Index

accretion. *See* cumulization
accumulated soil types, 23
acid Cryepts, 323
acid oxalate
 Andisols, 259
classification, Andisols, 259
soil composition, 53, 70
Adansonian principle, 202
aeropedoturbation, 176
age, soil
 approximatation, 301
classification, 27
dating, 136–8
experiments, 138–9
mature soil concept, 135–6
time factor, 135–6
agric horizons, 57, 289
agriculture. *See also* plants
 Andisols, 258
 Vertisols, 395
agronomic uses, 391
Agropyron, 346
albic horizons
 Alfisols, 242–53
 Entisols, 289–90
Alfisols, 213
 Aridisols, 235, 237, 238
pedogenic processes, 237–43
settings, 233–7
suborders and great groups, 246–7
uses, 243–4
algae, 55, 269, 317
blue-green, 265
Gelisols, 300
allophane
 Andisols, 252–4, 254, 259, 260
 Spodosols, 364, 366
allophane spherules, 254
allophanic and pumice soils, 191
alluvium
 Alfisols, 237, 238, 244
 Andisols, 249
 Aridisols, 271
 Entisols, 287, 288, 290
 Inceptisols, 325
landscape and soil map unit, 398, 410
 Mollisols, 339
alumino-silicate compounds, 366, 372
aluminum, 351
 Alfisols, 243, 244
 Andisols, 252, 253, 257, 258, 262
 Oxisols, 351, 353, 354, 358
soil spatial arrangement, 413
soil survey interpretation, 434
 Spodosols, 363–6, 366, 370, 372
Ultisols, 280, 284
andic materials, 52–3, 53
andic soil properties, 224.
 See Andisols
Andisols
 characteristics, 249
 classification
 Cryands, 260
 Gelands, 260
suborders and great groups, 261–2
 Torrands, 262
 Udands, 262–3
 Ustands, 262
 Vitrands, 262
 Xerands, 262
formation, 249
pedogenic processes, 250–7
properties, 255–6
setting, 249–50
uses, 257–9
volcanic materials, 249, 250, 257, 259, 260
Andropogon gerardii, 333
animals
 Alfisols, 242
 Entisols, 286, 287
 Gelisols, 300

animals (cont’d)
 Histosols, 315, 317
 Oxisols, 353
Antarctica, Gelisols, 293, 295–6
Anthrepts, 327
ants, 335, 337–8
Aqualfs, 245
aquapedoturbation, 176
Aquents, 289
Aquepts, 327
aquic soil moisture regime,
Aquults, 381
Arctic regions. See Gelisols
Arents, 290
argillic horizons, 272–5
 Alfisols, 238–9, 244–5
 Inceptisols, 322
 Mollisols, 33–8
 U.S. soil, 211–15, 220–1, 227
Ultisols, 375, 377–8, 380–2
Vertisols, 391, 393
arid macroclimates
Entisols, 284
arid regions
 soil–vegetation patterns,
 266
 suborders and great
 groups, 268
aridic soil moisture regime,
 85
Aridisols, 265, 267
Oxisols, 355
Aridisols
classification, 279–81
Entisols, 281
pedogenic processes
 argillic horizons,
 272–5
 biological soil crusts,
 269, 271
calcic horizons, 275, 275–7
cambic horizons, 272
desert pavements,
 270, 271–2
duripans, 277
gypsic and salic
 horizons, 277
physical soil crust,
 268, 269
vesicular horizons,
 269–3
suborders and great
 groups, 279, 280
uses
 engineering problems,
 278
 floods and hazard,
 278
 irrigation/agriculture,
 277–78
 wind erosion, 278
ash falls, 250
Australian soil
classification
 system, 192–5, 195
base saturation, Oxisols,
 353
boreal zone, 307, 310
Bouteloua dactyloides, 333
Bouteloua gracilllis, 331
Brazilian soil classification,
 195–8, 197–9
calcic horizons
 Aridisols, 275–7
 Mollisols, 345
ultisols, 376–7
U.S. soil, 211–13
Vertisols, 390, 393
Canadian soil classification
 system, 191–3, 193
carbonates translocation,
 336–7
cation exchange capacity
 (CEC)
 Alfisols, 243
 Andisols, 256, 263
 Histosols, 312, 320
 Oxisols, 349
 soil classification, 434
Ultisols, 376–7
cementation
 Alfisols, 242
 Spodosols, 363, 365, 372–3
cerrado, 353, 354
Chernozem soils, 8
Chinese soil taxonomy,
 196, 198–9, 199
clay deposition, 238
clay minerals
 boulder conglomerate,
 160
 chlorite, 154
 hydroxy-interlayered
 minerals, 155
 kaolinite, 153–4
 mica, 154
 mineral equilibrium
 plots, 160
 mineral stability, 160–1
 octahedral sheet, 152–3,
 153
 phase diagrams, 160
 phyllosilicates, 152
 silica tetrahedra, 152,
 152
 smectite, 155
tetrahedral sheets, 152,
 152–3
thermodynamic approach, 161
vermiculite, 154–5
clay skins, 323
clay translocation, 237–8, 281, 337
climate
Alfisols, 237
Andisols, 254, 257, 264
Aridisols, 265
climosequences, 112–13
Entisols, 286, 292
Histosols, 307–8
Inceptisols, 321, 322
microclimate and soil genesis, 110–12
Mollisols, 333
Oxisols, 350
precipitation-soil property relationships
erodion and deposition, 102
evapotranspiration, 104
plant growth, 102
potassium and sodium, 104
rainfall, 103–4
vegetative biomass, 102–3, 103
soil gradients, 100, 102
soil properties, 102
temperature-soil property relationships
air temperature, 105
energy transfer, 105
potential evapotranspiration and temperature, 108
rainfall, 109
soil colors, 105
soil organic carbon contents, 106–7, 107
soil taxonomy, 108
soil temperature variation, 105–6, 106
solar radiation, 105, 107
specific heat capacity, 108
Stefan-Boltzmann equation, 105
Van’t Hoff’s temperature rule, 106
vegetative cover, 107
water balance calculations, 109, 109, 111
water-storage capacity, 108
U.S. soil, 209
colluvium, 322
color, soil, 37
Mollisols, 335
Spodosols, 361, 364
Ultisols, 376
Vertisols, 390
congellipedoturbation, 176

