INDEX

A
A. J. Moore Academy (AJMA) (Waco, TX), 230
Abecedarian Project, 1, 41–43, 268, 278
Ability grouping, 222–223
Academic achievement, and self-discipline, 34–35
Acceleration, 223–225; to match up learners and instruction, 180–181
Acetylcholine, 50, 58, 68
Acoustical noise, as stressor, 72
Actions mimicked, as attunement behavior, 250
Adolescents, 101–106; crowd morality, 104; emotional and cognitive functions, 102–103; emotional stew, 103–104; gray matter, 101–106; lack of planning by, 103; massive changes to systems/structures, 104–105; playing catch-up, 103–104; risk taking, 104; self-regulation, 103–104; sensitivity to rewards, 102; susceptibility of, 103
Advanced development, early identification of, 149
Advanced electives, 232
African American students, 128; and giftedness, 150
After-school enrichment program, 124–125
After-school extracurricular activities, 235
After-school options, 235
Alpha state, 92
Altered weights bias, 260
Altman, Joseph, 51
Amines, 138
Amphetamines, 140, 166
Andreasen, Nancy, 148, 283
Androgens, 14
Animal studies: context of an activity, 68; limits to, 49; and metabolic allostasis, 58; and system disorder recovery, 63–64
Applied intelligence or ability, 26
Arts education, 226–228
Asians, and giftedness, 150
Assessment: and accountability, 236; classroom, 216–218
At-risk brains, 113–144; atypical brains and learning differences, 134; changing the environment, 126; differences created by poverty, 118–120; Head Start program, 123; hope, power of, 122–123; learning disabilities, 128–130; miracles, opportunity for, 120–126; poverty and the brain, 113–117; skill-building programs, 123–126; special-needs brains, 132–140; special-needs population, 126–128
Athletic programs, See Physical activity
Athletics, and genes, 11
Attention deficit/hyperactivity disorder (AD/HD), 137–140, 155, 163; ADD
symptoms, 138–139; biological causes of, 138; and conduct disorders, 138; danger of, 137–138; defined, 137; and IQ, 38–39; medication for, 140; symptoms of, 139; treatment for, 139–140
Attention, learning to pay, 251
Attentional mind-set to a task, 82
Attunement, 248–251; behavior examples, 250; calendar, 249
Auditory cortex, 94
Autism, 128, 130; autistic spectrum disorders, 130
Autopsies, to validate changed brains, 57

B
Bad language, and brain development, 258
Beautiful Mind, A, 168
Behavioral disorders, 131, 137
Behavioral enrichment program, 45
Bell Curve, The, 23
Benbow, Camilla, 147, 225
Bennett, Edward, 50
Beta state, 92
Binet, Alfred, 19, 28
Blackburn College (United Kingdom), 230–231
Blacks, and giftedness, 150
Blue’s Clues, 94
Body-brain system, 2
Boredom, negative effects of, 70
Boston Arts Academy, 227–228
Boys Clubs, 235
Brain activation, 161
Brain-derived neurotrophic factor (BDNF), 178–179
Brain development, late bloomers, 266; and primary school age, 149, 243–244
Brain function, factors that influence, 2–3
Brain injury, 81, 90, 134
Brain metabolism, 96
Brain morphology, 154–155
Brain receptivity, 91–92
Brain scans, to validate changed brains, 57; See also Magnetic resonance imaging (MRI)
Brain states, 2, 91–93
Brain wave activity, 92
Brain weights, and enrichment, 59
Brains at risk, See At-risk brains
Broad-based human potential, 280–281
Brown, A., 219
Bruer, J., 79
Bullying, 260–261; stress associated with, 184

