Contents

Foreword XVII
Preface XIX
About the Editors XXI
List of Contributors XXIII

Part I: Control of Cell/Film Interactions 1

1 Controlling Cell Adhesion Using pH-Modified Polyelectrolyte Multilayer Films 3
Marcus S. Niepel, Kristin Kirchhof, Matthias Menzel, Andreas Heilmann, and Thomas Groth
1.1 Introduction 3
1.2 Influence of pH-Modified PEM Films on Cell Adhesion and Growth 5
1.2.1 HEP/CHI Multilayers 5
1.2.2 PEI/HEP Multilayers 16
1.3 Summary and Outlook 24
Acknowledgments 25
References 25

2 The Interplay of Surface and Bulk Properties of Polyelectrolyte Multilayers in Determining Cell Adhesion 31
Joseph B. Schlenoff and Thomas C.S. Keller
2.1 Surface Properties 33
2.2 Bulk Modulus 38
References 42

3 Photocrosslinked Polyelectrolyte Films of Controlled Stiffness to Direct Cell Behavior 45
Naresh Saha, Claire Monge, Thomas Boudou, Catherine Picart, and Karine Glinel
3.1 Introduction 45
3.2 Elaboration of Homogeneous Films of Varying Rigidity 48
## Contents

3.3 Elaboration of Rigidity Patterns 52  
3.4 Behavior of Mammalian Cells on Homogeneous and Photopatterned Films 54  
3.5 Influence of Film Rigidity on Bacterial Behavior 58  
3.6 Conclusion 61  
Acknowledgments 61  
References 62

4 Nanofilm Biomaterials: Dual Control of Mechanical and Bioactive Properties 65  
Emmanuel Pauthe and Paul R. Van Tassel  
4.1 Introduction 65  
4.2 Surface Cross-Linking 67  
4.3 NP Templating 69  
4.4 Discussion 73  
4.5 Conclusions 75  
Acknowledgments 75  
References 75

5 Bioactive and Spatially Organized LbL Films 79  
Zhengwei Mao, Shan Yu, and Changyou Gao  
5.1 Introduction 79  
5.2 Role of Chemical Properties 80  
5.2.1 Bulk Composition 80  
5.2.1.1 Introducing Natural Polyelectrolytes as Building Blocks 80  
5.2.1.2 Incorporating Hormones and Growth Factors 81  
5.2.2 Surface Chemistry 83  
5.2.2.1 Role of the Final Layer 83  
5.2.2.2 Surface Modification with Cell Binding Molecules 83  
5.3 Role of Physical Properties 85  
5.3.1 Mechanical Property 85  
5.3.1.1 Chemical Cross-linking 86  
5.3.1.2 Incorporating Stiff Building Blocks 86  
5.3.1.3 Control Environmental \( \text{pH} \) or Salt Concentration 87  
5.3.2 Topography 89  
5.4 Spatially Organized PEMS 89  
5.4.1 Patterned PEMS 89  
5.4.2 Gradient PEMS 91  
5.5 Conclusions and Future Perspectives 92  
Acknowledgments 94  
References 94

6 Controlling Stem Cell Adhesion, Proliferation, and Differentiation with Layer-by-Layer Films 103  
Stewart Wales, Guak-Kim Tan, and Justin J. Cooper-White  
6.1 Introduction 103
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1 Types of Stem Cells</td>
<td>103</td>
</tr>
<tr>
<td>6.1.2 Stem Cell Fate Choices</td>
<td>104</td>
</tr>
<tr>
<td>6.1.3 The Stem Cell “Niche”</td>
<td>104</td>
</tr>
<tr>
<td>6.1.3.1 Soluble Factors</td>
<td>105</td>
</tr>
<tr>
<td>6.1.3.2 Cell–Cell Interactions</td>
<td>105</td>
</tr>
<tr>
<td>6.1.3.3 Cell–ECM Interactions</td>
<td>106</td>
</tr>
<tr>
<td>6.1.4 Influencing Stem Cell Fate Choice</td>
<td>106</td>
</tr>
<tr>
<td>6.2 Mesenchymal Stem Cells and Layer-by-Layer Films</td>
<td>107</td>
</tr>
<tr>
<td>6.2.1 Human MSC Adhesion, Proliferation, and Differentiation</td>
<td>107</td>
</tr>
<tr>
<td>6.2.2 Murine MSC Adhesion, Proliferation, and Differentiation</td>
<td>114</td>
</tr>
<tr>
<td>6.3 Pluripotent Stem Cells and Layer-by-Layer Films</td>
<td>116</td>
</tr>
<tr>
<td>6.3.1 Murine ESC Adhesion, Proliferation, and Maintenance of Potency</td>
<td>117</td>
</tr>
<tr>
<td>6.3.2 Murine ESC Differentiation</td>
<td>120</td>
</tr>
<tr>
<td>6.3.3 Human ESC Adhesion, Proliferation, and Differentiation</td>
<td>122</td>
</tr>
<tr>
<td>6.4 Future Directions and Trends</td>
<td>123</td>
</tr>
<tr>
<td>References</td>
<td>124</td>
</tr>
</tbody>
</table>

