Index

A
Accountable Advertising (Broadbent), 281
ACF (autocorrelation function plot), 205–207, 212–219, 225
ACNielsen/IRI, 253, 257, 278
Additive seasonal adjustment, 151–156
Adjusted R^2, 180–181
Adstock transformations, 279–282
Advertising:
adstock transformations, 279–282
gross rating points, 162, 165–170, 261, 279–282
targeted rating points, 176
Aerospace industry, 27, 319–351
Anova (variance of analysis), 178–180
AR (autoregression), 204–206, 222, 225
ARIMA models:
about, 49, 85–86, 136, 203–204
Box-Jenkins overview, 84–85, 225–226
challenges applying, 254
exponential smoothing versus, 131
extending to include explanatory variables, 226–229
forecastability, 100
model results, 234–235
numerators and denominators, 229–230
phase 1: identifying tentative model, 204–213
phase 2: estimating parameter coefficients, 213–216
phase 3: creating forecasts, 216
rational transfer functions, 230–234
seasonal, 216–225
stationarity of, 208–212
step functions, 194
strengths and weaknesses, 236
transfer functions, 229
unexplained randomness and, 82
weighted combined forecasting, 243–247
ARIMAX model:
about, 49, 86, 226
demand shaping and, 51
unexplained randomness and, 82
ARMA (autoregressive moving average), 204–206, 225, 229–230
Armstrong, Scott, 22, 240–241
Autocorrelation, 187–191, 210–213
Autocorrelation function plot (ACF), 205–207, 212–219, 225
Autoregression, 204–206, 222, 225
Autoregressive moving average (ARMA), 204–206, 225, 229–230
B
Balanced scorecard report, 121
Bankruptcy, 23
Bates, James, 239
Benchmarking forecast accuracy, 104–105
Best fit, line of, 161
Beverage examples:
ARIMA models, 206–235
identifying patterns in, 80–81
MTCA case study, 259–275
out-of-sample measurement, 116–117
regression analysis, 162–166, 171–179, 189–198
time series methods, 132–134, 137–141, 145–147, 150–155
weighted combined forecasting, 243–248
BI (business intelligence), 52, 64–65
Bias. See Personal bias
Big data, 7
Box, George, 203
Box-Jenkins approach:
about, 84–85, 136, 203–204, 225–226
forecastability, 100
phase 1: identifying tentative model, 204–213, 224–225
phase 2: estimating parameter coefficients, 213–216
phase 3: creating forecasts, 216
Broadbent, Simon, 281
Brown's double method, 85
Bullwhip effect, 43, 61–62, 70
The Business Forecasting Deal (Gilliland), 20
Business intelligence (BI), 52, 64–65

C
Candidate products, 292–293, 296–303
Causal models:
about, 49–50, 84, 86
advantages of, 87
commonly used, 86–87
disadvantages of, 87
MTCA, 253–282
CCF (cross correlation function) plot, 231–232
Change management, champion supporting, 16–17, 23, 52–53, 69–71
Chapter 11 bankruptcy, 23
Cochrane-Orcutt procedure, 188
Coefficient of determination (R²), 165–166, 175–176
Collaboration across organization, 51, 65–66, 70
Collecting data, 5
Communication considerations, 65–67
Competitiveness of environment, 91
Computer manufacturing examples, 26–27, 46–47
Confidence intervals, 184–186
Consensus forecasting:
demand management process and, 64–65
unconstrained demand and, 18–21, 66, 119
Constrained demand, 17–20
Consumer packaged goods companies. See CPG (consumer packaged goods) companies
Continuous improvement in business processes, 53
Corporate champions, 4–5
Correlation coefficient, 85, 163–165
Correlation matrix, 173–175
CPG (consumer packaged goods) companies. See also Beverage examples
demand example, 59–60
demand management, 8–9
demand sensing and, 41, 43–45, 59–61
MTCA case study, 253–282
new product forecasting, 288–292
Cross correlation function (CCF) plot, 231–232
Cross-correlations, 231
Cumulative percent series data, 290–291
Cumulative series data, 290–291
Cycle index, 288–291
Cycle series data, 288–291