C
Cairns, John, 9–10
Campbell, Don, 281
Career and technical education (CTE) track process, 228–229
Career-based high school options, 228–229
Caucasians, and giftedness, 150
Ceci, Stephen, 36
Celebrations, 262
Certificate of Advanced Mastery (CAM), 229
Certificate of Initial Mastery (CIM), 229
Change Your Brain, Change Your Life, 86
Choice option, to match up learners and instruction, 180–181
Choline, 74, 282
Chronic noise and stress, and long-term memory/reading ability, 24
Circle-Rock Preparatory School (Chicago), 233–234
Classroom assessment: graduated task and product rubrics, 217; learning contracts, 217; on-demand mapping, 217; online assessment, 218; performance-based portfolios, 217; student content journals, 216
Classroom instruction: computer programs, 215–216; differentiated inquiry, 213–214; five dimensions of differentiation model (Renzulli), 212–213; Higher Order Thinking Skills (HOTS) program, 215–216; independent study centers, 215; interest centers, 214–215; multiple texts and supplementary materials, 215; tiered activities, 214
Classroom social grouping, 218–220; flexible groupings, 219; group inves-
tigations and cluster groupings, 219; reciprocal teaching, 218–219

Clubs, 235
Cluster groupings, 219
C.O.A.C.H. Assessment, 136


Coherent, meaningful tasks, 82
College Board Scholastic Aptitude Test-Mathematical (SAT-M), 151
Community-based learning, 233–235
Community violence exposure, and stress, 184
Compacting, 221–222
Complex learning: projects, 228; time required for, 76–77
Complexity, 69–70, 181–182, See also Coherent complexity
Computer programs, 215–216
Connection and processing speed, 158–159
Connectivity, 157–158; increases in, 57, 59–60, 277
Context: of an activity, importance of, 68; and intelligence, 20–22
Contracts, learning, 217
Contrast, 180; and the enrichment response, xii, 10, 44, 47, 65–66, 84, 171
Cooperative Gene, The (Ridley), 10
Coping mechanism, gifted learners, 168–169
Core brain principles, 2
Cortex Pharmaceuticals, 282
Cortical imprinting, 68
Creating Brain, The (Andreasen), 148, 283
Creativity, and giftedness, 167
Cross-age tutoring, 237
Crowd morality, 104
Curiosity, and IQ, 245
Curriculum: compacting, 221–222; expanding, 225–236; matching students to, 220–225

D
David Douglas High School (Portland, OR), 229; mentoring program, 236–237
Davidson, Jan and Bob, 170
Dawkins, Richard, 10
Delayed development, See Learning delays
Delta state, 91–92
Dendrites, 71, 102
Developing brain, 90–91; illustration of, 100; maturity, 91; and stress, 98; vulnerability, 91
Diamond, Marian, 39, 50, 59, 155–156, 276, 286
 Dietary supplements, and memory/numeracy/reading/vocabulary, 74–75
Differentiated inquiry, 213–214
Differentiation: lack of, 213; to match up learners and instruction, 180–181
Disabilities, of gifted learners, 169
Discipline, of gifted learners, 169
Disrespect, and brain development, 258
Domestic violence: and the developing brain, 98; and IQ, 38; See also Violence
Dopamine, 58, 103, 166; synthesis, 178
Dyslexia, 131–134, 183, 193, 221; symptoms of, 133; treatment for, 133–134

