
Form study prototypes, 142
Foundation, in success pyramid, 382, 383f
Fraudulent business model, 306
Fry, Arthur, 128
Funding for innovation, 4–5, 335, 349–350, 385
Fuzzy back end, 117
Fuzzy front end (FFE), 117–118, 137, 161
Galileo, 278
Galvin, Christopher, 510, 514
Galvin, Robert, 510, 514, 516
Gänge, Konstantin, 233–235, 237, 240
GEA, 410–418, 411f–414f
Gellerman, Bill, 246
Gemser, G., 161
General Electric (GE) portfolio model, 69–71, 70f, 71f
George Harrison Fund for UNICEF, 30, 34, 51
Georgia Institute of Technology, 421
GE portfolio model, see General Electric portfolio model
Gerbstein, Mark, 515
Gibson, R., 325
Global business model innovation (Disney case studies), 476–489, 481t, 482t, 488t
Euro Disney/Disneyland Paris, 456–475, 462t, 465t–466t, 471t, 472t, 479–480
Hong Kong Disneyland, 482–486
Hong Kong Ocean Park, 486–487
Tokyo Disneyland, 479–482, 481f
Tokyo DisneySea Park, 480–482
Walt Disney Studios Park, 480
Globalstar, 519, 520
Gnyawali, D. R., 34
Goals, 169, 170, 361, 383, 383f
See also Strategic goals/objectives
Goff, Harper, 445
Goldman Sachs & Co., 520
Goodbye to Deerland, 426
Google, 384
Goossens, Eugene, 498
Governance, 115–116
BDPR for, 418–421, 419f, 420f and external stakeholders, 332
failures of, 369–370
of innovation projects, 144–145, 277–278
metrics for, 277–278
by portfolio PMO, 65
transformational, 145
as value metric, 243
Government/government agencies:
control of/influence on R&D, 103–104
costs overruns on projects for, 256
IdeaScale developed by, 222
innovation by, 48–51
project management used in, 357
success defined by, 360
Govindarajan, Vijay, 299
Gracey, Yale, 447, 451
Graffius, Scott M., 36
Grams, P., 515
Grant, Roy, 524, 526
Grass roots projects, 91
Greer, David J., 26
Growth life-cycle portfolio, 70, 72f
Groysberg, B., 59
Gurtner, S., 322
Half Double methodology, 339–342, 340f, 341f, 348
Hall, Peter, 500
Hamel-Smith, 0cian, 74
Hard value metrics, 253–255, 253t, 254t
Harvesting team, 151
Haunted Mansion (case study), 441–456, 443f
Hench, J., 431, 438, 439, 448
Hersman, Deborah, 493
Hewlett Packard, 384
Hidden innovation, 57
High-end disruptive innovations, 320
Hillis, Durrell, 510, 511
Hitachi, Ltd., 52–54
Hoare, H. R. “Sam,” 501
Home Depot, 305
Hopp, C., 317, 319
HP Labs, 280
Huerta, Michael, 491
Hughes, Davis, 502
Hultink, E. J., 362
Hultman, Ken, 246
Human behavior, project selection and, 94
Humanitarian innovation, 51–54.
See also Social innovation
Human resource management, 76–77, 332–333
Hybrid jobs, 381
Hynes, Martin D., III, 77
HYPE Innovation, 230–241, 232f
IBM, 301, 378–381
Ideas:
for closed innovation, 24
from crowdsourcing, 26
failing to search for, 331
for open innovation, 25
portfolio of, 397
selection of, 118
Idea development, 118
Idea generation, 127–128
Idea genesis, 118
IdeaScale, 222–224
IdeaSpace, 231–240
Iger, Robert A., 487
Imaretska, E., 143–144
Inazuka, Tooru, 53
Inbound innovation, 58
Inclusion, 350
Incorporated joint ventures, 478
Incremental innovation, 20–22, 22f, 116
at Apple, 376
effects of, 318
fuzzy front end of, 117
Information and knowledge management, 159–218
at Arcadis, 179–187, 186f
assumptions, 167–169, 169f
budgeting, 175–176
communication, 178–187
critical issues/challenges in, 217–218
at Dubai Customs, 202–207, 203f–206f
in fuzzy front end phase, 118
growth in information, 163f
information warehouses, 160–163
in innovation cultures, 126
innovation planning overview, 163–167
intellectual capital components, 164f
knowledge management components, 161f
life-cycle phases, 171–174, 174f
at Merck, 207–210, 208f
at NTT Data, 187–190
at Philips Business Group MA&TC Services, 190–202, 193f, 195f–197f, 200f
at Repsol, 210–214
Index

scheduling, 176
scope change control, 176–178
staffing innovation projects, 213, 215–217, 216f
validating objectives, 169–171
work breakdown structure, 175
Information warehouses, 160–163
InnoVate Platform, 413–414, 413f
Innovation(s), 19–60. See also specific topics
Agile, 36–48
board of directors’ role in, 59
business process, 368
categories of, 73–74, 74f, 315–316
classification systems for, 8, 58–59
closed, 23–25, 376
co-creation, 27–33, 28f
and creativity, 334
co-creating, 27–33, 28