Part II: Delivery of Small Drugs, DNA and siRNA 131

7 Engineering Layer-by-Layer Thin Films for Multiscale and Multidrug Delivery Applications 133

Nisarg J. Shah, Bryan B. Hsu, Erik C. Dreaden, and Paula T. Hammond

7.1 Introduction 133

7.1.1 The Promise of LbL Delivery 133

7.1.1.1 High Drug Density and Scalability 133

7.1.1.2 Translatable to 2D and 3D Geometries 133

7.1.1.3 Facile Encapsulation of Active Biologics 134

7.1.1.4 Multiple Drug Combinations 134

7.1.1.5 Controlled Time-Dependent Release and Opportunity for Multisequence Release 134

7.1.2 Growth in the LbL Delivery Field 135

7.1.3 Brief Outline of Chapter 135

7.2 Engineering LbL Release Mechanisms – from Fast to Slow Release 136

7.2.1 Overview 136

7.2.2 Tuning Hydrolytic Release 137

7.2.3 Small Molecule Release 139

7.2.3.1 Direct Adsorption of Charged Molecules 139

7.2.3.2 Complexation with Charged Polymer 139

7.2.3.3 Pre-encapsulation in Carrier 141

7.2.4 H-Bond-Based Release of Molecules 141

7.2.5 Impact of Assembly Approach and Spray-LbL 142

7.2.6 Other Mechanisms of Release 143
7.2.7 Controlling Release Kinetics and Manipulating Sequential Release 144

7.3 LbL Biologic Release for Directing Cell Behavior 145

7.3.1 Overview 145

7.3.2 Controlled Growth Factor Delivery for Tissue Engineering 146

7.3.2.1 Release of Therapeutic Growth Factors from LbL Films 146

7.3.3 Growth Factor Delivery with Synergistic Impact 148

7.3.3.1 BMP-2 and VEGF 148

7.3.3.2 Implant Osseointegration: The Synergistic Effect of BMP-2 and Hydroxyapatite 149

7.3.4 Staggering Release of Drugs from LbL Films with “Barrier” Layers 151

7.3.5 Nucleic Acid Delivery as a Modulator of Cell Response 152

7.3.5.1 Challenges of DNA/siRNA Release for Localized Delivery 152

7.3.5.2 Multilayer Polymer “Tattoos” for DNA-Based Vaccination 153

7.3.5.3 Wound Healing Mediated by siRNA for Sustained Localized Knockdown 154

7.4 Moving LbL Release Technologies to the Nanoscale: LbL Nanoparticles 156

7.4.1 Overview – Nanoparticle Delivery Challenges 156

7.4.2 Tuning LbL Systems for Systemic Delivery – Stability, Blood Half-life 156

7.4.3 Adapting LbL Nanoparticles for Targeting 158

7.4.3.1 Tumor Microenvironment, Hypoxic Response 159

7.4.3.2 Molecular Targeting 160

7.4.4 Dual Drug Combinations 160

7.4.4.1 siRNA Chemotherapy Combination Nanoparticle Systems 161

7.4.4.2 Future Potential 162