E
Early brain detectives, 49–51
Early childhood enrichment, 243–273; coherent complexity, 253–256; managed stress levels, 256–259; novel, challenging, and meaningful learning, 248–253; nutrition, 263–265; physical activity, 245–247; programs, 267–273; Seven Golden Maximizers, 244–267; social support, 260–263; sufficient time, 265–267
Early childhood programs, 226; Abecedarian Project, 1, 268–270; benefits of, 267–273; gold standards for, 268; Infant Health and Development Program (IHDP), 268–270; Project CARE, 44–45, 268–270; research results, 269–270; research summary, 271–273
Early television exposure, and attention problems, 259
Eating patterns, changes in, 108
Educational acceleration, 223–225
Educational onscreen media, for children over two, 258
eduscapes.com, 232
Einstein, Albert, 155–156
Electro-chemical cellular function, and gifted learners, 154, 164–166
Electronic-media-free environment, 258
Elkind, David, 267
Emotional intelligence (EI) theory, 31–32, 36
Emotional Intelligence (Goleman), 31, 36, 281
Emotive responses, as attunement behavior, 250
Encyclopedia of Human Intelligence (Sternberg), 36
Enhanced anatomical structures, 57, 59, 277
Enrichment, xii, xiv; and changes in the brain, 36–57; coherent complexity, 181–182; defined, xii, 47–48, 177, 276, 277; early brain detectives, 49–52; as educational policy, 173–205; environment, changing, 126; for everyone, 279–280; factors contributing to, 66–78; in the future, 275–286; managed stress levels, 183–184; novel, challenging, and meaningful learning, 180–181; nutrition, 185–187; of our lives, 285–286; providing for everyone, 174–175; as rehabilitation, 43; schoolwide enrichment policy, 176–177; science behind, 47–84; Seven Golden Maximizers, 177–187; social support, 184–185; studying, 53–56; sufficient time, 186–187
Enrichment policy: implementing, 199–204; myth of delusion, 198–199; myth of powerlessness, 200–201; myth of reduction, 199–200
Enrichment programs: changing the paradigm, 189–190; customized education, 193–197; data gathering, 191–192; “enrichment for all” models, 202; establishing, 188–198; existing program models, 201–202; IEP (individual education plan), 188–189; matching students with instructional needs, 193; Renzulli and Reis’s School Enrichment Model, 201–202; SuperCamp®, 202; using better assessments to identify studies, 190–191; what would change, 197–198; what you can do, 202–204
Enrichment response, 81–82, 123, 282–283; benefits of, 283–284; future of, 284–285
Enrichment specialist, 239; sample job description, 240–241
Enrichment studies: age independence, 78–79; global and widespread impact, 78; intelligence independence, 79–80
Environment: changing, 80–81, 126; coherent complexity, 69–70; and gene expression, 9–10; managed stress levels, 70–73; novel, challenging, and meaningful learning, 67–69; nutrition, 74–76; physical activity, 67; social support, 73–74; sufficient time, 76–78
Environmental complexity, 69–70
Environmental enrichment, 49–52
Environmental stimuli, gene responsiveness to, 5
Epigenetic (“outside of genes”) control, 10
Erotonin, 58
Evans, G., 72
Event-related potential (ERP), 164–165
Excellence, and the relentless pursuit of perfection, 153
Exceptional brains: exploring, 145–172; overview of, 166–169
Excitotoxins, 74
Exercise, 182–183, 281, See also Physical activity; and brain cell production, 55–56; and brain-derived neurotrophic factor (BDNF), 178–179; relationship between academic achievement and, 179
Expanding the curriculum, 225–235, 225–236; advanced electives, 232; after-school options, 235; arts education, 226–228; career-based high school options, 228–229; community-based learning, 233–235; complex learning projects, 228; early childhood programs, 226; honors programs, 232; online coursework, 231–232; university level, tapping, 233
Experience, and the human brain, x–xi, 1–2, 5, 11–12
Experience-dependent change, 89–90
Experience-independent change, 87–88
Experimental enrichment condition, 53
Experimental impoverished condition, 53
Exploration, 96–99, 245–247
Extreme neurons, 156

F
Face mimicking, as attunement behavior, 250
Failure to Connect (Healy), 252
Fast-Forward program, 133–134
Feral children, vocabulary of, 88–89
Fetal alcohol syndrome, 134
Fitzgerald, Dr. Ron, 228
Five dimensions of differentiation model (Renzulli), 212–213; classroom, 212; content, 212; process, 213; product, 213; teacher, 212
Fixed brain myth, ix–x, 1–18
Fixed genes, 8; debunking of myth, 9–10
Food quantity, and intelligence/brain efficiency, 75
4-H Clubs, 234–235
4-H School Enrichment Program (SEP), 234–235
Fragile X Syndrome, 134, 158
Frames of Mind (Gardner), 36
Freedom of Information Act, and enrichment programs, 203
French adoption study, 40
Frontal lobes, 102, 138, 162–163, 166, 257

