CONTENTS

ABOUT THE AUTHORS ̶ xiii

OBITUARY TO IAN CULBERT ̶ xv

ACKNOWLEDGMENTS ̶ xvii

FOREWORD ̶ xix

PREFACE ̶ xxiii

NOMENCLATURE ̶ xxvii

ACRONYMS AND ABBREVIATIONS ̶ xxxiii

RELEVANT UNITS OF EQUIVALENCE USEFUL FOR THIS BOOK ̶ xxxv

CHAPTER 1
MOTOR CURRENT SIGNATURE ANALYSIS FOR INDUCTION MOTORS 1

1.0 Introduction 1
1.1 Historical Development of MCSA and Goals of This Book 4
1.2 Basic Theory of Operation of the 3-Phase Induction Motor 6
1.2.1 Key Equations for MCSA Based on Operation of a 3-Phase Induction Motor 13
1.2.2 Interpretation of Motor Nameplate and Application of Basic Equations 15
1.3 Starting and Run-Up Characteristics of SCIMs 20
1.3.1 Calculation of Run-Up Time of SCIM Driving a Mechanical Load 24
1.4 Illustrations of Construction of a Large HV SCIM 29
1.5 Questions 33
References 34

CHAPTER 2
DESIGN, CONSTRUCTION, AND MANUFACTURE OF SQUIRREL CAGE ROTORS 39

2.0 Introduction 39
2.1 Aluminum and Copper Die-Cast Windings 40
2.2 Fabricated Squirrel Cage Windings 43
2.2.1 Rotor Bar Design, Shape, and Installation 43
2.2.2 Design and Construction of Short Circuiting End Rings, Bar to End Ring Joints, and End Ring Retaining Rings (ERRs) 48
2.3 Design and Manufacturing Features of Squirrel Cage Rotor Windings to Minimize Failures 52
2.4 Questions 53
References 54
CONTENTS

CHAPTER 3 CAUSES OF BREAKS IN SQUIRREL CAGE WINDINGS DURING DIRECT-ON-LINE STARTS AND STEADY-STATE OPERATION

- 3.0 Introduction 55
- 3.1 Mechanical Stresses and Consequential Forces on Rotor Bars and End Rings 56
- 3.2 Thermal Stresses in the Rotor Bars and End Rings 57
- 3.3 Broken Bars and End Rings Due to Combined Mechanical and Thermal Stresses When Starting High Inertia Loads 59
- 3.4 Rotor Bar Stresses Resulting from a Loose Slot Fit 60
- 3.5 Strengths and Weaknesses of Certain Bar and End Ring Shapes and Types of Joints 62
- 3.6 Pulsating Loads Due to Crushers and Compressors 62
- 3.7 Direct-On-Line Starting of Large Induction Motors Driving High Inertia Fans 63
- 3.8 Direct-On-Line Starting of Large Induction Motors Driving Centrifugal Pumps 66
- 3.9 Limitations on Repetitive Motor Starts 68
- 3.9.1 Starting Capability 68
- 3.9.2 Additional Starts 69
- 3.9.3 Additional Name Plate Data 69
- 3.10 Criteria for Design of Squirrel Cage Rotor Windings 69
- 3.10.1 Total Motor and Driven Equipment Inertia 69
- 3.10.2 Driven Equipment Torque–Speed Curve During Starting 70
- 3.10.3 Motor Torque–Speed at Minimum Supply Voltage During Starting 70
- 3.10.4 Motor Consecutive Starting Requirements 71
- 3.10.5 Squirrel Cage Rotor Mechanical Configuration 71
- 3.10.6 Rotor Bar Material and Shape 72
- 3.11 Samples of Breaks in Squirrel Cage Rotor Windings 72
- 3.12 Questions 77
- References 77
- Further Reading 78

CHAPTER 4 MOTOR CURRENT SIGNATURE ANALYSIS (MCSA) TO DETECT CAGE WINDING DEFECTS

- 4.0 Summary 79
- 4.1 Introduction 79
- 4.2 Derivation of Current Component at \(f(1 - 2s) \) 82
- 4.3 Reasons for Current Component at \(f(1 + 2s) \) 83
- 4.4 Spectrum Analysis of Current 85
- 4.4.1 Measurement of Current and MCSA in Industry 87
- 4.4.2 Introductory Sample of Current Spectra from Industrial SCIMs 89
- 4.4.3 The dB Scale for MCSA and Specification for Spectrum Analysis of Current 91
- 4.5 Severity Indicators for Assessing Condition of Cage Windings at Full-Load 93
- 4.5.1 Severity Indicator for Assessing Condition of Cage Windings on Reduced Load 96
- 4.5.2 Experimental Tests at the Robert Gordon University, Scotland 96
- 4.5.3 MCSA Tests at Full-Load—Normal Cage Winding, 1, 2, and 10 Broken Bars 99
CONTENTS

