Contents

List of Contributors xiii
Preface xvii

1 The Era of Wireless Information and Power Transfer 1
Derrick Wing Kwan Ng, Trung Q. Duong, Caijun Zhong, and Robert Schober

1.1 Introduction 1
1.2 Background 3
1.2.1 RF-Based Wireless Power Transfer 3
1.2.2 Receiver Structure for WIPT 4
1.3 Energy Harvesting Model and Waveform Design 6
1.4 Efficiency and Interference Management in WIPT Systems 9
1.5 Security in SWIPT Systems 10
1.6 Cooperative WIPT Systems 11
1.7 WIPT for 5G Applications 11
1.8 Conclusion 12
Acknowledgement 13
Bibliography 13

2 Fundamentals of Signal Design for WPT and SWIPT 17
Bruno Clerckx and Morteza Varasteh

2.1 Introduction 17
2.2 WPT Architecture 19
2.3 WPT Signal and System Design 21
2.4 SWIPT Signal and System Design 29
2.5 Conclusions and Observations 33
Bibliography 33

3 Unified Design of Wireless Information and Power Transmission 39
Dong In Kim, Jong Jin Park, Jong Ho Moon, and Kang Yoon Lee

3.1 Introduction 39
3.2 Nonlinear EH Models 40
3.3 Waveform and Transceiver Design 43
3.3.1 Multi-tone (PAPR) based SWIPT 43
3.3.2 Dual Mode SWIPT 48
3.4 Energy Harvesting Circuit Design 53
3.5 Discussion and Conclusion 58
Bibliography 58

4 Industrial SWIPT: Backscatter Radio and RFIDs 61
Panos N. Alevizos and Aggelos Bletsas
4.1 Introduction 61
4.2 Wireless Signal Model 62
4.3 RFID Tag Operation 64
4.3.1 RF Harvesting and Powering for RFID Tag 64
4.3.2 RFID Tag Backscatter (Uplink) Radio 65
4.4 Reader BER for Operational RFID 68
4.5 RFID Reader SWIPT Reception 69
4.5.1 Harvesting Sensitivity Outage 69
4.5.2 Power Consumption Outage 70
4.5.3 Information Outage 71
4.5.4 Successful SWIPT Reception 71
4.6 Numerical Results 72
4.7 Conclusion 76
Bibliography 76

5 Multi-antenna Energy Beamforming for SWIPT 81
Jie Xu and Rui Zhang
5.1 Introduction 81
5.2 System Model 84
5.3 Rate–Energy Region Characterization 87
5.3.1 Problem Formulation 87
5.3.2 Optimal Solution 90
5.4 Extensions 93
5.5 Conclusion 94
Bibliography 95

6 On the Application of SWIPT in NOMA Networks 99
Yuanwei Liu and Maged Elkashlan
6.1 Introduction 99
6.1.1 Motivation 100
6.2 Network Model 101
6.2.1 Phase 1: Direct Transmission 101
6.2.2 Phase 2: Cooperative Transmission 104
6.3 Non-Orthogonal Multiple Access with User Selection 105
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1</td>
<td>RNRF Selection Scheme</td>
<td>105</td>
</tr>
<tr>
<td>6.3.2</td>
<td>NNNF Selection Scheme</td>
<td>108</td>
</tr>
<tr>
<td>6.3.3</td>
<td>NNFF Selection Scheme</td>
<td>111</td>
</tr>
<tr>
<td>6.4</td>
<td>Numerical Results</td>
<td>112</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Outage Probability of the Near Users</td>
<td>112</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Outage Probability of the Far Users</td>
<td>115</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Throughput in Delay-Sensitive Transmission Mode</td>
<td>116</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusions</td>
<td>117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Fairness-Aware Wireless Powered Communications with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processing Cost</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Zoran Hadzi-Velkov, Slavche Pejoski, and Nikola Zlatanov</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>121</td>
</tr>
<tr>
<td>7.2</td>
<td>System Model</td>
<td>122</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Energy Storage Strategies</td>
<td>124</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Circuit Power Consumption</td>
<td>124</td>
</tr>
<tr>
<td>7.3</td>
<td>Proportionally Fair Resource Allocation</td>
<td>125</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Short-term Energy Storage Strategy</td>
<td>125</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Long-term Energy Storage Strategy</td>
<td>127</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Practical Online Implementation</td>
<td>130</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Numerical Results</td>
<td>131</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion</td>
<td>133</td>
</tr>
<tr>
<td>7.5</td>
<td>Appendix</td>
<td>133</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Proof of Theorem 7.2</td>
<td>133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Bibliography</td>
<td>136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Wireless Power Transfer in Millimeter Wave</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Talha Ahmed Khan and Robert W. Heath Jr.</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>139</td>
</tr>
<tr>
<td>8.2</td>
<td>System Model</td>
<td>141</td>
</tr>
<tr>
<td>8.3</td>
<td>Analytical Results</td>
<td>143</td>
</tr>
<tr>
<td>8.4</td>
<td>Key Insights</td>
<td>147</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusions</td>
<td>151</td>
</tr>
<tr>
<td>8.6</td>
<td>Appendix</td>
<td>153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Bibliography</td>
<td>154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Wireless Information and Power Transfer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in Relaying Systems</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>P. D. Diamantoulakis, K. N. Pappi, and G. K. Karagiannidis</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>157</td>
</tr>
<tr>
<td>9.2</td>
<td>Wireless-Powered Cooperative Networks with a Single</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Source–Destination Pair</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Bibliography</td>
<td>158</td>
</tr>
</tbody>
</table>
9.2.1 System Model and Outline 158
9.2.2 Wireless Energy Harvesting Relaying Protocols 159
9.2.3 Multiple Antennas at the Relay 161
9.2.4 Multiple Relays and Relay Selection Strategies 163
9.2.5 Power Allocation Strategies for Multiple Carriers 166
9.3 Wireless-Powered Cooperative Networks with Multiple Sources 168
9.3.1 System Model 168
9.3.2 Power Allocation Strategies 169
9.3.3 Multiple Relays and Relay Selection Strategies 173
9.3.4 Two-Way Relaying Networks 175
9.4 Future Research Challenges 176
9.4.1 Nonlinear Energy Harvesting Model and Hardware Impairments 176
9.4.2 NOMA-based Relaying 176
9.4.3 Large-Scale Networks 176
9.4.4 Cognitive Relaying 177
Bibliography 177