D
Data aggregation, 4–6, 90, 103
Data collection, 5–6, 70
Data management, 7
Data periodicity, 168
Data processing, 6–7
Data sources, 36–37, 59, 128
Data storage, 5–7
Data visualization, 170–173
Decay rate, 265–266, 280–282
Decomposition method (time series), 85, 132, 136
Degrees of freedom, 180, 197
Demand-driven forecasting:
about, 31–75
ARIMA models, 203–237
benefits of, 68–70
challenges of, 3, 32, 71–74
forecasting methods overview, 77–101
management model for, 49
measuring performance, 103–124
misconceptions about, 3–4
MTCA case study, 253–282
myths versus reality, 1–29
process overview, 58
product forecasting, 283–316
real-time, 33
regression analysis and, 159–202
strategic value assessment, 317–353
three-scoop ice cream approach, 54–56
using time series data, 125–158
weighted combined forecasting methods, 239–251

Demand management:
changing processes, 57–65, 68–71
communication considerations, 65–67
historical-based approach, 34–37
linking KPIs and metrics to, 65
measuring success, 67–68
traditional demand generation model, 37–39
transitioning from traditional, 33–34
Demand sensing:
about, 2, 41, 50
changing demand management processes, 57–59
in CPG industry, 41, 43–45, 59–61
forecast error and, 91–92
key elements in, 41–42
MTCA case study, 253–282
process overview, 58
regression analysis and, 160
system inadequacies in, 48–49
Demand shaping:
about, 2, 41, 45, 50
demand shifting versus, 47

Econometrics, 9, 159, 254
EDI (electronic data interchange), 59
Elasticities, 183–184
Electronic data interchange (EDI), 59
End-cap displays, 10–11, 28n
ERP (enterprise resource planning), 7, 37
ETL tool, 67, 260
Events (interventions), 193–195
Evolutionary new products, 284–286
Excel spreadsheets, 6–7
Explanatory variables. See
Independent variables
Exponential smoothing (time series):
about, 3, 49, 85, 142–143, 145
ARIMA model versus, 131
flaws using, 37
gut-feeling judgments and, 12, 35
Holt’s two-parameter method and,
49, 85, 147–149, 158
regression analysis and, 162–163
single, 143–150
Winters’ three-parameter method,
49, 85, 131, 149–156, 158

F
Fast-food restaurant example, 26–27
Fildes, Robert, 35–36, 38
Filter step (new product forecasting),
 293, 303–305
Financial assessment of sales and
marketing strategies, 61–65
First difference, 209–212
Flat forecasts, 147
Ford, Henry, 36
Forecastability, 94–101
Forecast accuracy, 106–107. See also
 Forecast error
Forecast attainment, 105–106
Forecast error:
 bias and, 18
 causes of, 91–94
 correcting automatically, 144–145
 measuring, 111–115, 127–128
 misunderstanding of, 104
 standard statistical error terms,
 107–111
 supply-driven strategies and,
 39–40
 time horizon and, 93
Forecasting. See Demand-driven
forecasting
Forecasting methods:
about, 77–79
categories of, 83–87
causes of forecast error, 91–94
choosing, 94–101
factors influencing effectiveness of,
 89–91
predictability of the future, 88–91
underlying methodology, 79–83
Forecast step (new product
forecasting), 293, 308–313
Forecast value added (FVA), 16–17,
 20, 118–122
Foresight (publication), 35, 108
Frozen food manufacturer example,
 54–56
F-test, 178–180, 227
FVA (forecast value added), 16–17,
 20, 118–122

G
Gilliland, Mike, 20
Goodness of fit:
 about, 127
 adjusted R² and, 180–181
 mean absolute percentage error
 and, 113
 ordinary least squares and, 162
Goodwin, Paul, 35–36, 38
Granger, Clive, 239
GRPs (gross rating points), 162,
 165–170, 261, 279–282
Gut-feeling judgment, 8–10, 12,
 35–36

H
High-Performance Analytics
 (HPA), 8
Hildreth-Lu procedure, 188
Hold-and-roll (snowplowing), 22–23
Hold-out data sets, 116
Holt, Charles C., 147
Holt’s two-parameter method:
 about, 49, 85, 158
 ARIMA models and, 235
 single exponential smoothing and,
 147–149
Holt’s-Winters’ method. See Winters’
 three-parameter method
Household products example, 21–25
HPA (High-Performance Analytics), 8
I

IACF (inverse autocorrelation function plot), 206, 212
Independent variables:
 adjusted R² and, 180–182
 ARIMA models and, 226–229
 autocorrelation and, 188–190
 correlation matrix and, 173–175
 data visualization examples, 171–173
 dummy variables and, 197
 evaluating, 199–200
 MTCA process and, 259
 multicollinearity and, 175–178
 multiple regression and, 168–170
 parameter estimates, 181–184
 simple regression and, 86, 161
 t-test and, 184–185
 variance inflation factor and, 186–187
Informed judgment, domain knowledge and, 12–13, 49
In-sample data sets, 116, 129–130
In-store merchandising, 278–279
Intermittent demand models, 49
International Institute of Forecasters, 131
Interventions (events), 193–195
Intervention (dummy) variables, 191–197
Inverse autocorrelation function plot (IACF), 206, 212

