INDEX

AR4, 4th assessment report for the IPCC (Intergovernmental Panel for Climate Change)
future scenarios, 73–89
future climate, 76–77, 77f, 78f, 79f
future simulation and, 82–86, 84f, 85f, 86f, 87f

Biogeochemistry, 4, 41, 42, 48, 49
Biogeochemistry module, MC1, 5–7, 9f, 10t, 13 73–74
Biogeography, 4, 41–42, 43–48, 51
Biogeography module, MC1, 5, 6f, 6t, 7f, 7t, 73
Biomass thresholds, 5, 8t
BIOME2 model, 3
BIOME-BGC model, 4
Buildup index (BUI), 12, 88, 120
California, 4. See also Sierra Nevada
Canada 73–89
climate and, 77, 78f, 79f
future, 76–77, 77f
input data for, 74–77
soil, 74–75, 75f
methods of, 74–77
results of, 77–86
simulation and
future, 82–86, 84f, 85f, 86f, 87f
Carbon dynamics
climate and suppression effects on, 17–27
fire module and, 19
fire suppression and, 21–24, 25f, 26
NECB, 49
nitrogen dynamics and, 105
Carbon exchange, 49
Carbon pools, 5, 9f
Carbon sequestration, 26
CENTURY model, 4. See also MC1 model
biogeochemistry module and, 5, 13
MAPSS and, 43
nutrient cycling in, 36
CGCM2. See Coupled Global Climate Model version 2
Climate
DGVM simulation and, 75–77, 78f, 79f
ecosystem change and, 91–108
effects of, 3
fire, simulated, and, 17–27
fire area and, 21
fire occurrence and, 24
future, 76–77, 77f
ecosystem change and, 98–99
historical, 75–76
warming, in PNW, 106–7
Climate change, 3
ecosystems and, 42
restoration of, 18, 27
management decisions and, 154
martens and fishers in Sierra Nevada and, 135–47
Data Basin gallery for, 173
current distribution of, 136–41, 137t, 140t, 144–46
future projections for, 139–40, 139t, 142–43, 143f,
144f, 145f, 146–47
natural resource management and, 168–69
protected areas and, 171
Climate-induced changes
in fire frequency, 157
in VT, 156–57, 157f
Climate-informed STSMs (cSTSMs), 153
application in central Oregon
climate data for, 158
MC1 calibration for, 158
MC1 simulation results for, 158–59, 159f, 160, 161f, 162f
application in WCR
climate data for, 163
MC2 calibration for, 163, 164f, 165f
MC2 simulation results for, 164–66, 167f
developing, 155–57, 155f
Climate zone thresholds, 5, 7t, 8t
CMIP3. See Coupled Model Intercomparison Project Phase 3
CMIP5. See Coupled Model Intercomparison Project Phase 5
CO2
atmospheric, 106
effect, in MC1 model, 35–36, 118
FACE and, 69
Conservation Planning Atlases (CPAs), 174
Coupled Global Climate Model version 2 (CGCM2), 62–63
Coupled Model Intercomparison Project Phase 3 (CMIP3), 93
Coupled Model Intercomparison Project Phase 5 (CMIP5), 74
CPAs. See Conservation Planning Atlases
CSIRO Mk2, 63
cSTSMs. See Climate-informed STSMs

Data Basin
creation of, 171–72
galleries, 172, 174f
Guide & Case Study, 173, 173f
martens and fishers in Sierra Nevada and, 173
MC1 results and, 171–75
groups, 172