co-creation partnerships, 33–35
co-creation initiatives, 27–33
co-creation success factors, 27
co-creation in action, 28
co-creative, 27
co-creating, 27
co-creating success factors, 27
co-creating in action, 28
co-creative teams, 27
co-creating teams, 27
co-creating teams in action, 28
co-creating, 27
co-creative in action, 28
co-creatively, 27
co-creative teams in action, 28
co-creating teams in action, 28
crisis-driven, 58
critical interactions for, 12f
critical issues/
challenges in, 60–61
crowdsourcing, 26–27
defensive, 57, 95–96, 95f
defining success of, 354
definitions for, 2–4, 19
differing views on (case study), 503–506
discontinuous, 57
disruptive, 58. See also Disruptive innovation
eco-, 57
evolutionary, 315
examples of, see
Innovation in action
financial, 57
finding project sponsor for, 60
fellowship, 58
government, 48–51
hidden/invisible/stealth, 57
human behavior side to, 8
humanitarian or social, 51–54
incremental, 116, 117, 318
incremental vs. radical, 20–23, 22f
industry-specific, 7
institutional, 57
literature on, 7–8
negative, 139
nontechnical, 54–56
offensive, 57, 95–96, 95f
open, 24–35. See also Open innovation
open sustainability, 57
product, 57
product development, 21–23, 22f
pulled (or inbound), 58
pushed (or outbound), 58
R&D differentiated from, 4
reasons for, 10, 66
revolutionary, 316
service, 57
social, 57
strategic, 3
in strategic planning, 66–67
sustaining, 315–316
typical cash flow with, 13f
value (or value-driven), 35–36
value-added, 56–57
Innovation competencies, 16
Innovation cultures, 123–127
at Apple, 377
and corporate leadership, 126–127
critical success factors for, 150–151
at Disney (case study), 456–475, 462f, 465f–466f, 471f, 472f
in project management
innovation scaling, 15
and reward systems, 129–130
at Samsung, 392
at 3M, 384–385
Innovation funding, 4–5, 335
Innovation governance,
144–145, 277–278
Innovation in action. See also Case studies
ABC training, 427–430
Airbus co-creation partnerships, 33–35
Airbus Space and Defence, 418–421, 419f, 420f
Apple, 375–377
Arcadis, 179–187, 186f
COMAU, 400–408, 401f–407f
Deloitte Central Europe, 37–45, 39f
Dubai Customs, 202–207, 203f–206f
Eli Lilly, 77–88
Facebook, 377–378
Finnish Aid, 55–56
GEA, 410–418, 411f–414f
Hitachi, Ltd., 52–54
HYPE Innovation, 230–241, 232f
IBM, 378–381
IdeaScale, 222–224
InnovationLabs, 277–288
Integrated Computer Solutions, Inc., 393–400, 394f, 395f, 398f, 399f
Medtronic, 130–133
Merck, 207–210, 208f
Motorola, 385–386
Naviair, 336–348, 340f–342f, 344f–348f
NTT Data, 187–190
Philips Business Group
MA&TC Services, 190–202, 193f, 195f–197f, 200f
Qmarkets, 225–230
Repsol, 210–214, 212f, 214f
Samsung, 392–393
Star Alliance, 46–48
Texas Instruments, 382–385, 383f
3M, 384–385
thyssenkrupp, 421–424, 422f, 423f
Tokio Marine and Nichido Systems, 408–410
UNICEF USA, 388–391
University of Cincinnati student organization, 349–351
Wärtsilä Energy Solutions, 424–427, 425f
Zurich North America, 386–388
Innovation knowledge, 242
Innovation labs:
 choosing metrics for, 277–288
 in project management
 innovation scaling, 15–16
InnovationLabs LLC, 277–288
Innovation leadership:
 for innovative cultures, 126–127
 at Medtronic, 130–133
 by project managers, 6
 with radical innovation, 22–23
 skills for, 133–135, 134
Innovation management:
 at GEA, 411–418, 411
 project management vs., 5
Innovation management software, 219–242
 critical issues/challenges in, 241–242
 from HYPE Innovation, 230–241, 232
 IdeaScale, 222–224
 and open innovation, 241
 origin and benefits of, 220–222
 from Qmarkets, 225–230
 workflow for, 220
Innovation metrics, 278–288. See also Value metrics
 aligning rewards and, 287–288
 dark side of, 288–290
 external, 280
 in governance, 277–278
 for human resources, 287
 for innovation
 development, 285–286
 for insight, 285
 internal, 281
 for market development, 286
 people, 281
 for portfolios, 283–284
 qualitative and
 quantitative, 281–287
 for research, 284–285
 and ROI-based
 models, 278–280
 for selling, 286
 for strategic thinking, 282, 283
 transversal metrics, 286–287
Innovation network, 242
Innovation planning, 163–167
Innovation portfolio management,
 148–151, 149f, 397–400, 398f–399f