J

Jenkins, Gwilym, 203
Judgmental methods. See Qualitative methods
Judgmental overrides, 11–13, 16–17, 35–36

K

KPIs (key performance indicators):
 demand management and, 34, 66, 69
 poor forecasting and, 318

L

Latency, 42–43
Law of large numbers, 89–90
Least squares estimate, 161
Level shifts (step functions), 194
Levins, Robert, 240
Line graphs, 170–173
Line of best fit, 161

M

MA (moving average). See Moving average (time series)
MAD (mean absolute deviation), 112, 129
MAE (mean absolute error), 112, 120
Make to order versus package to order, 25–27
Makridakis, Spyros, 241
Managing data, 7
MAPE (mean absolute percentage error):
 about, 113
 ARIMA models and, 216, 244–245
 autocorrelation example, 189
 forecast value added and, 118, 120
 Holt’s two-parameter method, 148
 model-fitting process and, 129
 MTCA case study, 265, 273
 regression analysis, 162–163
 single exponential smoothing and, 145–147
 strategic value assessment and, 319
 weighted combined forecasting, 246–247
 Winters’ three-parameter method, 150
Mathematical methods. See Quantitative methods
ME (mean error), 112, 145–146
Mean absolute deviation (MAD), 112, 129
Mean absolute error (MAE), 112, 120
Mean absolute percentage error. See MAPE (mean absolute percentage error)
Mean elasticities, 183
Mean percent error (MPE), 112, 120
Mean squared error (MSE), 146
Measuring performance. See Performance measurement
Methods integration (SVA), 320, 332–337
Metrics. See Performance measurement
MLR (multiple linear regression), 254
Model step (new product forecasting), 293, 305–308
Moving average (time series):
about, 86, 136–142, 157
ARIMA model and, 204–206, 221–222, 225
characteristics of, 140
disadvantages, 140
MPE (mean percent error), 112, 120
MSE (mean squared error), 146
MTCA (multi-tiered causal analysis):
about, 254–256
carbonated soft drink case study, 259–275
key steps in, 258–259
linking demand to supply using, 256–259, 271–275
modeling push/pull effects, 257
Multicollinearity, 175–178, 186–187
Multiple linear regression (MLR), 254
Multiple regression:
about, 166–170
by-products of, 166–167
key activities in building, 199–200
UCMs and, 136
variables used in, 86
Multiplicative seasonal adjustment, 151–156
Multi-tiered causal analysis. See MTCA (multi-tiered causal analysis)

N
Naive model (time series), 85, 120
New products:
about, 97–98, 283–284
candidate products, 292–293, 296–303
challenges facing, 314–316
evolutionary versus revolutionary, 284–286
forecasting, 286–313
structured judgment analysis, 294–313
No-change model (time series), 85
Noise (unexplained randomness), 3, 37–38, 79–83
Null hypothesis, 185
Numerator factor (transfer function), 230

O
Objective methods. See Quantitative methods
OLS (ordinary least squares) estimate:
ARIMA models and, 227
MTCA case study, 264, 271
multiple regression, 167
simple regression, 161–163
weighted combined forecasting example, 245
One-number forecasting, 17–19
Oven cleaner example, 13–16, 93