Edited by Dominique Bachelet and David Turner.
© 2015 American Geophysical Union. Published 2015 by John Wiley & Sons, Inc.
Data Basin Gateways, 172
MC1 data in, 174–75, 175f
DGVM. See Dynamic Global Vegetation Model
Digital General Soil Map, United States, 12
Drought
PDSI, 14, 21, 22f
threshold, 52
wildfire occurrence and, 24–26
Dynamic global vegetation model (DGVM), 5, 18.
biogeochemistry component in, 42
ecosystem carbon exchange and, 49
nutrient cycling and, 48
biogeography component in, 42
calibration of, 51
general considerations on, 43–48
physiognomic classification in
moisture zones, 47–48
thermal zones, 46–47
vegetation water balance, 47–48
vegetation change, 52–54
vegetation classification, 44, 45f
calibration, 50–52
biogeography rules and, 51
fire observations and, 52
soil hydrology, 52
continent-wide simulation of, 73–89
climate, 76–77, 77f, 78f, 79f
EQ, spinup, 75–76
future simulation and, 82–86, 84f, 85f, 86f, 87f
historical simulation and, 77–81, 80f, 81f, 82f, 83f, 84f
input data, 74–77
results of, 77–86
simulation protocol, 74
soil input data, 74–75, 75f
disturbance and, 49–50
fire, wildfires, 52–54, 53f
fire suppression in, 50
making of, 41–56
general concept used in, 42–43
rationale for, 41–42
management decisions informed by, 153–69
comparing results across landscapes for, 166–67
scaling issues, 52–54
validation, 50–52
ECHAM4.5, 13
Ecosystem
carbon exchange in, 49
climate change and, 18, 27, 42
dynamics, models of, 3–4
NEP, 49
restoration of, 18, 27
Ecotone, Ecotonal region, 4, 46, 47, 51, 101, 115, 116, 130
EEMS. See Environmental evaluation modeling system
Emission scenario
A2, 63–64
B2, 63–64
SRES, 74
Energy release component G (ERC-G), 14
ENSO, 21, 23f
Environmental evaluation modeling system (EEMS), 171
Equilibrium phase, EQ, MC1, 12–13, 75–76
protocol and, 34
ERC-G. See Energy release component G
Evapotranspiration (ET), 88
FACE (free-air CO2 enrichment), 69
Fine-fuel moisture code (FFMC), 12, 88, 120
Fire
climate and, 17
DGVM, 52, 53f
PNW and, 91–108
effects of, 19
event simulation, 37
forecast model, 13–14
ponderosa pine and, 131
potential, 12, 14
prescribed, 118–19
tree mortality due to, 118
in United States, 20–21, 21f, 22f
Fire area, 18–19
climate and, 21
observed vs. simulated, 19, 20f
Fire frequency
climate-induced changes in, 157
future, 122–23, 124f
Fire module, MC1, 7–12, 24–26, 74, 108
potential fire behavior, 12
climatic thresholds, 24
fire distribution, 20, 21f
seasonal timing of fires, 21, 22f
Fire regimes, 17–18
in PNW, 92
in United States, 18
VT and, 26–27
Fire return intervals (FRIs), 12, 88, 108
WCNP and, 116
Fire suppression, 17–27, 37, 50, 118
carbon dynamics and, 21–24, 25f, 26
carbon sequestration and, 26
climate, 17–27
ecosystem change and, 103–4, 104f
NBP and, 23, 24f
in United States, 27
Fishers (Pekania pennanti), 135–47
Data Basin gallery for, 173
distribution of, 136–41, 137t, 140t, 144–46
future projections for, 139–40, 139t, 142–43, 143f, 144f, 145f, 146–47
Forest
Northwest Forest Plan, 162
Olympic National Forest, 161–62
Forest vegetation simulator (FVS), 154
Free-air CO2 enrichment. See FACE
FRIs. See Fire return intervals
Fuel moisture, 1, 10, 100, 1000-hour, 14
Fuel partitioning, 118
FVS. See Forest vegetation simulator

Galleries, Data Basin, 174f
 martens and fishers in Sierra Nevada, 173
 MC1 and, 172–74
 VINCERA, 172
GCMs. See General circulation models
GDD. See Growing degree-days
General circulation models (GCMs), 13, 74, 154
 spatial scales, 31
GHG. See Greenhouse gas
GIS. See Geographic information system
Grass production
 for NSO, 164–65, 168f
 for ponderosa pine, 130–31
HadCM3, 63
High arctic, 47
Historical phase, MC1, 13
Historical projection, 120–21, 121f, 122f, 122t, 123f, 123t
Human legacy, 34–35
Hydrology
 MC1, 88–89
 soil, 52
Hysteresis, 51

