Contents

Preface xxiii
Acknowledgements xxv

1 Fire Performance and Buildings 1
1.1 The Dynamics of Building Fire Performance 1
1.2 The Anatomy of Building Fire Safety 1
1.3 Analysis and Design 2
1.4 Performance Analysis 3
1.5 Quantification 3
1.6 The Organization 4

Part I The Foundation 7

2 Preliminary Organization 9
2.1 Introduction 9
2.2 Overview of Evaluations 9

Part One: Organizational Concepts 12
2.3 The Diagnostic Fire 12
2.4 Anatomy of a Representative Fire 12
2.5 Fire Prevention 13
2.6 Fire Scenarios 13

Part Two: Barriers, Spaces, and Connectivity 15
2.7 Spaces and Barriers 15
2.8 Barriers and Fire 15
2.9 Barrier Performance 16
2.10 Space–Barrier Connectivity 16
2.11 Virtual Barriers 18
2.12 Virtual Barrier Applications 18
2.13 Space–Barrier Discussion 22

Part Three: Fire Defenses 23
2.14 Fire Defenses 23
2.15 Active Fire Defenses 24
2.15.1 Fire Detection and Alarm 24
2.15.2 The Automatic Sprinkler System 25
2.15.3 Fire Department Operations 25
2.15.4 Building Fire Brigade 26
2.15.5 Special Hazard Automatic Suppression Systems 26
2.15.6 Special Features 27
2.15.7 Occupant Activities 27
2.16 Passive Fire Defenses 28
2.16.1 Structural Fire Protection 28
2.16.2 Barriers 28
2.16.3 Opening Protectives 29
2.16.4 The Egress System 29
2.16.5 Area of Refuge 30
2.16.6 Fire Attack Route 30
2.17 Closure 30

3 Tools of Analysis 31
3.1 Introduction 31

Part One: The Logic 32
3.2 The Framework Logic 32
3.3 The Major Parts 32
3.4 Event Logic Diagrams 34
3.5 Event Logic Observations 38
3.6 Logic Networks 39
3.7 Decomposing Logic Networks 41
3.8 Network Diagram Observations 46
3.9 Single Value Networks 47
3.10 Time Relationships Using Event Trees 47
3.11 Continuous Value Networks 48
3.12 The IPI Chart 48
3.13 Coding 50

Part Two: Space–Barrier Connectivity 51
3.14 Introduction 51
3.15 Room Connectivity 51
3.16 Building Interconnectivity 53
3.17 Segmenting Buildings 54
3.18 Summary 54

Part Three: Additional Tools 55
3.19 Networks and Charts 55
3.20 Organizational Charts 55
3.21 Organizational Networks 56
3.22 Closure 57

4 An Introduction to the Interactive Performance Information Chart 59
4.1 Introduction 59
4.2 The Basic Template 59
6.22.1 Realm 1: Pre-burning 102
6.22.2 Realm 2: Initial burning 102
6.22.3 Realm 3: Vigorous Burning 104
6.22.4 Realm 4: Interactive Burning 106
6.22.5 Realm 5: Remote Burning 108
6.23 Flashover 108
6.24 \(\alpha t^2 \) Fires 111
6.25 Realm 6: Fully Developed Fire 112
6.26 Limits of Applicability 113
6.27 Large Rooms: Full Room Involvement 113
6.28 Fire Safety Engineering in the Information Age 114
6.29 Closure 118

7 The Room Fire: Qualitative Analysis 119
7.1 The Role of Qualitative Analysis 119
7.2 Qualitative Estimates for Room Fires 120

Part One: Bottom-up Estimates 121
7.3 Bottom-up Scenario Estimates 121
7.3.1 Realm 1: FFS to IG 121
7.3.2 Realm 2: IG to EB 121
7.3.3 Realm 3: EB to Enclosure Point (EP) 123
7.3.4 Realm 4: EP to Ceiling Point (CP) 124
7.3.5 Realm 5: CP to FO 126
7.4 Time and the Fire Growth Potential 126
7.5 FGP Adjustments 128
7.6 Estimating Spread-over Scenarios 131

Part Two: Top-down Estimates 133
7.7 Qualitative Room Classifications 133
7.8 FGP Comparisons 133
7.9 Interior Design and Model Rooms 134
7.10 FGP Classification Groups 135
7.11 Selecting FGP Groups 137
7.11.1 Evaluation Guidelines 137
7.11.2 Classification Examples 139
7.12 Discussion 145
7.13 Closure 146