G
g factor theory, 27–28, 36
Gage, Fred, 62–63
Gage, Phineas, 15–17
Gardner, Howard, 25–26, 29–30, 36
Gene expression, 277; defined, 5–6, 74; discovery of, 5; and the environment, 9–10; influencing purposefully, 6; and metabolism, 8; modulation of, 8; regulation by environmental factors, 17; and social environment, 74
General talent, 26
Genes, 4; and the aging process, 3; and athletics, 11; defined, 10; fixed, 8; functions of, 3–4, 6; as highly reliable templates, 4, 6–7; housekeeping, 5; and inevitability, 9; and outcomes, 8–9; remodeling, 1–2, 10–11; transcription function, 4, 7–8
Genetic blueprint, as part of “big picture,” 11
Genetic code: cracking of, 3; and human behavior, 4–5
Genetic inheritance, 1–2; genes and the environment, 3–5
Genetic mutation, and enriched environments, 65
“Genie,” vocabulary of, 89
Genius Denied (Davidson/Davidson), 170
Giedd, Jay, 101
Gifted education, making the case for, 169–171
Gifted learners, 278; brain differences, 154; characteristics of, 168–169; connectivity in, 157–158; coping mechanism, 168–169; differences in, from general population, 145–146;
disabilities of, 169; discipline of, 169; and dopamine, 166; and electrochemical cellular function, 154, 164–166; extreme neurons in, 156; gender differences in, 151; gifted education, 147; glial cells in, 155; identifying, 148–150; and morphology, 154–155; and operations, 154, 156–157; profiles of, 146; and real estate, 154; and serotonin, 166; sociability of, 169; underrepresented groups, 150–151
Gifted women, underachievement of, 151
Giftedness, personality traits or qualities consistent with, 167
Giftedness Services, selecting brains for, 146–154
Gifts of humanity, types of, 147
Girls Clubs, 235
Glial cells, 155
Global connections, 159–160
Glucose, 99
Goldberg, Elkhonon, 283
Goleman, Daniel, 31, 36, 281
Gomez-Pinilla, Fernando, 178
Gould, Stephen Jay, 36
Grade skipping, 225
Graduated task and product rubrics, 217
Graphic organizers, 217
Gray matter, 12, 99, 101–102
Greenough, Bill, 52, 59–61, 69, 276
Greenspan, Dr. Stanley, 85–86
Gross motor activities, and brain cell production, 55–56
Group investigations, 219
Group think, 102
Growth factors, increases in, 57, 62–63

H
Half-asleep state, 92
Half-awake state, 91–92
Harassment, 260–261
Hawkins, Jeff, 104
Head Start program, 123, 170
Healthy vs. neglected brain, 12–14, 99
Heavy-TV households, and reading times, 258
Hebb, Donald, 49–50
Helicon Therapeutics, 282
Hemispherectomy, 90
Hemispheres of the brain, 99–100
High metabolic activity, and young children, 96
High/Scope Perry preschool study, 123
Higher Order Thinking Skills (HOTS) program, 215–216
Hippocampus, 61–62
Hispanic students, 128; and giftedness, 150
Honors programs, 232
Hope: and learning difficulties, 143; power of, 122–123
Hormone levels, and intelligence, 165
Housekeeping genes, 5
Human brain: and brain receptivity, 91–92; case of H. M., 14–15; case of Phineas Gage, 15–17; catastrophic changes, 14; changing, 81–82; drivers of change, 106–109; duration of change, 109–110; as a dynamic and changing organ, x–xi; enhancing through skill learning, 82–84; and enrichment, xii; experience-dependent change, 89–90; experience-expectant change, 88–89; experience-independent change, 87–88; famous research cases, 14–16; genetic and environmental changes, 86–90; healthy vs. neglected brain, 12–14, 99; and interaction, 12; malleability of, x, 85–111; and negative experiences, 12–13; physical/chemical damage to, xi–xii; plasticity of, 14; positive experiences and, 17–18; structural changes to, xi
Human complexity, source of, 4–5
Human Genome Project, 4
Huttenlocher, Peter, 265–266
Hyperactivity, and nutrition, 74