 Innovation portfolio project management office (IPPMO), 148–151, 149f, 290
Innovation project management (IPM), 1–17
 benchmarking in, 9–10
 business need for, 4–7
 critical issues/challenges in, 17
 and definitions for
 innovation, 2–4
 at Disney (case study), 431–441
 Eli Lilly competency models, 77–88
 innovation pillars in, 401–408, 402f–407f
 innovation targeting in, 12–13
 literature on innovation, 7–8
 literature on project management, 8–9
 scaling project management
 innovation, 14–16
 in small companies, 14
 traditional project management vs., 2, 121, 121t
 value as missing link in, 10–11
 Innovation project managers
 (IPMs), 219
 change in role of, 248
 in co-creation projects, 32
 critical skills for, 133–135, 134f
 marketing’s involvement with, 88–90
 in project selection phase, 220
 strategic planning role of, 64
 Innovation project teams,
 22–23, 370
 Innovation targeting, 12–13,
 12f, 13f, 386
 Innovation team(s), 151–153, 152f, 322, 331
The Innovator’s Dilemma
 (Christensen), 316
The Innovator’s Solution
 (Christensen and Raynor), 316
Institutional innovation, 57
Intangible assets, 289
Intangible value metrics, 253–255, 253t, 254t, 273–274
Integrated Computer Solutions, Inc., 393–400, 394f, 395f, 398f, 399f
Integrated product/project teams
 (IPTs), 321–324, 324t
Intel, 305, 311–313
Intellectual capital, 162, 163, 164f
Intellectual property rights, 25, 103, 333–334, 376
Intelligent innovation
 management software, 242
Internal disruption, 321
Intrinsic rewards, 287–288
Investment in innovations:
 balancing, 73–74, 74f
 costs included in, 111
 at fuzzy front end, 117
 new product development, 107, 107f
Investment life-cycle approach, 361, 361f
Invisible innovation, 57
IPM, see Innovation project management
IPMs, see Innovation project managers
IPPMO, see Innovation portfolio project management office
IPTs (integrated product/project teams), 321–324, 324t
Iridium business model failure
 (case study), 508–534, 526t
 ascent of project, 523–525
 Bankruptcy Court hearing, 532
 and collective belief, 516–517
 debt financing for, 519–520
 descent of project, 525–529
 “hidden” business case, 514
infancy years for project, 517–519
IPO for, 522
and Iridium “flu,” 529
Iridium system, 512
launching venture, 511–512
marketing campaigns, 523
M-Star project, 520–521
naming of project, 450
obtaining executive support, 450
project initiation, 513–514
project management at Motorola and Iridium, 521–522
rescue of Iridium, 531–532
risk management, 514–516
satellite deorbiting plan, 530–531
satellite launches, 522
satellite network of, 512–513
shareholder lawsuits, 532
Staiano as CEO, 521
white knight for, 529
Iron triangle, 354
Irvine, Dick, 449
Isaacson, Walter, 376
Jacobs, Marc, 19
Japan Airlines (JAL), 491–493
Jobs, Steve, 375–377
Johnson, Steven, 26, 48, 360
Joint venture, 478
Jones, Peter, 499, 500
Juliani, A.J., 111
Kakati, M., 361, 362
Kaplan, R. S., 146–147
Kaplan, S., 298, 302, 303, 310
Kaye, Debra, 178
Keeley, L., 58
Keyes, Jim, 318–319
Key intangible performance indicators (KIPIs), 254
Key performance indicators (KPIs), 264–266, 264t
failure of, 266
at GEA, 415
measuring, 252, 252t, 254
as project success measure, 358
at Repsol, 211
and timing of value measurement, 255
Kidd, William, 508
Kid Power Band, 51, 388–391
Kim, W. Chan, 35
KPIs (key intangible performance indicators), 254
Knape, Weldon, 531
Knowledge management systems, 161, 162. See also Information and knowledge management
Koen P., 118
Konechnik, Thomas J., 77
Krippendorff, Kaihan, 19, 159, 169
Kuczynski, T. D., 290
Kumar, V., 323, 325
Kytonen, Sherry, 428–430
LaHood, Ray, 491
Lamont, J., 289
Lawsuits, business models and, 310–313
LCCA (life-cycle cost analysis), 489–490
Leadership. See also Innovation leadership
changes in, 166
competencies for, 78, 84–88
and innovation cultures, 126–127
in project management innovation scaling, 15
transformational, 145
and value, 246–248
Leadership style, 248
Lean manufacturing strategy, 65
Learning curves, 176
Leckey-Firefly (case study), 225–226
Legal requirements, in business case, 165
Lenfl, S., 297
Leopold, Raymond, 509, 510
Lewin, Kurt, 179, 182
LFV, 338
Licensing agreements, 333, 476–477
Licensing rights, 333–334