Integrated Landscape Assessment Project (ILAP), 173
Invasive species, 37

LAI. See Leaf area index
Landscape Conservation Cooperatives (LCCs), 172, 174
Landscape legacy, 36
LCCs. See Landscape Conservation Cooperatives
Leaf area index (LAI), 51
Lifeform interpreter, MC1, 5, 6t, 7f
LPJ (Lund-Postdam-Jena) model, 131

Management decisions
 climate change and, 154
 cSTSM and
 application in central Oregon, 158–60
 application in WCR, 160–66
 developing, 155–57
 DGVM and informing, 153–69
 fire suppression and, 23, 24t
 VINCERA and, 64, 67, 68f, 70f
 Net ecosystem carbon balance (NECB), 49
 Net ecosystem production (NEP), 49
 fire module, MC1 and, 19
 Northern Great Plains region (NGP), 132
 Northern Spotted Owl (NSO)
 habitat, 168f
 vegetation and habitat of, 164–65
 Northwest Forest Plan, 162
 NPP. See Net primary production
 NSO. See Northern Spotted Owl
 MAP. See Mean annual precipitation
 MAPSS-CENTURY 1. See MC1 model
 MAXENT, 135–47
 discussion of, 143–47
 methods of, 136–40
 results of, 140–43
 MC1 model
 Bibliography, 177–180
 Caveats, chapter 3, 31–40
 Description, chapters 1 and 4, 3–16, 41–60
 Fire module, chapter 2, 17–30
 North America, chapter 6, 73–90
 PNW, chapter 7, 91–114
 Sierras, chapter 9, 135–152
 VEMAP, chapter 1, 3–16
 VINCERA, chapter 5, 61–72
 VDDT, chapter 10, 153–170
 Web access, chapter 11, 171–176
 WCNP and NGP, chapter 8, 115–134
 MC2 model, 14, 174
 cSTSM and, 163, 164f, 165f, 167
 MCMs. See Monte Carlo multipliers
 Mean annual precipitation (MAP), 95
 Moisture zones, 47–48
 Monte Carlo multipliers (MCMs), 157

 Natural resource management, 168–69. See also
 Management decisions
 NBP. See Net biome production
 NECB. See Net ecosystem carbon balance
 NEP. See Net ecosystem production
 Net biome production (NBP), 49
 fire suppression and, 23, 24t
 VINCERA and, 64, 67, 68f, 70f
 Net ecosystem carbon balance (NECB), 49
 Net ecosystem production (NEP), 49
 Net primary production (NPP), 49
 VINCERA and, 64, 67, 68f
 NGP. See Northern Great Plains region
 La Niña year, 20–21
 Nitrogen
 carbon dynamics and, 106
 ecosystem change and, 91, 104–6, 105f
 fire module, MC1 and, 19
 in MC1, 36, 108
 Northern Great Plains region (NGP), 132
 Northern Spotted Owl (NSO)
 habitat, 168f
 vegetation and habitat of, 164–65
 Northwest Forest Plan, 162
 NPP. See Net primary production
 NSO. See Northern Spotted Owl
Nutrient cycling
in CENTURY model, 36
in DVGM biogeochemistry, 48
Nutrient limitation, in MC1, 36

Olympic National Forest, 161–62
Olympic National Park, 161–62
Oregon, cSTSM application in. See also Pacific Northwest, US
climate data for, 158
MC1 calibration for, 158
MC1 simulation results for, 158–59, 159f
results of, 160, 161f, 162f
scenarios for, 159–60, 160t

