<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cells and Tissues</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Water and Macromolecules</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Membranes and Organelles</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>DNA Structure and the Genetic Code</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>DNA as a Data Storage Medium</td>
<td>67</td>
</tr>
<tr>
<td>6</td>
<td>Transcription and the Control of Gene Expression</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>Recombinant DNA and Genetic Engineering</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>Manufacturing Protein</td>
<td>123</td>
</tr>
<tr>
<td>9</td>
<td>Protein Structure</td>
<td>137</td>
</tr>
<tr>
<td>10</td>
<td>Intracellular Protein Trafficking</td>
<td>157</td>
</tr>
<tr>
<td>11</td>
<td>How Proteins Work</td>
<td>175</td>
</tr>
<tr>
<td>12</td>
<td>Energy Trading within the Cell</td>
<td>191</td>
</tr>
<tr>
<td>13</td>
<td>Metabolism</td>
<td>207</td>
</tr>
<tr>
<td>14</td>
<td>Ions and Voltages</td>
<td>229</td>
</tr>
<tr>
<td>15</td>
<td>Intracellular Signaling</td>
<td>251</td>
</tr>
<tr>
<td>16</td>
<td>Intercellular Communication</td>
<td>269</td>
</tr>
<tr>
<td>17</td>
<td>Mechanical Molecules</td>
<td>283</td>
</tr>
<tr>
<td>18</td>
<td>Cell Cycle and the Control of Cell Number in Eukaryotes</td>
<td>297</td>
</tr>
<tr>
<td>19</td>
<td>The Cell Biology of the Immune System</td>
<td>315</td>
</tr>
<tr>
<td>20</td>
<td>Case Study: Cystic Fibrosis</td>
<td>329</td>
</tr>
</tbody>
</table>
CONTENTS

Preface, xiii

1 CELLS AND TISSUES, 1
 Principles of Microscopy, 1
 The Light Microscope, 2
 The Electron Microscope, 3
 The Scanning Electron Microscope, 4
 Only Two Types of Cell, 7
 Cell Division, 8
 Viruses, 9
 Origin of Eukaryotic Cells, 10
 Cell Specialization in Animals, 11
 Stem Cells and Tissue Replacement, 13
 The Cell Wall, 14

2 WATER AND MACROMOLECULES, 17
 The Chemical Bond: Sharing Electrons, 17
 Interactions with Water: Solutions, 18
 Ionic Compounds Will Dissolve Only in Polar Solvents, 18
 Acids are Molecules That Give H⁺ to Water, 20
 Bases are Molecules that Take H⁺ from Water, 22
 Isoelectric Point, 22
 A Hydrogen Bond Forms When a Hydrogen Atom is Shared, 23
 Biological Macromolecules, 23
 Carbohydrates: Candy and Canes, 23
 An Assortment of Sweets, 24
 Disaccharides, 25
 Out of the Sweet Comes Forth Strength, 26
 Modified Sugars, 27
 Oxidation and Reduction Involve the Movement of Electrons, 31
 Amino Acids, Polypeptides, and Proteins, 32
 Lipids, 33
 Hydrolysis, 34

3 MEMBRANES AND ORGANELLES, 43
 Basic Properties of Cell Membranes, 43
 Straight Through the Membrane: Diffusion Through the Bilayer, 44
 Cell Junctions, 44
 Organelles Bounded by Double-Membrane Envelopes, 47
 The Nucleus, 47
 Mitochondria, 48
 Organelles Bounded by Single Membranes, 49
 Peroxisomes, 49
 Endoplasmic Reticulum, 49
 Golgi Apparatus, 50
 Lysosomes, 50

4 DNA STRUCTURE AND THE GENETIC CODE, 53
 The Structure of DNA, 53
 The DNA Molecule is a Double Helix, 53
 The Two DNA Chains are Complementary, 55
 Different Forms of DNA, 55
 DNA as the Genetic Material, 55
 Packaging of DNA molecules Into Chromosomes, 57
 Eukaryotic Chromosomes and Chromatin Structure, 57
 Prokaryotic Chromosomes, 58
 Planids, 59
 Viruses, 59
 The Genetic Code, 59
 Amino Acid Names are Abbreviated, 60
 The Code is Degenerate But Unambiguous, 60
 Start and Stop Codons and the Reading Frame, 63
 The Code is Nearly Universal, 64
 Missense Mutations, 64