8 Beyond the Room of Origin 147
8.1 Introduction 147
8.2 The Inspection Plan 147

Part One: Barrier Effectiveness 149
8.3 Barrier Functions in Buildings 149
8.4 Barrier Fire Functions 149
8.5 Concepts for Barrier Evaluations 150
8.6 Barrier Failure Modes 152
8.7 Barrier Failures and Building Performance 158
Part Two: Barrier–Space Modules 159
8.8 Introduction 159
8.9 Barrier–Space Modules 159
8.10 Massive Barrier Failure (Đ) 159
8.11 Hot-spot Barrier Failure (T) 161
8.12 The Role of Interior Finish 161
8.13 Virtual Barriers 162
8.14 Qualitative Diagnostic Fire Analysis: Room Classifications 162
8.15 Qualitative Diagnostic Fire Analysis: Barrier Contributions 164
8.16 Qualitative Diagnostic Fire Analysis: Modules 164

Part Three: Qualitative Fire Analysis 165
8.17 Introduction 165
8.18 The Process 165
8.19 Discussion 172
8.20 Information Technology Enhancements 173

9 Smoke Analysis 175
9.1 Introduction 175
9.2 The Plan 176
9.3 Smoke 176
9.4 Buoyancy Forces 177
9.5 Natural Air Movement 178
9.6 Wind 180
9.7 Tenability Considerations 180
9.8 Smoke Movement Analysis 182
9.9 Smoke Movement Networks 183
9.10 Qualitative Smoke Movement Analysis 186
9.11 Quantitative Analysis 186
9.12 Discussion 188

10 The Diagnostic Fire 191
10.1 Diagnostic Fires 191
10.2 Interactive Performance Information (IPI) Chart and the Diagnostic Fire 191
10.3 Closure 192

11 Fire Detection 193
11.1 Introduction 193

Part One: Automatic Detection 194
11.2 Instrument Detection 194
11.3 Detection Instruments 194
11.3.1 Heat Detectors 195
11.3.2 Smoke Detectors 195
11.3.3 Flame Detectors 196
11.3.4 Operating Modes 196
11.4 Automatic Detection Analysis 197
11.5 Instrument Reliability 198
Contents

13.9.1 Engine Company 227
13.9.2 Ladder Company 228
13.9.3 Specialized Companies 228
13.9.4 Emergency Services 229
13.9.5 Response Information 229
13.10 Building Fire Brigades 229

Part Three: Community Fire Response 231
13.11 Fire Department Response Time 231
13.12 Communications Centers 231
13.13 Alarm Handling Time 232
13.14 Turnout Time 233
13.15 Travel Time 234
13.16 Response Time Analysis 234

14 Fire Department Extinguishment: First Water (MA) 237
The Fire Fighter and the Engineer 237
14.1 Introduction 239

Part One: An Overview of Manual Extinguishment Analysis 241
14.2 The Process 241
14.3 Phase 1: Initial Water Application (MA) 242
14.3.1 Find the Fire 243
14.3.2 Establish a Water Supply 244
14.3.3 The Attack Launch Point 245
14.3.4 Interior Attack Lines 247
14.3.5 Critical Fire Conditions 247
14.3.6 Extinguishing the Fire 248
14.4 Summary 248

Part Two: A Brief Look at Fire Fighting 249
14.5 Initial Fire Ground Actions 249
14.6 Information 249
14.7 Pause for Discussion 251
14.8 Manual Fire Fighting 252
14.9 No Two Fires Are Alike 253
14.10 Summary 253

Part Three: Supply Water Analysis 254
14.11 Introduction 254
14.12 Scenario Analysis 254
14.13 Supply Water Analysis 258
14.14 Supply Water Discussion 260
14.15 Project Analysis 260
14.16 Task Modules 261
14.17 Time and Tasks 261
14.18 Variability 262
14.19 General Analysis 263
14.20 Work Breakdown Structure 263
14.21 Task Precedence 264
14.22 Network Construction 267
14.23 Network Calculations 267
14.24 Variation Analysis 269
14.25 Additional Examples 270
14.26 Levels of Detail 272
14.27 Time Coordination 274
14.28 Discussion 276