7.5 Conclusions and Perspective on Future Directions 162

7.5.1 Translation of Technologies 163

Acknowledgments 165

References 165

8 Polyelectrolyte Multilayer Coatings for the Release and Transfer of Plasmid DNA 171

David M. Lynn

8.1 Introduction 171

8.2 Fabrication of Multilayers Using Plasmid DNA and Hydrolytically Degradable Polyamines 173

8.3 Toward Therapeutic Applications In vivo Contact-Mediated Approaches to Vascular Gene Delivery 178

8.3.1 Transfer of DNA to Arterial Tissue Using Film-Coated Intravascular Stents 178

8.3.2 Transfer of DNA to Arterial Tissue Using Film-Coated Balloon Catheters 180
8.3.3 Beyond Reporter Genes: Approaches to the Reduction of Intimal Hyperplasia in Injured Arteries  182
8.3.4 Other Potential Applications  184
8.4 Exerting Temporal Control over the Release of DNA  184
8.4.1 New Polymers and Principles: Degradable Polyamines and “Charge Shifting” Cationic Polymers  185
8.4.2 Multicomponent Multilayers for the Release of Multiple DNA Constructs  187
8.4.2.1 Approaches to Promoting the Rapid Release of DNA  188
8.5 Concluding Remarks  190
Acknowledgments  190
References  191

9  LbL-Based Gene Delivery: Challenges and Promises  195
   Joelle Ogier
9.1 LbL-DNA Delivery  195
9.1.1 Pioneer Designs  196
9.1.2 DNA Spatial and Temporal Scheduled Delivery  199
9.1.3 Pending Challenges: From In Vitro Substrate-Mediated Gene Delivery to In Vivo Formulations  201
9.2 LbL-siRNA Delivery  202
9.3 Concluding Remarks  204
References  205

10 Subcompartmentalized Surface-Adhering Polymer Thin Films Toward Drug Delivery Applications  207
   Boon M. Teo, Martin E. Lynge, Leticia Hosta-Rigau, and Brigitte Städler
10.1 Introduction  207
10.2 Cyclodextrin (CD)-Containing LbL Films  208
10.2.1 Assembly  209
10.2.2 Drug Delivery Applications  209
10.3 Block Copolymer Micelle (BCM)-Containing LbL Films  212
10.3.1 Assembly  213
10.3.1.1 Glassy BCMs within LbL Films  213
10.3.1.2 Temperature and pH Responsive BCMs within LbL Films  213
10.3.2 Drug Delivery Applications  215
10.4 Liposome-Containing LbL Films  215
10.4.1 Assembly  216
10.4.2 Cargo Release Capability from Liposomes within LbL Films  219
10.4.3 Drug Delivery Applications  219
10.5 LbL Films Containing Miscellaneous Drug Deposits  222
10.6 Conclusion/Outlook  224
References  225
Part III: Nano- and Microcapsules as Drug Carriers