5 DNA AS A DATA STORAGE MEDIUM, 67
 DNA Replication, 67
 The DNA Replication Fork, 67
Contents

Proteins Open Up the DNA Double Helix During Replication, 67
- DnaA Protein, 68
- DnaB and DnaC Proteins, 68
- Single-Strand Binding Proteins, 68
- Biochemistry of DNA Replication, 68
- DNA Synthesis Requires an RNA Primer, 69
- RNA Primers are Removed, 71
- The Self-Correcting DNA Polymerase, 71
- Mismatch Repair Backs Up the Proofreading Mechanism, 71
- DNA Repair After Replication, 72
- Spontaneous and Chemically Induced Base Changes, 72
- Repair Processes, 73
- Gene Structure and Organization in Eukaryotes, 75
- Introns and Exons: Additional Complexity in Eukaryotic Genes, 75
- The Major Classes of Eukaryotic DNA, 76
- Gene Nomenclature, 78

6 Transcription and the Control of Gene Expression, 81
- Structure of RNA, 81
- RNA Polymerase, 81
- Gene Notation, 81
- Bacterial RNA Synthesis, 82
- Control of Bacterial Gene Expression, 85
- lac, an Inducible Operon, 85
- trp, a Repressible Operon, 90
- Eukaryotic RNA Synthesis, 91
- Messenger RNA Processing in Eukaryotes, 91
- Control of Eukaryotic Gene Expression, 92
- Glucocorticoids Cross the Plasma Membrane to Activate Transcription, 94

7 Recombinant DNA and Genetic Engineering, 99
- DNA Cloning, 99
- Creating the Clone, 100
- Introduction of Foreign DNA Molecules into Bacteria, 100
- Selection of cDNA Clones, 103
- Genomic DNA Clones, 106
- Uses of DNA Clones, 109
- DNA Sequencing, 109
- Southern Blotting, 111
- In situ Hybridization, 112
- Northern Blotting, 113
- Production of Mammalian Proteins in Bacteria, 113
- Protein Engineering, 114
- Polymerase Chain Reaction, 116
- Identifying the Gene Responsible for a Disease, 116
- Reverse Genetics, 117
- Transgenic and Knockout Mice, 117
- Ethics of DNA Testing for Inherited Disease, 119

8 Manufacturing Protein, 123
- Attachment of an Amino Acid to Its tRNA, 123
- Transfer RNA, the Anticodon, and the Wobble, 123
- The Ribosome, 124
- Bacterial Protein Synthesis, 127
- Ribosome-Binding Site, 127
- Chain Initiation, 128
- The 70S Initiation Complex, 128
- Elongation of the Protein Chain in Bacteria, 128
- The Polysome, 130
- Termination of Protein Synthesis, 130
- The Ribosome is Recycled, 131
- Eukaryotic Protein Synthesis is a Little More Complex, 131
- Antibiotics and Protein Synthesis, 132
- Protein Destruction, 133

9 Protein Structure, 137
- Naming Proteins, 137
- Polymers of Amino Acids, 137
- The Amino Acid Building Blocks, 138
- The Unique Properties of Each Amino Acid, 141
- Other Amino Acids are Found in Nature, 143
- The Three-Dimensional Structures of Proteins, 143
- Hydrogen Bonds, 143
- Electrostatic Interactions, 143
- van der Waals Forces, 143
- Hydrophobic Interactions, 143
- Disulfide Bonds, 143
- Levels of Complexity, 144
- The Primary Structure, 144
- The Secondary Structure, 145
- Tertiary Structure: Domains and Motifs, 147
- Quaternary Structure: Assemblies of Protein Subunits, 150
- Prosthetic Groups, 150
- The Primary Structure Contains All the Information Necessary to Specify Higher-Level Structures, 151
CONTENTS