Part Four: Interior Fire Attack Analysis 278
14.29 Introduction 278
14.30 Overview of Stretching Interior Attack Lines 278
14.31 Task Modules 279
14.32 Architectural Segments 280
14.33 Architectural Obstacles 281
14.34 ALP Pre‐movement 281
14.35 Multiple Attack Lines 282
14.36 Variables 282
14.37 Time Estimates 283
14.38 Attack Route Analysis 283

Part Five: Phase 1 Analysis 290
14.39 Introduction 290
14.40 Phase 1 Comments 290
14.41 Calculating Time Durations 291
14.42 If… 291
14.43 What If... 293
14.44 The IPI Chart 294
14.45 Summary 294

15 Fire Department Extinguishment: Control and Extinguishment 295
15.1 First Water Applied... Now What? 295
15.2 The Engineer and the Incident Commander 295
15.3 Pause to Review Available Information 296
15.4 Phase 2 Assessments 298
15.5 Offensive Attack 299
15.6 Defensive Fire Fighting 299
15.7 Barrier Functions in Fire Fighting 300
15.8 Exposure Protection 301
15.9 Constraints 301
15.10 Critical Fire Conditions 302
15.11 Fire Control (MC) 303
15.12 Fire Extinguishment (ME) 303
15.13 Summary 304

16 Automatic Sprinkler Suppression 305
16.1 Introduction 305
16.2 Sprinkler System Performance 305
Contents

Part One: Sprinkler Systems 307
16.3 Sprinkler Extinguishment 307
16.4 The Sprinkler System 308
16.5 Types of Sprinkler Systems 309

Part Two: Sprinkler Performance 312
16.6 Organization for Thinking 312
16.7 Agent Application (AA) 312
16.8 Agent Application Events 313
16.9 Operational Effectiveness Observations 314
16.10 Sprinkler Fusing (fac) 316
16.11 Water Discharge (dac) 317
16.12 Water Flow Continuity (cac) 319
16.13 Obstructions (wac) 320
16.14 Operational Effectiveness Guidelines 321
16.15 Analysis and the IPI Chart 322
16.16 Auxiliary Equipment and Other Conditions 322
16.17 Partially Sprinklered Buildings 322
16.18 Fire Department Mutual Aid 323
16.19 Automatic Suppression 323
16.20 Closure 324

17 The Composite Fire 325
17.1 Introduction 325
17.2 The Fire Limit (L) 325
17.3 Composite Fire 327
17.4 Theoretical Completeness 327
17.5 Summary 328

18 Materials, Codes, Standards, Practices, and Performance 331
18.1 Introduction 331

Part One: Building Construction 333
18.2 The Structural Frame 333
18.3 Material Behavior in Fires 334
18.3.1 Structural Steel 334
18.3.2 Concrete 335
18.3.3 Concrete Masonry Units 335
18.3.4 Prestressed Concrete 336
18.3.5 Wood 336
18.3.6 Gypsum 336
18.3.7 Glass 337

Part Two: Historical Perspective 338
18.4 The Built Environment Around World War I 338
18.5 Structural Practice Around World War I 338
18.6 A Century of Evolution 339
18.7 Fire Safety Around World War I 339
18.8 The Fire Safety Solution 340
18.9 Building Code Organization for Fire Safety 341
18.10 Structural Fire Topics Around World War I 341
18.11 Building Code Observations 342

Part Three: Fire Endurance Testing 345
18.12 Fire Test Interpretations 345
18.13 The Standard Fire Endurance Test 345
18.14 Fire Endurance Test Discussion 346

Part Four: Fire Severity 349
18.15 Introduction 349
18.16 Fuel Loads 349
18.17 The Ingberg Correlation 352
18.18 Room Fire Discussion 353
18.19 Fire Severity Theories 355
18.19.1 Ingberg Theory 355
18.19.2 Law Correlation 356
18.19.3 Pettersson Equation 357
18.19.4 Normalized Heat Load 357
18.20 Fire Severity Comparisons 358
18.21 Awareness Pause 359
18.22 Estimating Burnout Time 360
18.23 Influences on Barrier Performance 361
18.24 Automatic Protection and Barriers 361

Part Five: Transitions 363
18.25 The Issue 363

19 Concepts in Structural Analysis for Fire Conditions 365
19.1 Introduction 365
19.2 Structural Fire Performance 365

Part One: Building Design 367
19.3 The Development Process 367
19.4 Building Design 367
19.5 Information Technology 368