I
IDEA (Individuals with Disabilities Education Act) of 1997, 170
IEP (individual education plan), 140–141, 188–189, 223–225; benchmarks, establishing, 192; and student strengths and weaknesses, 192
Index

Inconsistent performance, and learning disabilities, 129–130
Increased connectivity, 57, 59–60, 277
Increased neurogenesis, 57, 62–63, 77–79, 277
Independent study centers, 215
Individual education plan (IEP), 140–141, 188–189
Inevitability, and genes, 9
Infant Health and Development Program (IHDP), 268–270
Innate ability, 26
Intellectual Talent (Benbow), 225
Intelligence: and context, 20–22; culture/context dependence of, 19–20; defined, ix–x, 25–26; emotional intelligence (EI) theory, 31–32, 36; fixed vs. variable, 36–37; g factor theory, 27–28, 36; and hormone levels, 165; life quotient (LQ) concept, 33–34, 36; lowering, 37–39; measuring/assessing, 35–36; of minorities, 24, 278; models of thinking about, 26–35; qualitative research, 23–24; quantitative research, 22–23; raising, 40–45; researching, 22–25; rethinking, 19–45; standard IQ theory, 28–29, 36; street smarts, 32–33, 36; theory of multiple intelligences, 29–30, 36; triarchic intelligence model, 30–31, 36
Intensity, and giftedness, 167
Interest centers, 214–215
Internet, 215, 285; and enrichment programs, 203
Intra-test scatter, 129–130
IQ scores, and the gifted population, 148; as predictors of academic performance, 151; variance in, 29
IQ testing, 22–23, 28–29; limitations of tests, 148

J
Job description, enrichment specialist, 240–241

K
Kacynzski, Theodore (Unabomber), 19
Kandel, Eric, 8, 74, 282
Kempermann, Gerd, 62–63
Kid Trek, 233–234
Kilgard, Michael, 68
Krech, David, 50
Kurzweil, Ray, 37, 171, 284

L
Lab norm, 53–54
Language, 94–96; development, stimulating activities for, 254–255; new, learning, 253–255
Language delays, 130
Learned intelligence, 26
Learner-controlled intelligence, 83
Learners, profiling, 126–128
Learning contracts, 217
Learning delays, 134–136; attention deficit/hyperactivity disorder (AD/HD), 137–140; C.O.A.C.H. Assessment, 136; defined, 134; symptoms of, 135; treatment for, 136
Learning difficulties: remediation, prospects for, 142–144; repair of, 140–144
Learning disabilities, 128–130; grade-level cut-off, 129; inconsistent performance, 129–130; increases in, 130; IQ cut-off, 129
Learning support, 73–74, 84
Lee, E. S., 38
Lexia reading program, 133
Life quotient (LQ) concept, 33–34, 36
Lifestyle elements, and learning disabilities, 130
Lighting, and stress, 72
Long-lasting study, 41–43
Longitudinal study of “genius” (Terman), 28
Lynch, Gary, 282