Life-cycle cost analysis (LCCA), 489–490
Life-cycle phases, 171–174, 174f
in Disney Haunted Mansion project, 442, 443f
failure in, 262
investment life-cycle approach, 361, 361f
product life cycles, 91, 98–99
for R&D projects, 128–129
tracking assumptions over, 302, 303f
Life-cycle portfolio models, 70–71, 71f–73f
Line of sight, 119, 135, 136, 330–331, 334
Lion Air, 533
Littlemore, D. S., 500
Lloyd, Carmen, 531
Louch, C., 8
Lockheed, 519
Logistics, in success pyramid, 383, 383f
LOT Polish Airlines, 493
Low-end disruption, 318–320
Luchs, M. G., 140
Lumada, 52–54
Lüttgens, D., 304
McCaw, Craig, 529, 530
McDonald’s, 305
McDonnell Douglas Corp., 519
McKeown, Max, 64, 115
McKnight, William, 126
McLean, W., 124, 173
McNerney, James, 491
Magneti Marelli (case study), 222–223
Management:
multiple projects sponsored by, 506–507
success defined by, 360
Mann, Robert, 496
Manufacturing:
coupling between marketing, R&D, and, 98–99, 98f, 99f
in project selection, 94
SWOT analysis of, 75–76
Market attractiveness, 70f, 71f
Market growth analysis, 71
Marketing,
coupling between R&D, manufacturing, and, 98–99, 98f, 99f
in defining success of innovation projects, 360–363, 361f
innovation project manager involvement with, 88–90
of Iridium, 523
in R&D priority setting, 100–101
strategic innovation planning role of, 67–68
SWOT analysis of, 75
“wish list” of, 66–67
Marketing-dominated companies, 101
Market share analysis/strategies,
70–73, 71f
Marquis, D., 20
Marshall, Graham, 386
Martino, J., 108, 109
Maurer, Rick, 345, 346
Maurya, Ash, 123
Mead, Richelle, 12
Measurement. See also Metrics
in balanced scorecard approach, 146–147
at GEA, 415–417
of key performance indicators, 252, 252r, 254
of success, 361–363
timing of success measurement, 355
timing of value measurement, 255
of value, 252–256, 252r–254r, 253f, 256f
Medtronic, 130–133
Melik, R., 162, 172
Merck, 207–210, 208f
Merrow, D., 122
“Me too” strategy, 90
Metrics, 160
in aligning projects and strategic business objectives, 275–277, 275f–277f
audiences for, 264r
bases on success/failure criteria, 372
categories of and metrics selection, 264
dark side of, 288–290
development of, 353–354
early development of, 356
for innovation governance, 277–278
at InnovationLabs, 277–288
for innovation project management, 254. See also Innovation metrics
of operational and strategic business success, 354
for risk management, 406, 407f
selecting, 264–266
of success, 362
for tracking assumptions, 302, 303f
traditional, failure of, 266
as value metrics, 243. See also Value metrics
Metrics management program, 290–292
Meyer, Stacy, 190
Microsoft, 422
Midttun, Lisa, 190
Miles, R. E., 125
Milestones, 171–174
customer approval, 173–174
design freeze, 172–173
scope freeze, 172
Mindset:
for innovation, 23
of project managers, 338–339, 354
at 3M, 384
Mitchell, John, 511, 517, 518
Mock-ups, 436–437
Mondale, Leo, 511
Mootee, I., 135, 136
Morris, Langdon, 393
Motorola, 385–386. See also Iridium business model
failure (case study)
Muller, A., 289
Multidisciplinary teams, 378
Multiple sponsors (case study), 506–507
Nagji, Bansi, 209
Nagy, D., 317
National Health Service (NHS) (case study), 227–228
Navarra, Anthony, 518, 529
Naviar, 336–348,
340f–342f, 344f–348f
Negative innovation, 139
Netflix, 306, 318–319
Networking, 132
New-market disruption, 318
New product and process development (NPPD), 118
New product development (NPD), 116
activities in, 106–107, 106f, 107f, 116
and change in business model, 368
competency-enhancing or -destroying, 366, 367f
freezes in, 172–173
fuzzy front end of, 117–118
innovation categories, 21–23, 22f
integrated product/project teams for, 323

Index

project management framework for, 403–404, 404/4f
stages/phases of, 117
stockholder/stakeholder pressures on, 5
Next generation products, 22, 22f
Ng, H. S., 254
NHS (National Health Service) (case study), 227–228
Nondisclosure agreements, 103
Nontechnical innovation, 54–56
Nontraditional life-cycle phases, 174, 174f
Norton, D. P., 146–147
Norton, Richie, 4, 27
Nowacki, Edward J., 517–518
NPD, see New product development
NPPD (new product and process development), 118
NTT Data, 187–190
NUAC, 338