11 Multilayer Capsules for In vivo Biomedical Applications

Bruno G. De Geest and Stefaan De Koker

11.1 Introduction

11.2 A Rationale for Functionally Engineered Multilayer Capsules

11.2.1 General Considerations

11.2.2 Multilayer Capsules Responding to Physicochemical and Physiological Stimuli

11.3 In vivo Fate of Multilayer Capsules

11.3.1 Tissue Response

11.3.2 In vivo Uptake and Degradation

11.3.3 Blood Circulation

11.4 Vaccine Delivery via Multilayer Capsules

11.5 Tumor Targeting via Multilayer Capsules

11.6 Concluding Remarks

References

12 Light-Addressable Microcapsules

Markus Ochs, Wolfgang J. Parak, Joanna Rejman, and Susana Carregal-Romero

12.1 Introduction

12.2 Light-Responsive Components

12.2.1 Light-Responsive Polyelectrolytes and Molecules

12.2.2 Light-Responsive Shells

12.2.3 Light-Responsive Nanoparticles

12.3 Capsule Synthesis and Loading

12.4 Gold-Modified Layer-by-Layer Capsules

12.5 Morphological Changes of Capsules and Nanoparticles

12.6 Bubble Formation

12.7 Cytosolic Release

12.8 Triggering Cytosolic Reactions

12.9 Conclusions and Perspectives

Acknowledgments

References

13 Nanoparticle Functionalized Surfaces

Mihaela Delcea, Helmut Moehwald, and Andre G. Skirtach

13.1 Introduction

13.2 Nanoparticles on Polyelectrolyte Multilayer LbL Capsules

13.2.1 Adsorption of Nanoparticles onto Polyelectrolyte Multilayer Capsules

13.2.2 Light- and Magnetic-Field-Induced Permeability Control

13.2.3 Fluorescence Imaging Using Quantum Dots

13.2.4 Magnetic Nanoparticles: Activation and Targeting
13.2.5 Catalysis Using Nanoparticles 285
13.2.6 Enhancement of Mechanical Properties of Capsules 285
13.2.7 Anisotropic Capsules 286
13.3 Nanoparticles on Polyelectrolyte LbL Films 287
13.3.1 LbL Films and Adsorption of Nanoparticles onto Films 287
13.3.2 Laser Activation 287
13.3.3 Fluorescent Labeling of Films 289
13.3.4 Increasing the Stiffness of Films for Cell Adhesion and Control over Asymmetric Particle Fabrication 289
13.3.5 Additional Functionalities through Addition of Nanoparticles 290
13.4 Conclusions 290
References 292

14 Layer-by-Layer Microcapsules Based on Functional Polysaccharides 295
Anna Szarpak-Jankowska, Jing Jing, and Rachel Auzély-Velty

14.1 Introduction 295
14.2 Fabrication of Polysaccharide Capsules by the LbL Technique 296
14.2.1 Natural Charged Polysaccharides Used in LbL Capsules 296
14.2.2 General Methods for the Assembly of Polysaccharides into LbL Capsules 297
14.2.3 Cross-Linking of the Polysaccharide Shells 298
14.2.4 Functional Multilayer Shells Based on Chemically Modified Polysaccharides 300
14.2.4.1 Multilayer Shells Made of Alkylated Hyaluronic Acid 300
14.2.4.2 Multilayer Shells Made of Hyaluronic Acid and Dextran Bearing Pendant Cyclodextrins Along the Chain 300
14.2.4.3 Multilayer Shells Made of Quaternized Chitosan 301
14.3 Biomedical Applications 302
14.4 Interactions with Living Cells 305
14.5 Conclusion 306
References 307

15 Nanoengineered Polymer Capsules: Moving into the Biological Realm 309
Katelyn T. Gause, Yan Yan, and Frank Caruso

15.1 Introduction 309
15.2 Capsule Design and Assembly 310
15.2.1 Templates 310
15.2.2 Materials and Assembly Interactions 312
15.2.2.1 Electrostatic Assembly 312
15.2.2.2 Hydrogen Bonding-Facilitated Assembly 312
15.2.2.3 DNA Base Pairing 313
15.2.2.4 “Click” Assembly and Cross-linking 314
15.2.3 Cargo Encapsulation 315
15.2.3.1 Preloading 316
15.2.3.2 Postloading 317
15.2.3.3 Cargo within Capsule Shells 317
15.2.4 Biological Stimuli-Responsive Cargo Release 318
15.2.4.1 Enzymatically Responsive Cargo Release 318
15.2.4.2 pH-Responsive Cargo Release 319
15.2.4.3 Redox-Responsive Cargo Release 320
15.3 Capsules at the Biological Interface 321
15.3.1 Circulation and Biodistribution 322
15.3.2 Cellular Interactions 323
15.3.3 Intracellular Trafficking 324
15.4 Biological Applications 326
15.4.1 Anticancer Drug Delivery 326
15.4.1.1 Targeting 326
15.4.2 Vaccine Delivery 329
15.4.3 Biosensors and Bioreactors 331
15.5 Conclusion and Outlook 335
References 336

16 Biocompatible and Biogenic Microcapsules 343
Jie Zhao, Jinbo Fei, and Junbai Li
16.1 Introduction 343
16.2 LbL Assembly of Biocompatible and Biogenic Microcapsules 344
16.2.1 Lipid-Based Microcapsules 344
16.2.2 Polysaccharide-Based Microcapsules 346
16.2.3 Protein-Based Microcapsules 348
16.3 Applications 349
16.3.1 Drug Carriers for Cancer Treatment 350
16.3.1.1 Methods for Drug Loading 350
16.3.1.2 Thermotherapy 352
16.3.1.3 Photodynamic Therapy 354
16.3.2 Blood Substitutes 356
16.4 Conclusions and Perspectives 358
Acknowledgments 358
References 358