M
Magnetic resonance imaging (MRI), 12, 102, 134; to validate changed brains, 57
Malleability, defined, 85
Malleable brain, x, 85–111; primary school age, 99–101; teenage brain, unlocking, 101–106
Malnutrition, and IQ, 38
Managed stress levels, 70–73, 183–184
Mann, Charles, 10
Marker dyes, to validate changed brains, 57
Massed practice, 82–83
Mathematically gifted, compared to typical student, 168
Maxa, Dr. Ed, 234–235
Maxwell, L., 72
“Maze-smart” vs. “maze-dull” rats, 50
McCall, Robert, 29
Mediation, 260–261
Mehrabian, Albert, 35
Memory, and sleep, 83
Mendelian genetics, ix
Mental retardation, 134, 136
Mentoring, 237
Merzenich, Michael, 68, 81–82
Metabolic allostasis, 57, 58–59, 277
Mid-continent Research for Education and Learning Group (McREL), 124–125
Mill, John Stuart, 148
Minorities, intelligence of, 24, 278
Minority language students, assessing, 148–149
Minuteman High School (Foxboro, MA), 228
Mismeasure of Man, The (Gould), 36
Modafinal (Provigil), 282
Morphology, and gifted learners, 154–155
Morris water maze, 55
Motor skills, as support for academic skills, 125
Mozart Effect, The (Campbell), 281
Multi-Factor Emotional Intelligence Scale, 32
Multiple intelligences, theory of, 29–30, 36
Multiple talents and abilities, students with, 152
Multiple texts and supplementary materials, 215
Myelination, 91
Myth of delusion, 198–199
Myth of powerlessness, 200–201
Myth of reduction, 199–200

N
Nash, John, 168
National Assessment of Vocational Education (NAVE), 228
National Association for Gifted Children, 223
Native Americans, and giftedness, 150
Negative experiences, 12–13
Negative factors in raising children, and IQ, 39
Nerve growth factors, 14
Neurogenesis, increases in, 57, 62–63, 77–79, 277
Neurons, 71, 91, 155, 257; from birth to age two, 97
Neuroplasticity, 86
Neurotransmitters, 14, 58, 166
Newborns/infants: and the developing brain, 90–91; and experience, 11–12; exploration, 96–99; language, 94–96; and prenatal distress, 10; prenatal exposure to drugs, 12
Newton, Isaac, 215
Nonverbal learning disability, 134
Noradrenaline, 103
Novel, challenging, and meaningful learning, 67–69, 180–181, 248–253, 268; attunement, 248–251; attunement behaviors, examples of, 250; attunement calendar, 249; learning with toys and games, 251–252; strategy for enrichment response, 253
Nucleus basalis, 68

O
Obesity, and intelligence/brain efficiency, 75
On-demand mapping, 217
On Intelligence (Hawkins), 104
On Intelligence: More or Less (Ceci), 36
Online assessment, 218
Online coursework, 231–232
Operational IQ, lowering, 38
Operations: connection and processing speed, 158–159; connectivity, 157–158; and gifted learners, 154, 156–157; global connections, 159–160
Organization of Behavior (Hebb), 49–50
Orton-Gillingham reading program, 133
Out-of-school enrichment programs, 124–125
Outsmarting IQ (Perkins), 37
Overnight rest between learning sessions, 83

P
Pai, Sung-Joon, 227
Palincsar, S., 219
Palmer, Lyelle, 247
Parietal lobes, 101
Partnership, 235
Passion, 285
Paying attention, learning, 251
Peek, Kim, 152
Pekkarinen, E., 72
Perfectionism, and giftedness, 167
Performance-based portfolios, 217
Perkins, David, 37
Perry, Dr. Bruce, 275
Perry Preschool enrichment program, 40–41
Physical activity, 67, 84, 178–179, 245–247, See also Exercise; choices of, 179; coaches, 179–180; exploration, 247; relationship between academic achievement and, 179; sensory stimulation, 247; SMART START program, 247; strategy for enrichment response, 247
Physical punishment, 260–261
Plasticity of the brain, 14, 62
Playground time, and brain changes, 108
Plomin, Dr. Robert, 146
Pogrow, Dr. Stanley, 215–216
Poor schooling, and IQ, 38
Positive experiences, and the human brain, 17–18
Postnatal exposure to toxins, 108–109
Poverty and the brain, 113–117, 278; environment, changing, 126; miracles, opportunity for, 120–126
Poverty and the gifted, 150–151
Prefrontal cortex, 99, 178
Prejudice, and IQ, 38
Prenatal exposure to drugs, 12
Prenatal stress, and reduced brain development/memory/cognition, 24
Prenatal toxic exposure, and brain changes, 108
Preschool enrichment, 40–41
Prescreening, to match up learners and instruction, 180–181
Primal Teen, The (Strauch), 268
Primary school age: and development of the brain, 99–101, 243–244; right- and left-hemisphere activity, 99–100; working memory tasks, 100–101
Prodigies, 152
Progressive Matrices (Raven), 27, 151
Project CARE, 44–45, 268, 268–270
Project STARS—Students Taking Authentic Routes to Success, 229
Propranolol, 282
Protein synthesis and gene transcription, 62
Provigil, 282
Pullout programs, 223–225; to match up learners and instruction, 180–181
Purdue University Cooperative Extension Service, 233