Part Two: Structural Engineering and Building Design 371
19.6 The Master Builder 371
19.7 The Rise of Engineering 371
19.8 The Building 372
19.9 The Emergence of Structural Engineering 372
19.10 A Brief Pause about 1950 374
19.11 The Great Leap Forward 375
19.12 Structural Design for Fire Conditions 376

Part Three: Structural Engineering 377
19.13 Introduction 377
19.14 Beam Analysis 377
19.14.1 Simple Beams 377
19.14.2 Continuous Flexural Members 381
19.15 Structures and Materials 384
19.16 Structural Engineering 384
19.17 Structural Engineering and Building Design 385

Part Four: Structural Analysis for Fire Conditions 387
19.18 Introduction 387
19.19 Outcomes 387
19.20 Pause for Discussion 388
19.21 The Process 389
19.22 Structural Mechanics 390
19.23 Protection Methods 392
19.24 Diagnostic Fire 392
19.25 Heat Transfer 393
19.26 Structural Performance 394
19.27 Reinforced Concrete 394
19.28 Mechanical Properties 395
19.29 Flexural Members in Reinforced Concrete 396
19.30 Concrete Members at Elevated Temperatures 398
19.31 Pause for Discussion 398
19.32 Other Materials 399
19.33 Summary 399

20 Target Spaces and Smoke 401
20.1 Introduction 401
20.2 Orientation 401
20.3 Tenability Measures for Humans 403
20.4 Visibility in Smoke 404
20.5 Equipment and Data Storage 405
20.6 Overview of Target Space Analysis 406
20.7 Target Rooms 407
20.8 Barrier Effectiveness 407
20.9 Mechanical Pressurization 408
20.10 Fire Department Ventilation 409
20.11 Summary 409

21 Life Safety 411
21.1 Introduction 411
21.2 Human Reaction to Products of Combustion 412
21.3 Tenability 414
21.4 Fire Fighter Safety 414

22 Risk Characterizations 417
22.1 Introduction 417
22.2 The Exposed 417

Part One: Human Safety 419
22.3 Life Safety 419
22.4 Overview of Life Safety Alternatives 419
22.5 Prescriptive Code Egress 421
22.6 Plans Approval for Prescriptive Code Egress 422
22.7 Overview of Egress Risk Characterizations 423
22.8 Discussion 423
22.9 Pre-evacuation Activities 424
22.10 Pre-evacuation Evaluations 426
22.11 Travel Times 426
22.12 Defend in Place 428
22.13 Areas of Refuge 428
22.14 Fire Department Rescue I 428
22.15 Risk Characterizations for Life Safety 429

Part Two: Other Risks 431
22.16 Property Protection 431
22.17 Continuity of Operations 431
22.18 Threat to Neighboring Exposures 432
22.19 Threat to Environment 432
22.20 Closure 432

23 Fire Prevention 435
23.1 Introduction 435

Part One: Prevent Established Burning 436
23.2 Prevent EB 436
23.2.1 Ignition Potential 436
23.2.2 Initial Fire Growth 437
23.3 Occupant Extinguishment 437
23.4 Portable Fire Extinguishers 438
23.5 Evaluating Extinguisher Effectiveness 439
23.6 Discussion 440

Part Two: Automatic Special Hazard Suppression 442
23.7 Introduction 442
23.8 Carbon Dioxide Systems 443
23.9 Clean Agent Systems 443
23.10 Dry Chemical Extinguishing Systems 444
23.11 Water-spray Extinguishing Systems 445
23.12 Fine Water Mist Extinguishing Systems 445
23.13 Foam Extinguishing Systems 445
23.14 Explosion Suppression Systems 446
23.15 Building Evaluations for Special Hazard Installations 446
23.16 Closure 447

