Index

a
abrupt impeller rotating stall (AIRS) 278–9, 287, 289, 299–301, 306, 320
active surge control 329–37
adiabatic flow 23–5
adjoint method 161
AIRS. see abrupt impeller rotating stall (AIRS)
ANOVA 165, 182
artificial neural network (ANN) 165–7
averaged flow conditions 247

b
backsweep 151, 340
backward lean 20, 26, 30, 40, 54, 87–8, 240, 264–6, 298–300
Beltrami flow 23–4, 27, 73
blade curvature 27
blade loading 69, 150–1, 154, 173
blade to blade flow 61, 68, 73, 307
boundary conditions 49, 69, 152, 156, 164, 166, 182, 183, 230, 232, 245–7, 266, 268, 282, 300
boundary layer 71, 76–8, 88, 95, 110, 114, 126–8, 207
aspiration 349
blockage 51, 56, 58–9, 63, 68, 88, 100, 104, 119, 123, 138, 143, 146
laminar 76
turbulent 11, 76–7, 284
bypass valve 337–40

c
casing
drag 21
treatment 344–7
choking
diffuser 116, 134, 138, 144–5, 177–9, 310, 351–2, 357–8, 360
inducer 56–60, 240, 325
volute 198
conformal mapping 148
constraints 147–8, 150–2, 156–7, 172–3
Coriolis force 1, 23, 26, 69, 76–80, 82, 85, 301–3
curvature 76, 78–80, 96, 99
blade 1, 27, 56–9, 68–9, 76, 79–80, 82, 175
circumferential 201, 212, 218
diffuser vanes 131, 141
meridional 20, 51, 68–9, 73–5, 80–2, 87, 305
database 163–7, 174, 179, 182–3
deeep surge 323, 334, 343
degree of reaction 29–32
design
constraint 172–3
multiobjective 170–2
multipoint 175, 177–80
robust 147, 181
design of experiment 165
diabatic flows 14–9
differential evolution 163
diffuser
channel 1, 114–6, 135–6
channel optimal 311
inlet distortion 128, 141, 185, 189, 192, 240, 293, 306, 343, 349
low solidity 134, 175–7, 234–5, 357–9
pinching 290–91, 294
pressure rise 96, 113–5
semi vaneless space 1–2, 135–9, 142, 307–10, 349
vaned 1, 50, 114, 131–46, 179, 246–7, 307–11, 351–4
diffusion
model 90–4
ratio 95–6
Index

disk friction 108–11
distortion
 circumferential 122–5, 178, 185–6, 232, 251–2, 268, 272–3, 276, 297, 306–7, 313, 349
 impeller response 237–73, 300
 inlet 23, 46, 185–93
 outflow 116, 122–5, 178–9, 268
 spanwise 46, 185, 306
divergent channels 88–90, 95, 114, 131, 143–6, 307–8, 310–11
DOE 165, 174, 182
dual entry compressor 342–4
dynamic stability 319, 320, 331–3
effective length 244
efficiency
 achievable 5–14
 isentropic 33–4, 102
 Mach number effect 10, 13
 polytropic 8–9, 15–17, 34
 roughness effect 10, 11, 98, 110, 118, 226, 355
 versus specific speed 3, 9
energy equation 22–4
enthalpy 2, 6, 8, 13, 15, 16, 21–2, 24–7, 29, 97, 104, 195, 240, 355
entropy 22, 23, 91, 97, 99, 151, 226, 242
Euler momentum equation 27, 30, 38, 40–41
evolutionary method 161–3
exducer 1, 60, 303, 305, 341, 345, 346

flow coefficient 25
forced vortex 42, 185, 200–7, 211, 215–16, 270
free vortex 24, 42, 199–200, 204, 281
friction coefficient 11
frozen rotor 254–8

gas characteristics 33–5
genetic algorithm 161–3
geometry definition 157–9
gradient method 160–61
Greitzer B2 parameter 320

half height vanes 359
heat flux 16–19
Helmholtz frequency 322
hydraulic diameter 10–11, 98, 104, 146, 216, 226, 341, 354

impeller
 inlet distortion 46, 185–8, 190–3, 238–9, 242, 263, 277–9, 299, 302, 340, 341, 344–6
 outlet distortion 178–9, 197–9, 239–40, 243–7
 performance 26–9, 39, 49, 51, 90, 102–104, 185–6, 188, 194, 268
 response 237–73, 300
 rotating stall 278–81, 301–6
 inducer 1, 56–60
 inlet bend 186–90, 193
 inlet blockage 55, 144, 145, 311
 inlet distortion
diffuser 128, 239–41, 246–7, 290–5
 impeller 186–9, 191–2, 306
 inlet guide vanes 1, 37–9
 inlet plenum 1
interaction
 impeller-vaned diffuser 238, 242–3, 246, 299
 impeller-volute 231–6, 238–42, 245–6, 264, 268
 unsteady CFD 247–8
inverse design
 analytical 148–52
 numerical 152–6
 viscous flow 155–6

jet and wake
 mixing 1, 101–4, 116, 122–5
 model 1, 63, 94–101

K
 Kriging 168

lean 64, 83–7, 159, 175, 182
learning 166–7
low solidity diffuser (LSD) 134, 175–7, 234–6, 357

magnetic bearing 258, 335–6
meridional curvature 20, 43, 51, 65, 68–9, 73–5, 78–82, 84–7, 148, 191, 305
meridional flow 65, 195, 775
merit function 165–6
metamodel 164–5, 167–9, 174, 177, 182, 183
mild surge 314, 321–4
MIRS 278–9
mixing
 jet wake 1, 101–4, 116, 122–5
losses 101–4, 124–5, 345
plane 245–7, 257–9
modal instabilities 302, 308
modal vibrations 179
motion equation 22–4
multiobjective design 173–5
multipoint design 175–80