P
PACF (partial autocorrelation function plot), 206, 212–219, 225
Package to order versus make to order, 25–27
Parameter coefficients, 181–184, 213–216
Partial autocorrelation function plot (PACF), 206, 212–219, 225
Pattern recognition:
demand sensing and, 41
forecast error and, 92–93
forecasting methods and, 79–83
predictability and, 88–91
PE (percentage error), 108–109, 120
Performance integration (SVA), 320, 340–343
Performance measurement:
 for advertising, 162, 165–166, 168–170, 176
 business intelligence and, 65
 customer value and, 67
 forecast accuracy, 106–107
 forecast value added, 118–122
 importance of, 103–105
 out-of-sample, 115–118
 overachieving forecasts and, 105–106
 purposes for, 106–107
 specific measures of forecast error, 111–115
 standard statistical error terms, 107–111
Personal bias:
 eliminating, 119
 forecast error and, 18
 judgment and, 17, 83
 weighted combined forecast and, 21–22
Plan number example, 23–25
Point elasticities, 183
Point of sale data. See POS (point of sale) data
Political bias, 4
Polynomial distributed lags, 281–282
POS (point of sale) data:
 about, 278
 as data source, 36–37, 59, 128
 demand shifting at, 46–47
 integrating, 70, 253
 MTCA integration, 256–257
Predictor variables. See Independent variables
Processing data, 6–7
Process integration (SVA), 320, 326–332
Product hierarchies, 5–6, 18, 104–105
Product line extensions, 97
Product portfolio management:
 growth brand quadrant, 96, 98–99
 harvest brand quadrant, 96, 99–101
 new products quadrant, 96–98
 niche brands quadrant, 96, 98
Product segmentation example:
 growth brand quadrant, 96, 98–99
 harvest brand quadrant, 96, 99–101
 new products quadrant, 96–98
 niche brands quadrant, 96, 98
Profile series data, 290
Promotion-driven businesses, 54
Pulse responses (wording??), 194–195
Purdue University, 7, 247
P-value, 180, 185–186

Q
Qualitative methods:
 about, 83–84, 87
 biases in, 17, 82
 gut-feeling judgment, 8–10, 12, 35–36
 judgmental overrides, 11–13, 16–17, 35–36
 quantitative methods versus, 82–83, 87
 structured judgment analysis, 294–296
 unexplained variance in, 83
Quantitative methods. See also Time series methods
 about, 83–84, 87, 125–127
 advantages of, 81
 choosing, 129
 forecastability of, 94–101
 model-fitting process, 127–130
 qualitative methods versus, 82–83, 87
 unexplained randomness in, 37, 79–83
Query step (new product forecasting), 293, 296–303

R
R² (coefficient of determination), 165–166, 175–176
Ramp-up responses (wording??), 194
Random variation, 93
Random walk (time series), 85, 120
Rational transfer functions, 230–234
Real-time demand forecasting, 33
Regression analysis:
 about, 159–160
 adjusted R², 180–181
 cautions using, 201
 coefficient of determination, 165–166
 correlation coefficient, 85, 163–165
 correlation matrix, 173–175
 data visualization, 170–173
 Durbin-Watson statistic, 187–191
 F-test, 178–180
 intervention variables, 191–197
 multicollinearity, 175–178
 multiple regression, 86, 136, 166–170, 199–200
 parameter coefficients, 181–184
 P-value, 185–186
 regression model results, 197–199
 simple regression, 160–163
 strengths and weaknesses, 202
 t-test, 184–185
 variance inflation factor, 186–187
 variance of analysis, 178
Restaurant chain example, 16–17
Revolutionary new products, 284–286
ROI (return on investment), 258–260, 322, 343–344