Pacific Northwest, US (PNW), 92f
climate in, 91–108
ecosystem change in, 91–108
atmospheric CO₂ and, 106
calibration and historical simulations for, 95–98, 96f, 97f, 98f, 99f
fire and fire suppression for, 103–4, 104f
future climate projections for, 98–99
future ecosystem changes and, 99–103, 100t, 101f, 102f, 103f
model and input data for, 93–94, 94t
model calibration for, 94–95
precipitation variability and, 106
results for, 95–106
ecosystems in, 92
fire regimes in, 92
vegetation changes in, 92–93, 100–101
warming climates in, 106–7

Palmer Drought Severity Index (PDSI), 14, 21, 22f

Parameter-elevation Regressions on Independent Slopes Model (PRISM), 32
PDO (Pacific Decadal Oscillation), 21, 23f
PDSI. See Palmer Drought Severity Index

Pekania pennanti. See Fishers

PFT. See Plant functional type

Physiognomic classification
in DGVM, 46–48
moisture zones and, 47–48
thermal zones, 46–47
vegetation water balance and, 47–48

Plant functional type (PFT)
biogeography and, 44
in MC1, 44, 45f
rules, 43–44

PNW. See Pacific Northwest, US

Ponderosa pine
fire and, 131
MC1 and, 130–31
Potential fire behavior, 12
Potential vegetation, 73
MC1 and, 34–35
Potential vegetation classes (PVCs), 155–56, 156f

Potential vegetation types (PVTs)
NSO habitat and, 165
STM, 155–56, 156f

Precipitation
ecosystem change and, 106
MAP, 95
SPI, 14, 18
Prescribed fires, 118–19
Pre-suppression fire regimes, 18

PRISM. See Parameter-elevation Regressions on Independent Slopes Model

Process model projections, 131
Protected areas, 172
cclimate change and, 171
PVCs. See Potential vegetation classes
PVTs. See Potential vegetation types

Quasi-stationary stable states, 51

RCMs. See Regional climate models
Refugia, 35

Regional climate models (RCMs), 154

Scale-related challenges
of DGVM, 52–54
of MC1
dispersal mechanisms and refugia, 35
input data: soils and, 32–34, 32f, 33f
potential vegetation and human legacy, 34–35
protocol and, 34

Sheffield DGVM (SDGVM), 62
MC1 model and, 64–69, 68f

Sierra Nevada, California, martens and fishers in, 135–47
Data Basin gallery for, 173
future projections for, 139–40, 139t, 142–43, 143f, 144f, 145f, 146–47
species distribution and, 136–41, 137t, 140t, 144–46

Simulation modeling
DVGM, 42, 73–89
methods of, 74–77
protocol for, 74–76
soil input data, 74–75, 75f
ecosystem change and, 95
fire and carbon dynamics, 17–27
fire area, 19, 20f
fire occurrence
distribution and, 20, 21f
simulated seasonal timing and, 21, 22f
fire and climate and, 17–27, 37
fire suppression, 17–27, 37
WCNP fire, 116
future, 82–86, 84f, 85f, 86f, 87f
historical, 77–81, 80f, 81f, 82f, 83f, 84f
ecosystem change and, 95–98, 96f, 97f, 98f, 99f
in MC1, 43
STSM, 153

Simulation protocol, 74, 119–20
Soil
 DGVM simulation and, 74–75, 75f
 hydrology, calibration in DGVM of, 52
 MC1 and, 32–34, 32f, 33f
 moisture, 26
 VINCERA and, 64, 67, 67t
Soil Survey Geographic database. See SSURGO
Spatial heterogeneity, in MC1, 36
Spatial scales, DGVM, 31–32
Special Report on Emissions Scenarios (SRES), 74
Species distribution
 martens and fishers in Sierra Nevada and, 136–41,
 137t, 140t, 144–46
 models, 131
SPI. See Standardized Precipitation Index
Spinup,
 DGVM simulation and, 75–76
 MC1, 13
 protocol and, 34
SRES. See Special Report on Emissions Scenarios
SSURGO (Soil Survey Geographic) database, 33–34
Standardized Precipitation Index (SPI), 14, 18
State-and-transition models (STMs), 154
 fire frequency and, 157
 PVTs, 155–56, 156f
 VT changes and, 156–57, 157f
State-and-transition simulation model (STSM), 153
STATSGO (State Soil Geographic) database, 32–34
STMs. See State-and-transition models
STSM. See State-and-transition simulation model
System stage change, fire and, 52, 53f