Part III The Analysis 449

24 Fire Performance: Framework for Analysis 451
24.1 Organizational Concepts 451
24.2 Performance Evaluations 451
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.3</td>
<td>Analytical Framework</td>
<td>452</td>
</tr>
<tr>
<td>24.4</td>
<td>Fire, Risk, and Buildings</td>
<td>454</td>
</tr>
<tr>
<td>25</td>
<td>The Diagnostic Fire</td>
<td>455</td>
</tr>
<tr>
<td>25.1</td>
<td>Introduction</td>
<td>455</td>
</tr>
<tr>
<td>25.2</td>
<td>Top-down Estimates</td>
<td>456</td>
</tr>
<tr>
<td>25.3</td>
<td>Modular Estimates</td>
<td>456</td>
</tr>
<tr>
<td>25.4</td>
<td>Bottom-up Scenario Analysis</td>
<td>458</td>
</tr>
<tr>
<td>25.5</td>
<td>Network Estimates</td>
<td>458</td>
</tr>
<tr>
<td>25.6</td>
<td>Scenario Applications</td>
<td>461</td>
</tr>
<tr>
<td>25.7</td>
<td>Interactive Performance Information (IPI) Chart Applications</td>
<td>462</td>
</tr>
<tr>
<td>26</td>
<td>Fire Detection</td>
<td>463</td>
</tr>
<tr>
<td>26.1</td>
<td>Introduction</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Part One: Automatic Detection</td>
<td>464</td>
</tr>
<tr>
<td>26.2</td>
<td>Detection Analysis</td>
<td>464</td>
</tr>
<tr>
<td>26.3</td>
<td>Detection Example</td>
<td>466</td>
</tr>
<tr>
<td>26.4</td>
<td>Detection Estimate</td>
<td>469</td>
</tr>
<tr>
<td>26.5</td>
<td>Detector Reliability</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>Part Two: Human Detection</td>
<td>471</td>
</tr>
<tr>
<td>26.6</td>
<td>Concepts in Human Detection Analysis</td>
<td>471</td>
</tr>
<tr>
<td>26.7</td>
<td>Human Detection Analysis</td>
<td>471</td>
</tr>
<tr>
<td>26.8</td>
<td>Closure</td>
<td>473</td>
</tr>
<tr>
<td>27</td>
<td>Fire Department Notification</td>
<td>475</td>
</tr>
<tr>
<td>27.1</td>
<td>Introduction</td>
<td>475</td>
</tr>
<tr>
<td>27.2</td>
<td>The Human Link in Notification</td>
<td>475</td>
</tr>
<tr>
<td>27.3</td>
<td>Human Notification Analysis</td>
<td>476</td>
</tr>
<tr>
<td>27.3.1</td>
<td>The Role of Detection</td>
<td>478</td>
</tr>
<tr>
<td>27.3.2</td>
<td>Initial Scenario Analysis</td>
<td>478</td>
</tr>
<tr>
<td>27.3.3</td>
<td>Information Augmentation</td>
<td>479</td>
</tr>
<tr>
<td>27.4</td>
<td>Human Notification</td>
<td>479</td>
</tr>
<tr>
<td>27.5</td>
<td>Automated Notification Analysis</td>
<td>480</td>
</tr>
<tr>
<td>27.6</td>
<td>Closure</td>
<td>481</td>
</tr>
<tr>
<td>28</td>
<td>Fire Department Extinguishment</td>
<td>483</td>
</tr>
<tr>
<td>28.1</td>
<td>Introduction</td>
<td>483</td>
</tr>
<tr>
<td>28.2</td>
<td>Framework for Analysis</td>
<td>483</td>
</tr>
<tr>
<td>28.3</td>
<td>Notification to Arrival</td>
<td>483</td>
</tr>
<tr>
<td>28.4</td>
<td>Fire Department Response</td>
<td>485</td>
</tr>
<tr>
<td>28.5</td>
<td>Arrival to Extinguishment</td>
<td>488</td>
</tr>
<tr>
<td>28.6</td>
<td>Phase 1 Analysis</td>
<td>489</td>
</tr>
<tr>
<td>28.7</td>
<td>Phase 2 Analysis</td>
<td>489</td>
</tr>
<tr>
<td>28.8</td>
<td>Phase 3 Analysis</td>
<td>490</td>
</tr>
<tr>
<td>28.9</td>
<td>Putting It Together</td>
<td>492</td>
</tr>
<tr>
<td>28.10</td>
<td>Discussion</td>
<td>498</td>
</tr>
<tr>
<td>28.11</td>
<td>Closure</td>
<td>499</td>
</tr>
</tbody>
</table>
29 Automatic Sprinkler Suppression 501
29.1 Introduction 501
29.2 Agent Application (AA) 502
29.3 Design Effectiveness (AC) 504
29.3.1 First Sprinkler Fusing (fac) 504
29.3.2 Multiple Sprinkler Fusing (fac) 504
29.3.3 Discharge Density (dac) 505
29.3.4 Water Continuity (cac) 505
29.3.5 Obstructions (wac) 506
29.4 Automatic Sprinkler Suppression (A) 507
29.5 Automatic Sprinkler System Analysis 507
29.5.1 Role of Performance Analysis 509
29.5.2 Organizing Performance Analysis 509
29.5.3 Performance Evaluation 513
29.6 Sprinkler Reliability 514
29.7 Closure 514