17 Three-Dimensional Multilayered Devices for Biomedical Applications 363
Rui R. Costa and João F. Mano
17.1 Introduction 363
17.2 Freestanding Multilayer Films 364
17.2.1 Pure Freestanding Membranes 364
17.2.2 Hybrid LbL-Assisted Techniques 366
17.3 Tubular Structures 366
17.4 Spherical Coated Shapes 368
17.4.1 Drug Carriers 369
17.4.2 Biosensors 371
17.5 Complex LbL Devices with Compartmentalization and Hierarchical Components 372
17.5.1 Confined Chemical Reactions 373
17.5.2 Customized Multifunctional Reactors 374
17.6 Porous Structures 376
17.7 Conclusions 377
Acknowledgments 378
References 378

Part IV: Engineered Tissues and Coatings of Implants 385

18 Polyelectrolyte Multilayer Film – A Smart Polymer for Vascular Tissue Engineering 387
Patrick Menu and Halima Kerdjoudj
18.1 Layer by Layer Coating 388
18.2 Anti-Adhesive Properties of PEMs 388
18.3 Adhesion Properties of PEMs and Their Use in Vascular Tissue Engineering 389
18.4 Polyelectrolyte Multilayer Films and Stem Cell Behavior 390
18.5 PEM Coating of Vascular Prosthesis 391
18.6 Functional PEMs Mimicking Endothelial Cell Function 391
18.7 Conclusion 392
References 392

19 Polyelectrolyte Multilayers as Robust Coating for Cardiovascular Biomaterials 399
Kefeng Ren and Jian Ji
19.1 Introduction 399
19.2 The Basement Membrane: The Bioinspired Cue for Cardiovascular Regeneration 400
19.3 PEMs as a Feasible Method for Immobilization: From Antithrombosis to the Synergistic Interaction 401
19.4 Controlled Delivery from PEMs: From Small Molecule Drugs and Bioactive Molecules to Genes 403
19.5 Effects of Mechanical Properties of PEMs on Cellular Events 406
19.6 PEM as a Coating for Cardiovascular Device: From In vitro to In vivo 407
19.7 Conclusion and Perspectives 412
References 412
20 LbL Nanofilms Through Biological Recognition for 3D Tissue Engineering  419
Michiya Matsusaki and Mitsuru Akashi
20.1 Introduction  419
20.2 A Bottom-Up Approach for 3D Tissue Construction  421
20.2.1 Hierarchical Cell Manipulation Technique  422
20.2.1.1 Fabrication of Multilayered Structure by Nano-ECM Coating  423
20.2.1.2 Effect of Nanofilms on Cellular Function  426
20.2.1.3 Control of Cellular Function and Activity in 3D Environments  426
20.2.1.4 Permeability Assay of Multilayered Fibrous Tissues  431
20.2.2 Blood Vessel Wall Model  432
20.2.2.1 Construction of Blood Vessel Wall Model  433
20.2.2.2 Quantitative 3D Analysis of Nitric Oxide Using Blood Vessel Wall Model  433
20.2.3 Blood Capillary Model  436
20.2.3.1 Fabrication of Blood Capillary Model by Cell-Accumulation Technique  436
20.2.3.2 Application for the Evaluation of the Interaction with Tissues  438
20.2.4 Perfusable Blood Vessel Channel Model  439
20.2.4.1 Construction of Blood Vessel Channel Model in Hydrogel  441
20.2.4.2 In vitro Permeability Assay  442
20.2.5 Engineering 3D Tissue Chips by Inkjet Cell Printing  442
20.2.5.1 Cell and ECM Printing  445
20.2.5.2 Human Liver Tissue Chips and Liver Function Assay  445
20.3 Conclusions  447
Acknowledgments  447
References  447