Theodore Roosevelt National Park, 132
Thermal zones, 46–47
Transient phase, MC1, 34
Tree distribution, 123–25, 125f, 126f
Tree-grass competition, 117–18
Tree type determination, 44, 45t

United States. See also Pacific Northwest, US
 General Soil Map, 12
 DVGM simulation over, 73–89
 climate, 75–77, 78f, 79f
 future climate, 76–77, 77f
 future simulation and, 82–86, 84f, 85f, 86f, 87f
 historical simulation and, 77–81, 80f, 81f, 82f, 83f, 84f
 results of, 77–86
 soil input data, 74–75, 75f
 fire activity in, 20–21, 21f, 22f
 fire regimes in, 18
 fire suppression in, 27
 wildfire occurrence in, 26
Vapor pressure deficit (VPD), 43
Vegetation. See also Potential vegetation
classification, in DGVMs, 44, 45f
classifier, MC1, 5, 7t, 8t, 44
DGVM, in 52–54
distribution, 3–4
NSO habitat and, 164–65
VEMAP, 3–4, 32
water balance, 47–48
Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), 32
model MC1 history and, 3–4
Vegetation models
 general, 41
Vegetation type (VT)
 in biogeography, 43–44
 climate-induced changes and, 156–57, 157f
 fire module and, 18–19
 fire regime and, 26–27
 rules, 43–44
VEMAP. See Vegetation/Ecosystem Modeling and Analysis Project; Vegetation Ecosystem Modeling and Analysis Project
VINCERA (Vulnerability and Impacts of North American Forests to Climate Change: Ecosystem Response and Adaptation) project, 61–70
 CO₂ concentrations and, 69
 Data Basin gallery and, 172
 methods
 climate inputs, 62–64, 64t, 65f, 66f
 DGVMs, 62, 63t, 69–70
 soils input, 64
 results, 64–67
VPD. See Vapor pressure deficit
VT. See Vegetation type
Vulnerability and Impacts of North American Forests to Climate Change: Ecosystem Response and Adaptation project. See VINCERA

Warming climates, in PNW, 106–7
Washington Coast Range (WCR)
cSTSM application in
 climate data for, 163
 MC2 calibration for, 163, 164f, 165f
 results of, 165–66, 167f
 scenarios for, 164, 166t
 NSO habitat and vegetation in, 164–65
 Olympic National Forest, 161–62
Water balance
 in MC1 model, 47
Water use efficiency (WUE), 48
WCNP. See Wind Cave National Park
WCR. See Washington Coast Range
Western Wildland Environmental Threat Assessment Center (WWETAC), 174
Wildfire
 in DGVM, 52–54
 in MC1 model, 49
 occurrence of, 24–26
 in United States, 26
Wind Cave National Park (WCNP)
 ecosystem, 115–16
 fire frequency in, 115
 MC1 application to, 115–32
 data inputs for, 119, 119f
 fire frequency and, 122–23, 124f
 grass production and, future, 125–28, 129f, 130f
 historical projection for, 120–21, 121f, 122f, 122t, 123f, 123t
 ponderosa pine habitat and, 130–31
 results for, 120–28
 tree distribution and, 123–25, 125f, 126f
 WUE. See Water use efficiency
 WWETAC. See Western Wildland Environmental Threat Assessment Center

Yosemite National Park (YNP), MC1 model for, 32–33, 33f, 173

Zone thresholds, 46, 46t
 climate, 5, 7t, 8t