n
Navier-Stokes calculations 47, 61–2, 116, 247, 252
noise 142, 197

o
objective function 156–7, 171–2
pseudo 171, 173
off-design 173–4, 175–7, 196–7, 267–73
operating conditions 32–5
diabatic 14–9
optimal velocity distribution 68–73
optimization 61, 152, 156–7, 231–6
deterministic 182
evolutionary 161–3
gradient based 160–61
metamodel assisted 164–70
multiobjective 170–72
multipoint 175–80
robust 181–3
optimum incidence 53, 54
outflow distortion 116, 122–5, 178–9, 268
outlet distortion 196–7, 201–2, 240–1
outlet volute
genometry 197–200, 208
loss model 228–30
off-design 196–7
3D flow model 148, 200–6

p
parallel compressors 342–4
parameterization 157–9
Pareto ranking 170
particle swarm optimization 163
passive surge control 334–5
performance
achievable 9–13
diffuser 128, 130, 144, 145, 287, 324, 325, 350, 356, 360
IGV 46
impeller 88–104
map 25–9
off-design 267–73
volute 198–9, 222–30
pipe diffuser 131–2, 142, 143, 146, 309, 349, 353, 354
ported shroud 343, 345–50
prerotation 24, 37–44, 51, 52, 80, 83, 187, 189, 191, 193, 194, 252, 279, 340, 345, 346, 353
pressure ratio 9, 29, 33–4, 40–1
progressive impeller rotating stall (PIRS) 278–9, 301–6
pseudo objective function 172

q
quasi 3D, 61–5, 73, 148, 149, 154

r
radial basis function 167–8
radial forces
calculations 263–6
correlation 260–2
rake 84, 86–7, 158–9, 179
ranking 170–72
RBF 167–8
reaction (degree of) 29–32
reduced frequency 237, 238
response surface 169
return channel 1, 37, 56
rotating stall 314
Reynolds number
definitions 13, 110, 127
performance 9–14, 144–5
stability 284
robust design 181–3
rotating diffuser 359–61
rotating stall
abrupt impeller 278–9, 296–301
modeling 281–3, 301–7
progressive impeller 279, 301–7, 350
return channel 314
rotational speed 283, 290, 296, 312–4
vaned diffuser 86, 307, 312–4
vaneless diffuser 129–30, 279–96, 298–9
rothalpy 24, 64, 78, 90, 96
roughness 10–3, 98, 109–10, 118, 226, 355

s
secondary flow 37, 73, 78–82
semi vaneless space 1–2, 135–8, 142, 307–11
separated flow 44, 46, 63, 80, 88–9, 93–4, 97, 108, 130, 185, 190, 215, 219, 246, 275, 279, 341, 350
shock free design 59, 148, 154–5, 360
shock losses 29, 37, 39, 51, 58, 97, 102, 135, 87
shroud
leakage flow 83, 257
ported 343, 345–7
shrouded 21, 80, 82–3, 98, 109, 111, 171, 263, 266
simulated annealing 159, 163
singularity method 133
slip factor 27–8, 65–6, 104–8, 240, 278, 287, 336, 342
specific speed 2–4, 9, 10, 12–13, 37, 50, 98, 208, 261, 267, 290, 291, 342, 360
spike instability 86, 302, 308, 311
splitter vanes 60, 145, 174, 249
stability
dynamic 319, 320, 331–3
impeller 340–42, 346, 353
static 319, 325, 332, 333
vaned diffuser 307–14, 347–51
vaneless diffuser 284–7, 354–61
static stability 319, 325, 332, 333
streamfunction 282
Strouhal number 238, 243, 249, 251, 253–4
suction side camber 58, 59, 70–1
surge
active control 330–37
control 338–40
model 316–21, 325–7
passive control 334–5
symmetric volutes 195, 221–3

tapered vanes 349
test conditions 32–3
3D boundary layer 125–7, 284
3D flow
impeller 41, 73–4, 84–7
vaneless diffuser 116–130
volute 231–4
3D geometry design 84–8
throat blockage 37, 138–46, 307–11, 324, 348–9
throughflow 46, 80, 186, 188, 199–201, 203–4, 206, 208, 212–16, 218–19, 221, 225–7, 229–232, 269, 271, 275, 303
tip clearance 41, 83, 98, 107, 173, 330, 335–6, 342
two zone model 63, 88, 94–101, 275

U
unshrouded 82–4, 98, 263, 266
unsteady flow 137, 142, 237, 242, 243, 247–8, 252, 254, 264, 297, 317, 318, 330, 334

V
vaned diffuser
channel 135–6, 143–6
choking 135, 139–42
curved vanes 131–4
low solidity 134, 234–6
noise 142
pressure rise 143–6
rotating stall 86, 307, 312–4
suction side 141
throat 2, 138–9
vaneless space 142, 307–10
vaneless diffuser
inlet conditions 128–30
inlet shape 291–6
non-axisymmetric 233–4
pressure rise 117–21
3D flow 125–8
variable diffuser 352–4
variable guide vanes 42–3, 340
VDRS
measurements 281–2, 287–90
prediction 284–7
rotational speed 290, 296
theoretical model 281–3, 298
velocity triangles 19, 33, 37, 101, 178
vibrations
modal 179
subsynchronous 289–90
volute
inlet volute 185–95
1D model 244–5, 269–72
symmetric 221–2
3D analysis 230–31
vorticity 27, 73, 78–83, 107, 128–30, 151, 185, 191, 237, 238, 300, 308

W
wake/jet velocity ratio 102–4
wedge blade 341–2
work coefficient 28, 317
work reduction factor 27, 28, 101, 105–8
wrap angle 84, 158, 159