Objectives. See also Strategic goals/objectives of radical vs. incremental innovation, 21 validating, 169–171
OECD (Organisation for Economic Cooperation and Development), 58
Offensive innovation, 57, 95–96, 95f
Oliver, Dave, 531
One size fits all approach, 8, 330
Open innovation, 24–35
at Airbus, 33–35
at Apple, 376
doing as, 27–33
crowdsourcing, 26–27
at Facebook, 377, 378
and innovation management software, 241
and risk level, 139
at thyssenkrupp, 422
Open Knowledge, 222–223
Open sustainability innovation, 57
Opportunity analysis, 118
Opportunity identification, 118
Opportunity options, 165
Opportunity-seeking, 66
Order-of-magnitude estimates, 175
Organisation for Economic Cooperation and Development (OECD), 58
Organization, 12
Organizational/corporate culture, 123–126, 150, 171. See also Innovation cultures at Ampore Faucet, 504–506
and knowledge management, 162
at Samsung, 392
at 3M, 384–385
Organizational process assets, 169
Oriental Land Company, 479, 481
Osterwalder, A., 299, 300
Outbound innovation, 58
Outcomes, 353, 354
Outputs (deliverables), 248–251
Outsourcing, 101–102, 490
Ove Arup and Partners, 499, 502, 503
Ownership:
business, 166
of intellectual property, 376
of projects, 94
Paper prototypes, 142
Park, B.-J., 34
Parker, Mark, 319
Partnerships:
in Airbus co-creation, 33–35
in Disney global business model innovation, 476–489, 481f, 482f, 488f
types of, 300
Patents, 333
Pauling, Linus, 105
Pay what you can (PWYC) business model, 307
Pay what you want (PWYW) business model, 307
PDMA (Product Development and Management Association), 2
Pedersen, C. L., 135
Perceived value, 257, 362
Performance, definitions of, 356
Peterson, Kenneth, 509
Philips Business Group MA&TC Services, 190–202, 193f, 195f–197f, 200f
Phillips, J., 255
Pich, M. T., 58
Pigneur, Y., 299, 300
Planning failures, 368–369
Platforms, 30
coo-creating, 30
of Facebook, 377, 378
GEA InnoVate, 413–414, 413f
totally complex, 22, 22f
Platform strategy, 65
PMs, see Project managers
PM 1.0, 154–156
PM 2.0, 153–156, 154–156
PM 3.0, 156, 156
PM3 methodology, 188–190
PMBOK® Guide (PMI), 5, 134, 199, 297
on competing constraints, 442
and Disney theme park innovation, 431–432
domain areas of, 361
enterprise environmental factors in, 456
for enterprise project management, 304
traditional tools in, 302
PMI, see Project Management Institute
PMO, see Project management office
PMO (portfolio [strategic] project management office), 64–65, 97
Politics, 332
Political failures, 370
Porter, Michael, 266
Portfolio of products/services:
 aligning project planning/execution with management of, 119
 analysis of, 68–74
 balancing, 396–397
Portfolio (strategic) project management office (PMO), 64–65, 97
Potato model, 343, 344
Predictably Irrational (Ariely), 288
Prima donnas, 112, 332, 337
Primary value, 11
Priority setting, 99–101, 109, 110–111
Problem children, 71
Process benchmarking, 9–10
Process innovation, 3, 57, 317, 354, 368. See also Defensive innovation
Process skills competencies, 77–78, 81–84
Product design, 117
Product Development and Management Association (PDMA), 2
Product implementation, 117
Product innovation, 57. See also Offensive innovation
Production support projects, 92
Product life cycles, 70–71, 71f–73f, 91, 98–99. See also Life-cycle phases
Product portfolio analysis, 68–74, 69f–74f
Product/quality improvements, 21
Profit life-cycle portfolio, 71, 72f
Projects:
 aligning strategic business objectives and, 275–277, 275f–277f, 355
 success or failure of, 257. See also Failure; Success termination of, 112–113, 358
Project closure, 160, 255
Project culture, 123–124
Project financing, 460–461, 520
Project management, 11
 innovation, 2, 121, 121t, 296. See also Innovation project management (IPM)
 innovation management vs., 5 literature on, 8–9
 PM 1.0, 2.0, and 3.0, 153–156, 154t–156t relationship between value and, 261–263, 263f
 at thyssenkrupp, 423–424
 traditional, 2, 8, 121, 121t, 159–160, 244, 296, 297 and value, 261–263
Project Management Institute (PMI), 2, 5, 192, 193, 301, 441. See also PMBOK® Guide
Project management office (PMO):
 innovation portfolio, 148–151, 149f, 290
 portfolio (strategic), 64–65, 97 roles of, 66–67
 traditional, 149