S
Sales and marketing:
 business intelligence and, 52
 cross-functional collaboration
 among, 51, 65–66, 70
 demand management process, 64–65
 demand response from, 42
 demand sensing and, 42
 demand shaping and, 17, 47, 50–53, 57
 demand shifting and, 46
 financial assessment of strategies, 61–65
 oven cleaner example, 14
 statistical training for, 70
 target-setting exercises for, 23–25, 105
 what-if analysis, 3, 49, 57
Sales and operation planning. See S&OP (sales and operation planning)
Sandbagging, 4
SAR (seasonal autoregressive), 216–217, 220–222
SAS Institute, 7, 247
Scatter plots, 170–173
Seasonal autoregressive (SAR), 216–217, 220
Seasonality:
 ARIMA models, 216–225
 beverage data example, 80–81
 demand shaping and, 47–49
 dummy variables, 191–197
 exponential smoothing and, 37–38
 predicting, 88–91
 time series methods and, 130–135, 142–143, 151–156
Seasonal moving average (SMA), 216–217, 220–222
Seasonal random trend (SRT), 221
Second differencing, 209–212
Serial correlation, 187–191
SES (single exponential smoothing):
 about, 143–147, 157
 Holt’s two-parameter method and, 49, 85, 147–149
 Winters’ three-parameter method, 149–156
Short life cycle products, 97
Simple regression, 86, 160–163
Single exponential smoothing (SES):
 about, 143–147, 157
 Holt’s two-parameter method and, 49, 85, 147–149
 Winters’ three-parameter method, 149–156
SKUs (stock-keeping units):
- data aggregation and, 4–6, 103
- mass merchandiser example, 113–115
- MTCA case study, 261–263
- proliferation of, 255
- regression analysis on, 167
- single exponential smoothing and, 146
- SMA (seasonal moving average), 216–217, 220
- Smart variables, 191–197
- Snowplowing (hold-and-roll), 22–23
- S&OP (sales and operation planning):
 - on demand shifting, 46
 - improving, 43–44, 64, 67–68, 70
 - key inputs to, 65
 - SVA readiness assessment, 320
- Sports drink brand example, 10–11, 91–92
- SRT (seasonal random trend), 221
- SSR (sum of squares residuals), 180
- Stationarity of ARIMA models, 208–212
- Statistics:
 - domain knowledge and, 8–13
 - judgmental overrides and, 12
 - training personnel on, 70
- Steering (demand shifting), 46–47, 58
- Step functions (level shifts), 194
- Stock-keeping units. See SKUs (stock-keeping units)
- Storing data, 5–7
- Strategic value assessment:
 - about, 317–319
 - framework overview, 319–321
 - justification, 351
 - key improvement benefits, 343–344
 - methods integration in, 320, 332–337
 - performance integration in, 320, 340–343
 - process integration in, 320, 326–332
 - road map, 344–350
 - ROI model, 344–345
 - systems integration in, 320, 337–339
 - XYZ company case study, 323–351
- Structured judgment analysis:
 - about, 294–296
 - in Feedback step, 308–313
 - in Filter step, 303–305
 - in Model step, 305–308
 - in Query step, 296–303
- Subjective methods. See Qualitative methods
- Sum of squares residuals (SSR), 180
- Supply Chain Magazine Review, 36, 48
- Supply chains:
 - change initiatives in, 254
 - demand management and, 66
 - demand response and, 42–43
 - demand shaping and, 45–46
 - demand visibility and, 50
 - key drivers, 2
 - latency in, 43
 - performance improvements in, 3–4, 32–33
 - push/pull effects of, 257
- Supply-driven strategy, 39–40
- Surrogate products, 292–293
- SVA. See Strategic value assessment
- Syndicated scanner data, 253, 257, 278
- Systematic variance, 93
- Systems integration (SVA), 320, 337–339

T
- Targeted rating points (TRPs), 176, 261, 279–282
- Target-setting exercises, 23–25, 105
- Target variables. See Dependent variables
- Temporary price reductions (TPRs), 171–175, 257, 278–279
- Test data sets, 116
Time series methods. *See also* specific methods
about, 49, 84–85, 125–127, 130–136
advantages of, 85
autocorrelation and, 187
beverage data example, 80–81, 132–134
disadvantages of, 85–86
forecastability of, 95–96
identifying, 128–129
key approach to, 131
model-fitting process, 127–130

TPRs (temporary price reductions), 171–175, 257, 278–279
Training for sales and marketing, 70
Transfer function models:
about, 229
numerators and denominators, 229–230
rational, 230–234

Trends/cycles:
beverage data example, 80–81, 208
demand shaping and, 47–49
exponential smoothing and, 37–38
moving average example, 137–140
predicting, 88–91
time series methods and, 130–135, 142–143, 150–151
TRPs (targeted rating points), 176, 261, 279–282
T-test, 184–186, 227

U
UCM (unobserved components models):
about, 87, 136
challenges applying, 254
unexplained randomness and, 82

Unconstrained demand:
about, 17
consensus forecasting and, 18–21, 66, 119
demand management process and, 57–59, 64–65
Unexplained randomness (noise), 3, 37–38, 79–83

V
Variables. *See* specific types of variables
Variance inflation factor (VIF), 186–187
Variance of analysis, 178–180
VIF (variance inflation factor), 186–187

W
WAPE (weighted absolute percentage error), 113–115
Watson, Geoffrey, 187
Weighted absolute percentage error (WAPE), 113–115
Weighted combined forecasting:
about, 21–22, 239–245
developing, 245–248
usage guidelines, 248–250
Weighted smoothing methods, 135
What-if analysis:
demand shaping and, 2–3, 45, 57
improving demand management, 70
many number forecasting and, 18
in MTCA process, 258, 269–271
plan number example and, 25
policy evaluation, 167
Winkler, Robert, 240–241
Winters, Peter R., 150
Winters’ three-parameter method:
about, 49, 85, 131, 158
ARIMA models and, 223, 235
historical adequacy of, 254–255
seasonal component, 151–156
single exponential smoothing and, 149–151
weighted combined forecasting, 243–247