10 Harnessing Interference in SWIPT Systems 181
Stelios Timotheou, Gan Zheng, Christos Masouros, and Ioannis Krikidis
10.1 Introduction 181
10.2 System Model 183
10.3 Conventional Precoding Solution 184
10.4 Joint Precoding and Power Splitting with Constructive Interference 185
10.4.1 Problem Formulation 186
10.4.2 Upper Bounding SOCP Algorithm 188
10.4.3 Successive Linear Approximation Algorithm 190
10.4.4 Lower Bounding SOCP Formulation 191
10.5 Simulation Results 192
10.6 Conclusions 194
Bibliography 194

11 Physical Layer Security in SWIPT Systems with Nonlinear Energy Harvesting Circuits 197
Yuqing Su, Derrick Wing Kwan Ng, and Robert Schober
11.1 Introduction 197
11.2 Channel Model 200
11.2.1 Energy Harvesting Model 201
11.2.2 Channel State Information Model 203
11.2.3 Secrecy Rate 204
11.3 Optimization Problem and Solution 204
Bibliography 204
11.4 Results 208
11.5 Conclusions 211
Appendix-Proof of Theorem 11.1 211
Bibliography 213

12 Wireless-Powered Cooperative Networks
with Energy Accumulation 217
Yifan Gu, He Chen, and Yonghui Li
12.1 Introduction 217
12.2 System Model 219
12.3 Energy Accumulation of Relay Battery 222
12.3.1 Transition Matrix of the MC 222
12.3.2 Stationary Distribution of the Relay Battery 224
12.4 Throughput Analysis 224
12.5 Numerical Results 226
12.6 Conclusion 228
12.7 Appendix 229
Bibliography 231

13 Spectral and Energy-Efficient Wireless-Powered
IoT Networks 233
Qingqing Wu, Wen Chen, and Guangchi Zhang
13.1 Introduction 233
13.2 System Model and Problem Formulation 235
13.2.1 System Model 235
13.2.2 T-WPCN and Problem Formulation 236
13.2.3 N-WPCN and Problem Formulation 237
13.3 T-WPCN or N-WPCN? 237
13.3.1 Optimal Solution for T-WPCN 238
13.3.2 Optimal Solution for N-WPCN 239
13.3.3 TDMA versus NOMA 240
13.4 Numerical Results 243
13.4.1 SE versus PB Transmit Power 243
13.4.2 SE versus Device Circuit Power 245
13.5 Conclusions 245
13.6 Future Work 247
Bibliography 247

14 Wireless-Powered Mobile Edge Computing Systems 253
Feng Wang, Jie Xu, Xin Wang, and Shuguang Cui
14.1 Introduction 253
14.2 System Model 256
14.3 Joint MEC-WPT Design 260
14.3.1 Problem Formulation 260
14.3.2 Optimal Solution 260
14.4 Numerical Results 266
14.5 Conclusion 268

Bibliography 268

15 Wireless Power Transfer: A Macroscopic Approach 273

Constantinos Psomas and Ioannis Krikidis

15.1 Wireless-Powered Cooperative Networks with Energy Storage 274

15.1.1 System Model 274
15.1.2 Relay Selection Schemes 276
15.1.3 Numerical Results 280

15.2 Wireless-Powered Ad Hoc Networks with SIC and SWIPT 282

15.2.1 System Model 282
15.2.2 SWIPT with SIC 284
15.2.3 Numerical Results 285

15.3 A Wireless-Powered Opportunistic Feedback Protocol 286

15.3.1 System Model 287
15.3.2 Wireless-Powered OBF Protocol 290
15.3.3 Beam Outage Probability 290
15.3.4 Numerical Results 292

15.4 Conclusion 293

Bibliography 294

Index 297