Project managers (PMs), 5–6. See also Innovation project managers (IPMs)
 changing role of, 353
 COMAU PM Academy for, 406–408
 as designer of business models, 297–298
 in disruptive innovation projects, 325
 hybrid jobs of, 381
 innovation management skills of, 8
 mindset of, 338–339, 354
 PMI certification of, 301
 timing of assignment of, 167
 in traditional project management, 64, 304
Project selection, 107–108. See also Strategic planning
 critical factors in, 67
 innovation project managers in, 220
portfolio of products/services analysis in, 68–74
Project teams, 125
Project termination, 112–113
Project value, 249, 292. See also Value
Project workloads, 332–333
Proof-of-principle prototypes, 141
Proof of technology (PoT), 387
Prototypes, 137, 141–143
Public sector innovation, 48–51
Pushed (or outbound) innovation, 58
Pushed (or outbound) business model, 58
PWYC (pay what you can) business model, 307
PWYW (pay what you want) business model, 307
Qatar Airways, 493
Qmarkets, 225–230
Quality:
 as constraint, 433, 458
 and value, 257
Question marks (in BCG model), 68, 69, 69f, 71
Radical innovation, 20–23, 22f, 129–130, 376
Ramos, Andy, 224
Randhawa, Jag, 2
Ratnakar, Sukant, 317
Ravenscroft, Thurl, 455
Raynor, M., 316, 318
R&D, see Research and development
R&D dominated companies, 101
Readjustment of projects, 111–112, 372
Ready-to-use therapeutic food (RUTF), 51
Recognition, 221, 385, 439
Recruiting, 385
Redwood Credit Union (case study), 223–224
Reinhardt, R., 322
Repsol, 210–214, 212f, 214f
Research:
 development vs., 92–93
 funding cuts for, 67
 licenses needed for, 333
 by Motorola, 385–386
Research and
devolution (R&D):
 contract (outsourced), 101–102
 coupling between marketing, manufacturing, and, 98–99, 98f, 99f
 economic evaluation of projects, 108–111, 110f, 111f
 government influence in, 103–104
 idea sources for strategic planning, 105–107, 106f, 107f
 innovation differentiated from, 4
 life-cycle phases for projects, 128–129
 modeling planning function for, 96–99, 96f–99f
 priority setting in, 99–101
 project readjustments, 111–112
 projects classification, 91–92
 project selection issues, 107–108
 project termination, 112–113
Research and development ratio, 93–94
Resilience, 379
Resources:
 in business case, 165
 changes in availability of, 166
 project workloads, 332–333
 for R&D vs. development projects, 92
Resource management, 213, 215–217, 216f
Resource restrictions, 27
Results, in success pyramid, 383, 383f
Return on investment (ROI), 278–280
Revolutionary innovation, 316
Rewards, 287–288, 385, 397–400, 398f–399f
 not understanding creativity–innovation relationship, 334
 one size fits all, 330
 overcoming, at University of Cincinnati, 349–351
 politics, 332
 prima donnas, 332
 project workloads, 332–333
 sense of urgency, 331
 too many assumptions, 334
 Robben, H. S. J., 362
 Rock David, 343, 345, 345f
 ROI (return on investment), 278–280
 Rule of inversion, 356
 RUTF (ready-to-use therapeutic food), 51
Sabbatical leaves, 104
Safety constraint, 433, 442, 450, 458, 490
Sailer, Richard F., 432
Sales, in project selection, 94
Samit, Jay, 295, 316, 358
Samsung, 392–393
Sanctioned direction, in success pyramid, 382, 383f
Saren, M. A., 58
Satisfied customers, 317
Scaled Agile Framework, 389
Scaling project management innovation, 14–16
SCARF model, 345, 346f
Schedule acceleration, 331
Scheduling, 93, 176
Schumpeter, J., 34
Scientific/technical expertise, 77–81
Scope:
 as Disney constraint, 442–444, 458
 in iron triangle, 354
 in triple constraints, 356, 356f, 357f
Scope change control, 176–178
Scope freeze milestones, 172
Scrum, 160, 389
Secondary value, 11
Secrecy agreements, 103
Sense of urgency, 331
Service innovation, 57
Sewell, Bruce, 312
Shabatat Theory, 180–182
Shareholder value, 10
Sharman, Robin, 116
Shenhar, A. J., 59
Shosteck, Herschel, 508, 528
Sicotte, H., 150
Sinek, Simon, 342
Sippy, Haresh, 103
Sivers, Derek, 127
Sklar, Martin, 431, 439, 446
Sloane, Paul, 13, 65
Small companies, 14
SMART objectives, 170
Smith, Galen K., 379, 380
Snow, C. C., 125
Social innovation, 51–54, 57
Social learning, 200–202
Social media, 390
Soft value metrics, 253–255, 253t, 254t
Software innovation.