4.5.4 Correction Factor to Estimate Cage Winding Condition During Reduced Load 106
4.5.5 Application of a Broken Bar Correction Factor in Industry 109
4.6 The dB Broken Bar Severity Chart 110
4.7 Influence of Number of Rotor Bars and Pole Number on the Equivalent Broken Bar Factor with Measured dB Difference Values 111
4.8 Questions 116
References 118

CHAPTER 5 MCSA INDUSTRIAL CASE HISTORIES—DIAGNOSIS OF CAGE WINDING DEFECTS IN SCIMs DRIVING STEADY LOADS 119

5.0 Introduction and Summary of Case Histories 119
5.1 Case History (2000–2014)—Summary and Key Features 120
5.1.1 MCSA Diagnosis 120
5.2 Case History (1983)—Summary and Key Features 122
5.2.1 MCSA Diagnosis and Inspection 123
5.3 Case History (1982)—Summary and Key Features 125
5.3.1 MCSA Diagnosis and Inspection 125
5.4 Case History (2002)—Summary and Key Features 128
5.4.1 MCSA Diagnosis and Inspection 129
5.5 Case History (1985–1987)—Summary and Key Features 133
5.5.1 MCSA Diagnosis and Inspection 133
5.6 Case History (2006)—Summary and Key Features 136
5.6.1 MCSA Diagnosis and Inspection 136
5.7 MCSA Case History (2004)—Summary and Key Features 139
5.7.1 MCSA Diagnosis and Inspection 140
5.8 MCSA Case History (2004)—Summary and Key Features 141
5.8.1 MCSA Diagnosis and Inspection 142
5.9 Questions 143
References 144

CHAPTER 6 MCSA CASE HISTORIES—DIAGNOSIS OF CAGE WINDING DEFECTS IN SCIMs FITTED WITH END RING RETAINING RINGS 147

6.0 Introduction and Summary of Case Histories 147
6.1 Case History (2006)—Summary 148
6.1.1 MCSA Diagnosis 149
6.1.2 Inspection 154
6.1.3 RCFA of Broken Rotor Bars and Solution 155
6.2 Concluding Remarks on this Challenging Case History 160
6.3 Case History (1990)—Summary and Key Features 161
6.3.1 MCSA Diagnosis 162
6.3.2 Inspection 164
6.4 Summary and Lessons Learned from Industrial Case Histories in Chapters 5 and 6 166
6.4.1 Conclusions 168
6.5 Questions 170
References 172
CONTENTS

CHAPTER 7 MCSA CASE HISTORIES—CYCLIC LOADS CAN CAUSE FALSE
POSITIVES OF CAGE WINDING BREAKS 173

7.1 Introduction and Summary of Case Histories 173
 7.1.1 Effect on Current Spectra due to Oscillations from Mechanical Loads 174
 7.1.2 MCSA Laboratory Experiments with a Cyclic Load and a Broken Rotor Bar 176

7.2 Case History (2006)—Effect of Gas Recycling in a Centrifugal Gas Compressor and the Detection of Broken Rotor Bars 179
 7.2.1 MCSA Diagnosis 179

7.3 Case History: False Positive of Broken Rotor Bars Due to Recycling of Gas in a Centrifugal Compressor 180
 7.3.1 Summary and Key Features 180
 7.3.2 MCSA Diagnosis 181

7.4 Two Case Histories (2002 and 2013)—Broken Rotor Bars in the Same SCIM without and with Gas Recycling in a Gas Compressor 185
 7.4.1 Case One 2002: Summary and Key Features 185
 7.4.2 Case Two 2012–2013: Summary and Key Features 185
 7.4.3 Case One 2002: MCSA Diagnosis and Inspection 186
 7.4.4 Case Two: MCSA Diagnosis and Inspection, 2012–2013 188

7.5 Case History 1986—Fluid Coupling Dynamics Caused a False Positive of a Cage Winding Break 193
 7.5.1 Summary and Key Features 193
 7.5.2 MCSA Diagnosis and Inspection 194
 Appendix 7.A.1 Derivation of Sidebands due to Low Frequency Oscillation from the Mechanical Load 197

7.6 Questions 198

References 200

CHAPTER 8 MCSA CASE HISTORIES—SCIM DRIVES WITH SLOW SPEED GEARBOXES AND FLUCTUATING LOADS CAN GIVE FALSE
POSITIVES OF BROKEN ROTOR BARS 201