30 The Composite Fire 517
30.1 Introduction 517
30.2 Event Logic Description 517
30.3 Network Description 519
30.4 Summary 520

31 Structural Performance 521
31.1 Introduction 521
31.2 Interactive Performance Information (IPI) Documentation 521
31.3 IPI Numerical Estimates 523
31.4 Summary 524

32 Target Space Smoke Analysis 525
32.1 Introduction 525
32.2 Success or Failure? 526
32.3 Target Room Performance Bounds 527

33 Life Safety Analysis 531
33.1 Introduction 531
33.2 The Exposed 531
33.3 The Exposure 532
33.4 The Window of Time 532
33.5 Pre-movement Time for Egress 533
33.5.1 Fire Detection (OD) 534
33.5.2 Alert Occupants (OA) 535
33.5.3 Occupants Start Egress (OT) 535
33.6 Occupant Life Safety (LS) 536
33.7 Discussion 536
33.8 Defend in Place 538
33.9 Closure 538
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.4 The Interactive Performance Information (IPI) Chart Relation</td>
<td>584</td>
</tr>
<tr>
<td>36.5 Performance Evaluators</td>
<td>585</td>
</tr>
<tr>
<td>36.6 Reading Performance Curves</td>
<td>586</td>
</tr>
<tr>
<td>36.6.1 Detection</td>
<td>586</td>
</tr>
<tr>
<td>36.6.2 Fire Department Notification</td>
<td>588</td>
</tr>
<tr>
<td>36.6.3 Sprinkler Control</td>
<td>589</td>
</tr>
<tr>
<td>36.6.4 Fire Extinguishment</td>
<td>590</td>
</tr>
<tr>
<td>36.7 The L Curve</td>
<td>591</td>
</tr>
<tr>
<td>36.8 L Curve Illustration</td>
<td>594</td>
</tr>
<tr>
<td>36.9 Variability and Reliability</td>
<td>594</td>
</tr>
<tr>
<td>36.10 Summary</td>
<td>595</td>
</tr>
<tr>
<td>37 Introduction to Risk Management</td>
<td>597</td>
</tr>
<tr>
<td>37.1 Introduction</td>
<td>597</td>
</tr>
<tr>
<td>Part One: The Process</td>
<td>598</td>
</tr>
<tr>
<td>37.2 Audience</td>
<td>598</td>
</tr>
<tr>
<td>37.3 Fire Safety Management</td>
<td>598</td>
</tr>
<tr>
<td>37.4 Decisions and Uncertainty</td>
<td>600</td>
</tr>
<tr>
<td>37.5 Management Applications</td>
<td>600</td>
</tr>
<tr>
<td>37.6 Comparisons</td>
<td>601</td>
</tr>
<tr>
<td>37.7 Process Overview</td>
<td>601</td>
</tr>
<tr>
<td>Part Two: Information Acquisition</td>
<td>604</td>
</tr>
<tr>
<td>37.8 Introduction</td>
<td>604</td>
</tr>
<tr>
<td>37.9 Understand the Problem</td>
<td>604</td>
</tr>
<tr>
<td>37.10 Describe the Building</td>
<td>605</td>
</tr>
<tr>
<td>37.11 Evaluate Performance</td>
<td>605</td>
</tr>
<tr>
<td>37.12 Characterize Risk</td>
<td>605</td>
</tr>
<tr>
<td>Part Three: Develop a Risk Management Program</td>
<td>608</td>
</tr>
<tr>
<td>37.13 Structure a Risk Management Program</td>
<td>608</td>
</tr>
<tr>
<td>37.14 Evaluate “Prevent EB”</td>
<td>608</td>
</tr>
<tr>
<td>37.15 Evaluate Special Hazards Protection</td>
<td>609</td>
</tr>
<tr>
<td>37.16 Emergency Preparedness</td>
<td>609</td>
</tr>
<tr>
<td>37.17 Decision Analysis</td>
<td>611</td>
</tr>
<tr>
<td>37.18 Prepare the Presentation</td>
<td>612</td>
</tr>
<tr>
<td>37.19 Decision-Making</td>