Q
Qualitative research, 23–24
Quality time, value of, 251
Quantitative research, 22–23
Quantity time, and brain changes, 107

R
Racial bias, and IQ, 38
Raine, Adrian, 45
Raising intelligence, 40–45; Abecedarian Project, 41–43; behavioral enrichment program, 45; enrichment as rehabilitation, 43; French adoption study, 40; preschool enrichment, 40–41; school enrichment study, 44–45
Index

Rajan, 153
Ramey, Craig, 44–45, 245, 269, 273
Ramey, Sharon, 44–45, 245, 269
Randolph County, Indiana, school system, 233
Rauscher, Francis, 259
Raven’s Progressive Matrices, 27, 151
Real estate: balanced thinking, 163–164; controlling attention and gating sensory information, 162; focus/motivation/concentration, 163; frontal lobes, 102, 138, 162–163; and gifted learners, 154; spatial-temporal areas of temporal lobes, 164
Receptors, 5
Reciprocal hand games, as attunement behavior, 250
Recovery from trauma/system disorders, 57, 63–64, 277
Reis, Sally, 149–151, 201
Renzulli, Joseph, 149–151, 201, 223; five dimensions of differentiation model, 212–213
Responsiveness and learning efficiency, 57, 61–62
Right from Birth (Ramey/Ramey), 268
RNA (ribonucleic acid), 3
Rosenzweig, Mark, 50, 276
Rubrics, 217
Running: in animal studies, 67; and brain cell production, 55
Saari, Matti, 58
Sacramento, California, school system, career academies concept, 231
Sample job description, enrichment specialist, 240–241
Savants, 152
Scholastic Aptitude Test-Mathematical (SAT-M), 151
School and classroom solutions, 207–242; enrichment-driven classroom, 209–220; schoolwide solutions, 220–239
School enrichment study, 44–45
Schoolwide solutions, 220–239; assessment and accountability, 236; enrichment specialist, 239; expanding the curriculum, 225–235; matching students to curriculum, 220–221; schoolwide participation, increasing, 237–238; social support, 236–237
Secrets of the Teenage Brain (Feinstein), 268
Self-knowledge, 209–210
Selfish Gene, The (Dawkins), 10
Seligman, Martin, 33–34
Sensitivity, and giftedness, 167
Sensory ERPs, 165
Sensory motor systems, development of, 96–97
Sensory stimulation, 247
Serotonin, 166; and gifted thinking, 166
Service groups, 235
Sesame Street, 94
Sex hormones, and intelligence, 165–166
Shaw, Gordon, 164
Sherman, Gordon, 131
Shortchanging students, 275–279
Singh, Vijay, 34
Singularity Is Near, The (Kurzweil), 37, 284
Skill building, 83–84
Skill-building programs, 123–126
Sleep, and memory, 83
Slow learners, and enriched environments, xi
Smaller families, and brain changes, 107–108
SMART START program, 247
Sociability, of gifted learners, 169
Social connectedness, fostering, 185
Social grouping, classroom, 218–220
Social influences, on gene expression, 8
Social Skills Universe (SSU), 236–237
Social support, 73–74, 184–185, 236–237,
260–263: celebrations, 262; media-
tors, 260; parents as parenting tem-
plate, 261–262; social success vs.
academic success, 236–237; strategy
for enrichment response, 262–263;
tutoring/mentoring, 237
Spearman, Charles, 27
Special-needs brains, 132–140; dyslexia,
132–134; learning delays, 134–136
Special-needs population, 126–128
Stand Up for Your Gifted Child (Smutney),
238
Standard IQ theory, 28–29, 36
Stanford-Binet test, 28, 147, 151
Stereotype threats, and working mem-
ory capacity, 24
Sternberg, Robert, 19, 30–31, 36
Stiggins, Rick, 236
Streaming acceleration process, 224
Street-smart intelligence, 32–33, 36
Stress, 126; and brain changes, 108; and
the developing brain, 98; low to
moderate, 82; self-regulation strate-
gies, 182–183; symptoms of, 184
Stress disorders, 130
Stress hormones, and intelligence, 165
Stress levels, managed, 70–73, 183–184,
256–259; strategy for enrichment
response, 259
Student choice, 220–221
Student content journals, 216
Student self-knowledge, 209–210
Students, matching to curriculum,
220–225; ability grouping, 222–223;
curriculum compacting, 221–222;
pullout and acceleration programs,
223–225; student choice, 220–221
Success, and the relentless pursuit of
perfection, 153–154
Sufficient time, 265–267; and enrich-
ment, 186–187; and environment,
76–78; late bloomers, 267; strategy
for enrichment response, 267
Summer enrichment programs, 124–125
Super-brain supplements, new role of,
282
SuperCamp®, 202
Synapses, 11–12, 14, 76, 91, 260; forma-
tion, 97; in language areas, 95–96;
new, creation of, 59–60
System disorders, recovery from, 57, 277