8.1 Introduction and Summary of Case Histories 201
 8.1.1 Influence of Mechanical Misalignment on the Current Spectrum 202
 8.1.2 MCSA Experimental Results as a Function of Misalignment 206
 8.1.3 Interpretation of Current Spectrum as a Function of Misalignment 207
 8.1.4 MCSA Experimental Results with a Speed Reduction Gearbox in the SCIM Train 210

8.2 Case History (1989)—Slow Speed Coal Conveyor, Load Fluctuations, and Gearbox in the Drive Train 213
 8.2.1 Summary and Key Features 213
 8.2.2 MCSA Diagnosis 214

8.3 MCSA Case History (1990)—Possible False Positive of Broken Rotor Bars in a SCIM Driving a Coal Conveyor Via a Slow Speed Gearbox 216
 8.3.1 Summary and Key Features 216
 8.3.2 MCSA Diagnosis 216

8.4 Case History (1992)—Impossible to Analyze MCSA Data Due to Severe Random Current Fluctuations from The Mechanical Load Dynamics from the Coal Crusher 217
 8.4.1 Summary and Key Features 217
 8.4.2 MCSA Diagnosis 218
CONTENTS

8.5 Case History (1995)—Successful Assessment of Cage Windings When the Load Current Fluctuations are Normal from a SCIM Driving Coal Crusher 221
8.5.1 Summary and Key Features 221
8.5.2 MCSA Diagnosis 222
8.6 Two Case Histories (2015)—False Positive of Broken Bars in One of the SCIMs Driving Thrusters on an FPSO If Influence of Drive Dynamics is Discounted 227
8.6.1 Summary and Key Features 227
8.6.2 MCSA Diagnosis (2013–2015) 229
8.6.3 Conclusions 233
8.7 Questions 237
References 238

CHAPTER 9 MISCELLANEOUS MCSA CASE HISTORIES 241

9.0 Introduction and Summary of Case Histories 241
9.1 Possible False Positives of Cage Winding Breaks in Two 1850 kW SCIMs, Due to Number of Poles (2p) Equal to Number of Spider Support Arms (S_p) on Shaft (1991) 242
9.1.1 Modulation of Magnetizing Current at Twice Slip Frequency 242
9.1.2 Application of MCSA to SCIMs with 2p = S_p 245
9.1.3 Summary and Key Features in Case History 9.1 (In 1991) 247
9.1.4 MCSA Diagnosis and Inspection (1991) 248
9.1.5 Conclusions 250
9.2 Case History (2007)—SCIM with Number of Poles Equal to Number of Kidney Shaped Axial Ducts in the Rotor—False Positive of Broken Bars Prevented by Load Changes 251
9.2.1 Summary and Key Features 251
9.2.2 MCSA Measurements and Analysis (2007) 251
9.3 Two Case Histories (2005–2008)—Normal and Abnormal Pumping Dynamics in Two SCIM Seawater Lift Pump Drive Trains 253
9.3.1 Summary and Key Features 253
9.3.2 Description of a Seawater Lift Pump (SWLP) Drive Train 253
9.3.3 MCSA Measurements and Analysis (2005) 254
9.3.4 MCSA Measurements and Analysis (2008) 257
9.4 MCSA Case History (2006–2007)—Slack and Worn Belt Drives in Two SCIM Cooling Fan Drives in a Cement Factory 259
9.4.1 Summary and Key Features 259
9.4.2 MCSA Measurements and Analysis 259
9.5 Application of MCSA to Inverter-FED LV and HV SCIMs 263
9.5.1 Summary and Key Features 263
9.5.2 MCSA Results from Laboratory-Based PWM Inverter-Fed SCIM (1987) 263
9.5.3 Case History (2005)—Measurements and Analysis from an LV Inverter-Fed SCIM With No Cage Winding Breaks 265
9.5.4 Case History (2008)—Measurements and Analysis from a Large, 6300 kW/8445 HP Inverter-Fed SCIM With No Cage Winding Breaks 266
9.6 Case History (1990)—Assessment of the Mechanical Operational Condition of an Electrical Submersible Pump (ESP) Driven by a SCIM Used in Artificial Oil Lift 267
9.6.1 MCSA Result 268
CONTENTS xi

11.6.1 Summary 324
11.6.2 MCSA Measurements and Analysis 324
11.6.3 Inspection: Bearing Clearances & White Metal Shells 326
11.6.4 Airgap Measurements in the Received Motor 326
11.6.5 Total Indicated Run Out (TIR) and Modifications to the Rotor 327
11.6.6 Mechanical Damage to Stator Coils 328
11.6.7 MCSA Measurements and Analysis on Refurbished Motor 330