<td>613</td>
</tr>
<tr>
<td>38 Analytical Foundations</td>
<td>615</td>
</tr>
<tr>
<td>38.1 Historical Origins</td>
<td>615</td>
</tr>
<tr>
<td>Part One: Logic Diagrams and Networks</td>
<td>617</td>
</tr>
<tr>
<td>38.2 Event Trees</td>
<td>617</td>
</tr>
<tr>
<td>38.3 Fault and Success Trees</td>
<td>618</td>
</tr>
<tr>
<td>38.4 Fault and Success Tree Calculations</td>
<td>619</td>
</tr>
<tr>
<td>38.5 Fault and Success Trees Beyond the Room of Origin</td>
<td>620</td>
</tr>
<tr>
<td>38.6 Network Organization</td>
<td>621</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>38.7</td>
<td>Network Calculations</td>
</tr>
<tr>
<td>38.8</td>
<td>Sequential Path Analysis</td>
</tr>
<tr>
<td>38.9</td>
<td>Rooms Beyond the Room of Origin</td>
</tr>
<tr>
<td>38.10</td>
<td>Modular Analysis</td>
</tr>
<tr>
<td>38.11</td>
<td>Closure</td>
</tr>
<tr>
<td></td>
<td>Part Two: Probability</td>
</tr>
<tr>
<td>38.12</td>
<td>Meanings of Probability</td>
</tr>
<tr>
<td>38.13</td>
<td>Fire Safety Applications</td>
</tr>
<tr>
<td>38.14</td>
<td>Degree of Belief</td>
</tr>
<tr>
<td>38.15</td>
<td>Mathematics of Probability</td>
</tr>
<tr>
<td>38.16</td>
<td>Assessment Quality</td>
</tr>
<tr>
<td></td>
<td>Part Three: The Role of Judgment</td>
</tr>
<tr>
<td>38.17</td>
<td>Introduction</td>
</tr>
<tr>
<td>38.18</td>
<td>Building Decisions</td>
</tr>
<tr>
<td>38.19</td>
<td>Judgment in Engineering</td>
</tr>
<tr>
<td>38.20</td>
<td>Language and Culture</td>
</tr>
<tr>
<td>38.21</td>
<td>Uncertainty and Performance</td>
</tr>
<tr>
<td>38.22</td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Appendix A Organizational Structure</td>
</tr>
<tr>
<td>A.1</td>
<td>The Organizational Framework</td>
</tr>
<tr>
<td>A.2</td>
<td>Basic Organization</td>
</tr>
<tr>
<td>A.3</td>
<td>The Composite Fire</td>
</tr>
<tr>
<td>A.4</td>
<td>The Diagnostic Fire (I)</td>
</tr>
<tr>
<td>A.5</td>
<td>Fire Department Manual Extinguishment</td>
</tr>
<tr>
<td>A.6</td>
<td>Detection</td>
</tr>
<tr>
<td>A.7</td>
<td>Notification</td>
</tr>
<tr>
<td>A.8</td>
<td>Notification to Arrival</td>
</tr>
<tr>
<td>A.9</td>
<td>Arrival to Extinguishment</td>
</tr>
<tr>
<td>A.10</td>
<td>Automatic Sprinkler System</td>
</tr>
<tr>
<td>A.11</td>
<td>Building Response: Structural Behavior</td>
</tr>
<tr>
<td>A.12</td>
<td>Building Response: Space Tenability</td>
</tr>
<tr>
<td>A.13</td>
<td>Risk Characterizations</td>
</tr>
<tr>
<td>A.14</td>
<td>Occupant Movement</td>
</tr>
<tr>
<td>A.15</td>
<td>Other Risks</td>
</tr>
<tr>
<td>A.16</td>
<td>Prevent Established Burning (EB): Occupant Extinguishment</td>
</tr>
<tr>
<td>A.17</td>
<td>Prevent EB: Special Hazards Protection</td>
</tr>
<tr>
<td>A.18</td>
<td>Closure</td>
</tr>
<tr>
<td></td>
<td>Appendix B Model Building</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>Plans</td>
</tr>
</tbody>
</table>

Index 661