21 Matrix-Bound Presentation of Bone Morphogenetic Protein 2 by Multilayer Films: Fundamental Studies and Applications to Orthopedics  453
Flora Gilde, Raphael Guillot, Laure Fourel, Jorge Almodovar, Thomas Crouzier, Thomas Boudou, and Catherine Picart
21.1 Introduction  453
21.2 BMP-2 Loading: Physico-Chemistry and Secondary Structure  455
21.2.1 Tunable Parameters for BMP-2 Loading  455
21.2.2 Secondary Structure of BMP-2 in Hydrated and Dry Films  458
21.2.2.1 Secondary Structure of BMP-2 in Solution  458
21.2.2.2 Structure of BMP-2 Trapped in Hydrated or Dry (PLL/HA) Films  459
21.3 Osteoinductive Properties of Matrix-Bound BMP-2 In vitro  461
21.4 Early Cytoskeletal Effects of BMP-2  463
21.5 Toward In vivo Applications for Bone Repair  467
21.5.1 Characterization of PEM Film Deposition on TCP/HAP Granules and on Porous Titanium  467
21.5.2 Sterilization by $\gamma$-Irradiation 469
21.5.3 Osteoinduction In vivo 471
21.6 Toward Spatial Control of Differentiation 475
21.7 Conclusions 477
Acknowledgments 478
List of Abbreviations 478
References 479

22 Polyelectrolyte Multilayers for Applications in Hepatic Tissue Engineering 487
Margaret E. Cassin and Padmavathy Rajagopalan
22.1 Introduction 487
22.1.1 The Liver 489
22.1.2 Hepatic Tissue Engineering 491
22.1.3 PEMs and Hepatic Tissue Engineering 491
22.2 PEMs for 2D Hepatic Cell Cultures 492
22.2.1 Tuning Mechanical and Chemical Properties of PEMs 492
22.3 PEMs for 3D Hepatic Cell Cultures 495
22.3.1 PEMs that Mimic the Space of Disse 495
22.3.2 Porous Scaffolds for Hepatic Cell Cultures 496
22.3.3 3D PEM Stamping for Primary Hepatocyte Co-cultures 498
22.4 Conclusions 498
Acknowledgments 498
References 499

23 Polyelectrolyte Multilayer Film for the Regulation of Stem Cells in Orthopedic Field 507
Yan Hu and Kaiyong Cai
23.1 Introduction 507
23.2 Layer-by-Layer Assembly and Classification 508
23.3 Classic Polyelectrolyte Multilayer Films (Intermediate Layer) 509
23.3.1 Bioactive Multilayer Films 509
23.3.1.1 Compositions of Polyelectrolyte Multilayer Films 510
23.3.1.2 Stiffness of Polyelectrolyte Multilayer Films 511
23.3.1.3 Cell Specific Recognition of Polyelectrolyte Multilayer Films 511
23.3.2 Gene-Activating Multilayer Film 512
23.4 Hybrid Polyelectrolyte Multilayer Film 514
23.4.1 Growth Factors or Cytokines Embedding Hybrid Layer 515
23.4.2 Drug Embedding Hybrid Layer 516
23.4.3 Nanoparticles Embedding Hybrid Layer 518
23.5 “Protecting” Polyelectrolyte Multilayer Film (Cover Layer) 518
23.6 Conclusion and Perspective 521
References 521
## Contents

### 24 Axonal Regeneration and Myelination: Applicability of the Layer-by-Layer Technology 525
*Chun Liu, Ryan Pyne, Seungik Baek, Jeffrey Sakamoto, Mark H. Tuszynski, and Christina Chan*

#### 24.1 Current Challenges of Spinal Cord Injury: Inflammation, Axonal Regeneration, and Remyelination 525

##### 24.1.1 Spinal Cord Injury 525

##### 24.1.2 Potential of Tissue Engineering for Treating SCI 527

##### 24.2 PEM Film–Cell Interactions and Adhesion 530

##### 24.2.1 Polyelectrolyte Multilayers in Tissue Engineering 531

##### 24.2.2 Components of the Multilayers 532

##### 24.2.3 LbL as an Adhesive Coating for Neural Cell Attachment 533

##### 24.2.4 Patterned Co-cultures Using LbL Technique 534

##### 24.3 Controlled Drug Delivery for Nerve Regeneration 536

##### 24.3.1 Drug Release from LbL Films 536

##### 24.3.2 Local Drug Release for Neural Regeneration 537

##### 24.4 Future Perspective 538

Acknowledgments 539

References 539

Index 547