11.7 Case History (2008)—Unsuccessful Application of MCSA Applied to a Large (6300 kW), Inverter-FED, 6600 V SCIM During a No-Load Run to Assess Its Operational Airgap Eccentricity 332
11.7.1 Summary 332
11.7.2 Unsuccessful MCSA Measurements and Analysis—Uncoupled Run 332

11.8 Case History (2008)—Successful Application of MCSA Applied to a Large (4500 kW), Inverter-Fed, 3300 V SCIM to Assess its Operational Airgap Eccentricity 335
11.8.1 Summary 335
11.8.2 MCSA Measurements and Analysis 335

11.9 Case History (2007)—Advanced MCSA Interpretation of Current Spectra Was Required to Verify High Airgap Eccentricity in an HV SCIM Driving a Primary Air (PA) Fan in a Power Station 339
11.9.1 Summary 339
11.9.2 MCSA Measurements and Analysis 339
11.9.3 Pole-Pair Compatibility Analysis 341
11.9.4 Analysis and Interpretation of the Current Spectrum in Figure 11.44 342

11.10 Case History (1990)—Unsuccessful MCSA Case History to Assess Operational Airgap Eccentricity in an HV SCIM Driving a Slow Speed Reciprocating Compressor 343
11.10.1 Summary 343
11.10.2 MCSA Measurements and Analysis 344

11.11 Case History (2002)—Predict Number of Rotor Slots and Assessment of Operational Airgap Eccentricity in a Large 6600 V, 6714 kW/9000 HP SCIM Driving a Centrifugal Compressor 347
11.11.1 Summary—Unknown Number of Rotor Slots 347
11.11.2 MCSA Measurements and Analysis 347

11.12 Questions 353
References 357

CHAPTER 12 CRITICAL APPRAISAL OF MCSA TO DIAGNOSE SHORT CIRCUITED TURNS IN LV AND HV STATOR WINDINGS AND FAULTS IN ROLLER ELEMENT BEARINGS IN SCIMS 359

12.1 Summary 359
12.2 Shorted Turns in HV Stator Winding Coils 361
12.2.1 Causes of Shorted Turns in HV Stator Windings of SCIMs 363
12.3 Detection of Shorted Turns Via MCSA under Controlled Experimental Conditions 364
12.3.1 Current Spectrum Due to Shorted Turns—No Limit on Short Circuit Current 366
12.4 Detection of Defects in Roller Element Bearings Via MCSA 368
12.5 Questions 371
References 372
CONTENTS

CHAPTER 13 APPRAISAL OF MCSA INCLUDING LESSONS LEARNED VIA INDUSTRIAL CASE HISTORIES 375

13.1 Summary of MCSA in Industry to Diagnose Cage Winding Breaks 375
13.2 Flow Chart for Measurement and Analysis of Current to Diagnose Cage Winding Breaks 375
13.3 MCSA to Diagnose Broken Rotor Bars in SCIMs Driving Steady Loads 379
 13.3.1 Accuracy of Nameplate Data 379
13.4 Number of Rotor Bars, External Constraints, and Lessons Learned 380
13.5 Effect of End Ring Retaining Rings (ERRS) on Diagnosis of Broken Rotor Bars 381
 13.5.1 External Constraint, Disadvantage/Weakness, and Lessons Learned 381
13.6 MCSA Applied to SCIMs Driving Complex Mechanical Plant, Lessons Learned, and Recommendations 382
13.7 Double Cage Rotors—Classical MCSA can only Detect Cage Winding Breaks in Inner Run Winding 382
13.8 MCSA to Diagnose Operational Levels of Airgap Eccentricity in SCIMs 383
 13.8.1 Rotor Slots and Estimate of Airgap Eccentricity, External Constraints/Weaknesses, Lessons Learned, and Possible Solutions 384
13.9 Recommendations to End Users 385
13.10 Suggested Research and Development Projects 386
 13.10.1 Fundamental Research on MCSA to Diagnose Broken Rotor Bars in Large 2-Pole SCIMs with End Ring Retaining Rings 386
 13.10.2 Fundamental Research to Predict the Performance Characteristics for a Large (e.g., 1000 kW/1340 HP and Upward), HV SCIM as a Function of Broken Rotor Bars and the Output Power and Torque Demanded by a Driven Load Such as a Centrifugal Pump 386
 13.10.3 Development and Application Type Projects 387
References 388
Appendix 13.A Commentary on Interpretation of LV and HV Used in SCIMs 388

LIST OF EQUATIONS 389

INDEX 393