CONTENTS

Preface xi

1 **Reliability Engineering and Product Life Cycle** 1
 1.1 Reliability Engineering, 1
 1.2 Product Life Cycle, 2
 1.3 Integration of Reliability Engineering into the Product Life Cycle, 5
 1.4 Reliability in the Concurrent Product Realization Process, 6
 Problems, 7

2 **Reliability Definition, Metrics, and Product Life Distributions** 9
 2.1 Introduction, 9
 2.2 Reliability Definition, 10
 2.3 Reliability Metrics, 12
 2.4 Exponential Distribution, 17
 2.5 Weibull Distribution, 19
 2.6 Mixed Weibull Distribution, 22
 2.7 Smallest Extreme Value Distribution, 24
 2.8 Normal Distribution, 26
 2.9 Lognormal Distribution, 28
 Problems, 31
CONTENTS

3 Reliability Planning and Specification

3.1 Introduction, 33
3.2 Customer Expectations and Satisfaction, 34
3.3 Reliability Requirements, 41
3.4 Reliability Program Development, 48
3.5 Reliability Design and Design for Six Sigma, 61
Problems, 64

4 System Reliability Evaluation and Allocation

4.1 Introduction, 65
4.2 Reliability Block Diagram, 66
4.3 Series Systems, 68
4.4 Parallel Systems, 71
4.5 Mixed Configurations, 73
4.6 *k*-out-of-*n* Systems, 77
4.7 Redundant Systems, 79
4.8 Reliability Evaluation of Complex Systems, 84
4.9 Confidence Intervals for System Reliability, 91
4.10 Measures of Component Importance, 99
4.11 Reliability Allocation, 106
Problems, 118

5 Reliability Improvement Through Robust Design

5.1 Introduction, 122
5.2 Reliability and Robustness, 123
5.3 Reliability Degradation and Quality Loss, 125
5.4 Robust Design Process, 129
5.5 Boundary Definition and Interaction Analysis, 132
5.6 P-Diagram, 133
5.7 Noise Effects Management, 134
5.8 Design of Experiments, 136
5.9 Experimental Life Data Analysis, 148
5.10 Experimental Degradation Data Analysis, 152
5.11 Design Optimization, 156
5.12 Robust Reliability Design of Diagnostic Systems, 172
5.13 Case Study, 179
5.14 Advanced Topics in Robust Design, 181
Problems, 190

6 Potential Failure Mode Avoidance

6.1 Introduction, 194
6.2 Failure Mode and Effects Analysis, 195
6.3 Advanced Topics in FMEA, 208
6.4 Fault Tree Analysis, 212
6.5 Advanced Topics in FTA, 225
6.6 Computer-Aided Design Controls, 230
Problems, 235

7 Accelerated Life Tests 237

7.1 Introduction, 237
7.2 Development of Test Plans, 238
7.3 Common Stresses and Their Effects, 246
7.4 Life–Stress Relationships, 252
7.5 Graphical Reliability Estimation at Individual Test Conditions, 266
7.6 Analytical Reliability Estimation at Individual Test Conditions, 274
7.7 Reliability Estimation at Use Condition, 292
7.8 Compromise Test Plans, 302
7.9 Highly Accelerated Life Tests, 326
Problems, 327

8 Degradation Testing and Analysis 332

8.1 Introduction, 332
8.2 Determination of the Critical Performance Characteristic, 333
8.3 Reliability Estimation from Pseudolife, 334
8.4 Degradation Analysis with Random-Effect Models, 337
8.5 Degradation Analysis for Destructive Inspections, 345
8.6 Stress-Accelerated Degradation Tests, 351
8.7 Accelerated Degradation Tests with Tightened Thresholds, 358
8.8 Accelerated Degradation Test Planning, 364
Problems, 373

9 Reliability Verification Testing 379

9.1 Introduction, 379
9.2 Planning Reliability Verification Tests, 380
9.3 Bogey Testing, 383
9.4 Sample Size Reduction by Tail Testing, 389
9.5 Sequential Life Testing, 394
9.6 Reliability Verification Using Prior Information, 406
9.7 Reliability Verification Through Degradation Testing, 408
Problems, 410