See also Innovation management software
HYPE Innovation, 230–241, 232f
IdeaScale, 222–224
Qmarkets, 225–230
SOLiD Framework, 190, 196, 199–200, 200f
Sorensen, Charles E., 329–330
Souder, W., 109, 110f–111f, 112
Sourcing business
model, 306–307
Southwest Airlines, 306
SOW (statement of work), 442–444
Space X, 533
Specifications, 92, 177
Speed, Jeffrey, 470
Speed to market, 221
Spekman, R. E., 308
Spencer, John, 111
Spinoff innovations, 128–129
Sponsors, 60, 151, 335, 506–507
Spotts, Kandace, 387
Srivastava, M. K., 34
Staffing innovation projects, 213, 215–217, 216f, 332
Stage gates, 387–388
Staiano, Edward, 521, 524, 526
Stakeholders:
differing definitions of
success by, 360
failures caused by, 369–370
politics of, 332
pressures on innovation
team by, 331
and product development, 5
for UNICEF Kid
Power, 389–391
and value metrics, 257–258
Stakeholder management,
390, 408–410
Star Alliance, 46–48
Starbucks, 306
Stars (in BCG model), 68, 69f, 71
Statement of work
(SOW), 442–444
Stealth innovation, 57
Stealth projects, 127–128
Stockholders, 5, 360
Storyboards, 436
Storytelling, 140–141, 433–434, 439
Strategic alliances, 308
Strategic assumptions, 168
Strategic benchmarking, 9
Strategic goals/objectives:
alining ideas for
innovation with, 396
alignment of projects and,
275–277, 275f–277f, 355
business, 165, 275–277,
275f–277f, 355
in business case, 165
changes in, 400
decision making based
on, 124–125
defining, 96, 97
in fuzzy front end phase, 117
projects targeted to, 66
of radical vs. incremental
innovation, 21
for UNICEF Kid Power, 391
Strategic innovation, 3
Strategic partnerships, 300
Strategic planning, 63–114
aligning project planning/
execution with, 119
confidentiality agreements, 103
contract (outsourced) R&D
in, 101–102
critical issues/challenges
in, 113–114
economic evaluation of
projects, 108–111,
110f, 111f
Eli Lilly competency
models, 77–88
government influence in R&D
process, 103–104
idea sources for, 105
innovation project manager’s
role in, 64
innovation role in, 66–67
innovation technology
sources, 104
marketing role in strategic
innovation planning, 67–68
marketing’s involvement
with innovation project
managers, 88–90
modeling R&D planning
function in, 96–99, 96f–99f
nondisclosure agreements, 103
and offensive vs. defensive
innovation, 95–96, 95f
portfolio PMO’s role
in, 64–65, 97
priority setting in, 99–101
product life cycles in, 91
product portfolio analysis in,
68–74, 69f–74f
project readjustments, 111–112
project selection
issues, 107–108
project termination, 112–113
R&D projects
classification in, 91–92
research and development ratio in, 93–94
and research vs. development, 92–93
secrecy agreements, 103
strategy types in, 65
SWOT analysis for
core competencies
identification in, 74–77
traditional, 6, 7, 7f
Strategy maps, 147–148
Success:
and business models, 368
business side of, 354–355, 363–364, 364f
business value creation as true measure of, 244, 355
categories of, 359f
and core competencies, 366–368, 367f
criteria for, 244, 371–372, 387
critical issues/challenges with, 383
defined at beginning of a project, 359–360
defined in strategic terms, 354
degrees of, 356, 358–359, 359f
differing definitions of, 251, 354–361, 367
dimensions of, 355
do disruptive innovation, 324, 326, 326f
eyear definitions of, 355–357, 356f, 357f
“failure of,” 329–330
of innovation projects, 353–368, 371–373
of integrated product/project teams, 323–324, 324f
long- and short-term, 362–363
marketing’s role in defining, 360–363, 361f
measures defining, 361, 362
prioritizing factors of, 365–366, 366f
redefining, in recent years, 357–358, 358f
timing of measurement of, 355
of traditional projects, 160, 354–355
value component of, 249
Success pyramid, 382–383, 383f
Suggestion box/system, 220–221
Supply chain, 308
Surowieckipp, J., 525
Sustaining innovation, 315–316
Sustainment period, 365
Sustainment team, 151, 152
Sweeney, J., 143–144
SWOT analysis, 74–77
Sydney Opera House, 354, 496–503
Symonds, Ralph, 502
Systems, totally complex, 22, 22f
Takahashi, Masatomo, 481
Technical expertise, 77–81, 98
Technical failure, 370
Technocampus EMC2, 34
Technology, 12
advanced stages of, 332
as change driver, 386
classifying levels and subsystems of, 367–368
competency-enhancing or -destroying, 366, 367f
development of, 118
disruptive, 316, 320
in iron triangle, 354
levels of, 25, 104
proof of, 387
radical breakthroughs
in, 22, 22f
in Walt Disney Imagineering, 435–436
Technology usage strategy, 65
Teledesic Project, 529
Termination of projects, 112–113, 358, 368
Texas Instruments, 382–385, 383f
Thales Alenia Space, 533
Thinking time, 16
Thoma, Don, 533–534
Thomas, Bob, 449
3M, 128, 384–385
Thyssenkrupp, 419f, 421–424, 422f, 423f
Tidd, J., 14
Time:
as Disney constraint, 445–449, 447f, 458
in Earned Value Measurement System, 355–356
in iron triangle, 354
in triple constraints, 356, 356f, 357f
in value metrics, 268
Time-to-market strategy, 65
Timing:
in business case, 165
of project manager assignment, 167
of success measurement, 355
of value measurement, 255
Todd, Lionel, 500
Tokio Marine and Nichido Systems, 408–410
Tools/processes for innovation, 115–157. See also
Information and knowledge management; Innovation management software
balanced scorecard, 146–147
brainstorming, 138–141
for business model innovation, 301–303
creativity and innovation fears, 143–144
critical issues/challenges with, 156–167
design thinking, 135–138, 136f
fuzzy front end of product development, 117–118
idea generation, 106f, 107f, 127–128
innovation culture, 123–127
innovation governance, 144–145
innovation leadership at Medtronic, 130–133
innovation portfolio management, 148–151, 149f
Tools/processes for innovation (Continued)
innovation project manager skills, 133–135, 134f
innovation sponsorship, 151
innovation team, 151–153, 152f
line of sight, 119
new product development, 116
PM 2.0, 153–156, 154t–156t
PM 3.0, 156, 156t
prototypes, 141–143
reward systems, 129–130
risk management, 119–123, 120f, 121t
spinoff innovations, 128–129
strategy maps, 147–148
transformational governance, 145
Toombs, Leota, 453
Total France (case study), 228–229
Totally complex systems/platforms, 22, 22f
Toyota, 305
Toys “R” Us, 305
Traditional metrics, 264, 264t, 265
Transformational governance, 145
Transmeta Corporation, 311
Triple constraints, 356–358, 357f, 358f; 442. See also individual constraints
Trust, 343, 345, 345f, 379
Trust Equation, 345
TRW, 517
Tuff, Geoff, 209
Uncertainty, 120, 122, 279, 334, 335
UNICEF Kid Power, 51, 388–391
UNICEF USA, 388–391
United Airlines, 491, 493
University of Cincinnati student organization, 349–351
Urgency, sense of, 331
User experience prototypes, 142
Utzon, Jørn, 496, 498–503
Validation:
of assumptions, 169, 169t
at Motorola, 386
of objectives, 169–171
Value, 10–11, 243–292
aesthetic, 437–438
attributes of, 244, 257, 274t
business, see Business value and business models, 298–299
changing concept of, 246–247, 247f, 247t
co-created, 27, 28
combining benefits and, 248–249
converting benefits to, 253f
created by innovation, 138
creating value metrics, 267–273
critical issues/challenges in, 292–293
customer/stakeholder impact on metrics of, 257–258
customer value management programs, 258–261, 259t
dark side of innovation metrics, 288–290
definitions of, 244
dimensions of, 304, 305
effective measurement of, 252–256, 252t–254t, 256f
in establishing culture, 125–126
evolution of value identification, 245–247, 246t
forms of, 10–11, 11f
harvesting, 364–365, 364f
importance of, 29, 29f
innovation value metrics examples, 273–275, 274t
and leadership, 246–248
metrics at InnovationLabs, 277–288
metrics for innovation governance, 277–278
metrics in aligning projects and strategic business objectives, 275–277, 275f–277f
and metrics management program, 290–292
and metrics selection, 264–266
need for value metrics, 249–252, 266–267
perceived, 257, 362
project, 249
and project management, 261–263, 263f
Value-added innovation, 56–57
Value-added reseller (VAR) model, 307
Value-added work, 260
Value chain, 266
Value (or value-driven) innovation, 35–36, 392
Value management methodology (VMM), 256
Value metrics, 252t, 264, 264t. See also Innovation metrics attributes of, 268
creating, 267–273, 269f, 270t–272t
customer/stakeholder impact on, 257–258
effective measurement of, 273–275, 274t
financial, 253t
need for, 245, 249–252, 266–267
value points assigned to, 268–269, 269f
weighting, 269, 270t, 271t, 272–273
Value networks, 298
Value Performance Framework (VPF), 246, 246t
Value proposition, 424–425
Van Der Pilj, P., 297, 301
VAR (value-added reseller) model, 307
Venture teams, 322
Verzuh, Eric, 170
Virtual teams, 152–153
Visual prototypes, 142
VMM (value management methodology), 256
Voice of the customer (VOC), 144, 318
Voltaire, 12
Von Oech, Roger, 368
VPF (Value Performance Framework), 246, 246t
Walker, Carl, 449
Wal-Mart, 305
Walt Disney Company, 139, 431, 460, 464, 465. See also Disney
Walt Disney Imagineering (WDI), 139, 140, 431–441
Wärtsilä Energy Solutions, 424–427, 425f
WBS (work breakdown structure), 175
WDI, see Walt Disney Imagineering
Welch, Jack, 119
Wheelwright, S. C., 23
Williams, Jim, 510
Windolph, John, 523
Wirick, David, 49–51
Work breakdown structure (WBS), 175
Working, new ways of, 16
Working prototypes, 142
Workloads, project, 332–333
Yuasa, 492, 493
Zalk, Bob, 455
Zeitoun, Al, 14n, 15
Zerbib, P., 515
Zhu, Pearl, 59, 68
Zuckerberg, Mark, 378
Zurich North America (ZNA), 386–388