T
Talent, defined, 131
Talented children vs. gifted children,
152–153
Task repetition, 83
Teaching Gifted Kids in the Regular Class-
room (Winebrenner), 168–169
Teasing, 260–261
Teenage brain, unlocking, 101–106; gray
matter, 101–102
Telescopimg, 221–222
Television, and violence, 93–94
Television watching, 258–259
Temporal lobes, 61, 94
Terman, Lewis, 28
Test experiences, and test administra-
tors, 24
Texas Assessment of Knowledge &
Skills (TAKS), 230
Theta state, 91–93, 257
Three-Ring Conception of Giftedness,
149–151
Tiered activities, 214
Tomlinson, Carol Ann, 213
Toxins, postnatal exposure to, 108–109
Toys/games, learning with, 251–253
Transcription function, 4, 7–8; and the
environment, 7–8
Trauma, 281; and brain development,
258; and IQ, 39; recovery from, 57,
63–64, 277
Triarchic intelligence model, 30–31, 36
Tully, Tim, 282
Tutoring, 237
Twins studies, 8, 268

U
Underserved gifted students, assessing,
148–149
University level, tapping, 233

V
Vaccinations, 108–109
Van Praag, Henriette, 54–55
Violence, and brain development, 258–259; as driver of change, 109; and the human brain, 93, 109; and IQ, 38–39; stress associated with, 184; See also Domestic violence
Vocabulary: and giftedness, 167; growth in, 96

W
Webster Central School District (Rochester, New York), 239
Wechsler Intelligence Scale for Children-Revised (WISC-R), 23, 28, 147
Wechsler Preschool and Primary Scale of Intelligence, 150–151
White matter volume (myelin), 12, 102
Wiggins, Grant, 236
Wiljanen, V., 72
Williams Syndrome, 134
Wilson reading program, 133
Winebrenner, Susan, 168
Wisdom Paradox: How Your Mind Can Grow Stronger as Your Brain Grows Old, The (Goldberg), 283
Woods, Tiger, 34

Y
Yoga, 182–183
Your Child’s Growing Mind (Healy), 268

Z
Zeidner, M., 32, 33