10 INTRACELLULAR PROTEIN TRAFFICKING, 157
Three Modes of Intracellular Protein Transport, 157
Targeting Sequences, 158
Retention, 159
Transport to and From The Nucleus, 159
The Nuclear Pore Complex, 159
Gated Transport Through the Nuclear Pore, 159
GTPases and the GDP/GTP Cycle, 160
GTPases in Nuclear Transport, 162
Transport Across Membranes, 163
Transport to Mitochondria, 163
Chaperones and Protein Folding, 164
Transport to Peroxisomes, 164
Synthesis on the Rough Endoplasmic Reticulum, 164
Glycosylation: The Endoplasmic Reticulum and Golgi System, 165
Vesicular Trafficking Between Intracellular Compartments, 166
The Principle of Fission and Fusion, 167
Vesicle Formation, 167
Cotrans-Coated Vesicles, 167
Clathrin-Coated Vesicles, 167
Trans Golgi Network and Protein Secretion, 168
Targeting Proteins to the Lysosome, 169
Fusion, 170

11 HOW PROTEINS WORK, 175
How Proteins Bind Other Molecules, 175
Dynamic Protein Structures, 175
Allosteric Effects, 175
Chemical Changes That Shift the Preferred Shape of a Protein, 178
Enzymes are Protein Catalysts, 179
The Initial Velocity of an Enzyme Reaction, 182
Effect of Substrate Concentration on Initial Velocity, 183
The Effect of Enzyme Concentration, 184
The Specificity Constant, 184
Cofactors and Prosthetic Groups, 184
Enzymes can be Regulated, 186

12 ENERGY TRADING WITHIN THE CELL, 191
Cellular Energy Currencies, 191
Reduced Nicotinamide Adenine Dinucleotide (NADH), 192
Nucleoside Triphosphates (ATP plus GTP, CTP, TTP, and UTP), 192
The Hydrogen Ion Gradient Across the Mitochondrial Membrane, 193
The Sodium Gradient Across the Plasma Membrane, 194
Energy Currencies are Interconvertible, 194
Exchange Mechanisms Convert Between the Four Energy Currencies, 195
Electron Transport Chain, 196
ATP Synthase, 198
Sodium/Potassium ATPase, 199
ADP/ATP Exchanger, 203
All Carriers Can Change Direction, 203

13 METABOLISM, 207
The Krebs Cycle: The Central Switching Yard of Metabolism, 208
From Glucose to Pyruvate: Glycolysis, 209
Glycolysis Without Oxygen, 211
Glycogen Can Provide Glucose for Glycolysis, 212
Glycogen May Be Oxidized to Produce Pentose Sugars, 214
From Fats to Acetyl-CoA: β Oxidation, 214
Amino Acids as Another Source of Metabolic Energy, 215
Making Glucose: Gluconeogenesis, 216
Making Glycogen: Glycogenesis, 219
Making Fatty Acids, Glycerides and Cholesterol, 219
Synthesis of Amino Acids, 221
Control of Energy Production, 223
Feedback and Feedforward, 223
Negative Feedback Control of Glycolysis, 224
Feedforward Control in Muscle Cells, 224

14 IONS AND VOLTAGES, 229
The Potassium Gradient And The Resting Voltage, 229
Potassium Channels Make the Plasma Membrane Permeable to Potassium Ions, 229
Concentration Gradients and Electrical Voltage Can Balance, 231
The Chloride Gradient, 232
General Properties of Channels, 233
General Properties of Carriers, 236
The Glucose Carrier, 236
The Sodium/Calcium Exchanger, 236
Carriers with an Enzymatic Action: The Calcium ATPase, 237
Electrical Signaling, 238
The Pain Receptor Nerve Cell, 238
CONTENTS

Homing in on the CF Gene, 330
Cloning the GENE for CF, 331
The CFTR Gene Codes for a Chloride Ion Channel, 331
Novel Therapies for CF, 331
Diagnostic Tests for CF, 333
 Prenatal Implantation Diagnosis for CF, 334
The Future, 334

Appendix, 339
Glossary, 343
Answers to Review Questions, 381
Index, 395

Companion Website

This book is accompanied by a companion website:
www.wileyshortcourse.com/cellbiology

The website includes:

- 5 Animations
- A thermocycler video
- All figures from the textbook as Power Point slides for downloading
- Additional textboxes
- Additional references and useful web links