crabhole, 385
Cryalfs, 245
Cryaqualfs, 213
Cryepts, 327
Cryerts, 395
cryic soil temperature regime
Aridisols, 279–80
Entisols, 291
Histosols, 319
Inceptisols, 327
Mollisols, 345
Spodosols, 371–3
U.S. taxonomy, 211
Vertisols, 392–3
Cryods, 372
cultivation
Entisols, 289
Oxisols, 354, 359
Spodosols, 361, 368
Vertisols, 392
cumulization, 285
Entisols, 285
lateral losses and gains, 169
Mollisols, 339, 340
soil forming process, 175
deserts, 265–7, 270, 271, 271–2
desilication, 351
diapir, 386
drainage
Alfisols, 247
Entisols, 287–8
Gelisols, 296
Histosols, 309, 312–14, 318
Inceptisols, 325
Mollisols, 342
Ultisols, 376
Vertisols, 388
dry region soils. See Aridisols
duripans, 277
ecosystems
Alfisols, 233, 241
Mollisols, 331
engineering
Andisols, 259
Aridisols, 278
Entisols, 288
Gelisols, 303
engineering (cont’d)
U.S. taxonomy, 220, 222
Vertisols, 392

Entisols
classification, 289–91
pedogenic processes, 286–8
setting
global distribution, 283–6
topolithosequences, 286
suborders and great groups, 291
uses, 288–9

environments
Alfisols, 233
Andisols, 252, 254–5
Gelisols, 297

erosion
Alfisols, 243
Andisols, 259
Entisols, 284–5, 287–8, 292
Inceptisols, 322–3
Mollisols, 342
Oxisols, 350
Ultisols, 378

Europe, 184–6
evapotranspiration
Aridisols, 265, 276
Histosols, 307, 309
Mollisols, 337
Oxisols, 355
Ultisols, 375

Fertility Capability Soil Classification
system, 431, 434, 435
fertilizer, 427
Andisols, 258
Mollisols, 340

Oxisols, 355–6, 358–9
Ultisols, 377, 380, 384

Festuca, 346
fire hazard, 314–15
flora and fauna, 118
floral pedoturbation, 176

Fluvents, 290

forest
Alfisols, 233–4, 235, 242–3, 244
Andisols, 250, 257, 260, 262–3
Aridisols, 266
classification, soil, 427, 431
Entisols, 287, 289
Gelisols, 296, 305
Histosols, 311, 314
Inceptisols, 325, 326
Mollisols, 331, 333, 335, 345
Oxisols, 351, 353
soil survey
interpretation, 427, 431
Ultisols, 375–6, 378–9, 384

Formica cinerea, 338

Fragementals, 215
Fragementals, 378–9
Alfisols, 242
effects, 243
Spodosols, 372
Ultisols, 378–9

Gelepts, 327
gelic materials, 53
Gelisols
applications, 301–3
classification
Histels, 303–4
Orthels, 305
Turbels, 304

landscape, 296
pedogenic processes, 297–301
perspective, 305
profile, 299
settings, 293–7

Geloll suborder-the
Kanauguk series, 346

Gibbsite, 170
Gilgai topography, 385, 386
glaciar deposits, 92
glaciar till, 98
lacustrine deposits, 99–100
loess, 98–9, 99
mineralogical alteration, 98
outwash deposits, 98
Gleization, 175, 324, 352–3
granite and granite gneiss, 93–4
grassland soils. See
Mollisols
grazing
Aridisols, 278
Oxisols, 354, 359
Spodosols, 368
groundwater
Histosols, 309
Inceptisols, 324
gypsic horizons
Aridisols, 277
U.S, soil, 211, 213–14, 221

halloysite
formation, 253
mineralogical alteration, 395
Histels, 303–6
Histosols, 318
classification, 317–20
coprogenous earth, 317
Index

535

diatomaceous earth, 317
fibric, 316
geologic processes, 310–11
hemic, 316
humilluvic, 317
hydraulic conductivity, 310–11, 313–14
limnic, 317
paludization/
paludification, 310
pedogenic
biogeochemical
processes, 311–13
ped formation, 312
physical and chemical
properties, 312–13
sapric, 316
setting, 307–10
soil spectrum, 320
suborders and great
groups, 318–19, 319
uses, 313–15
horticulture, 315
human impacts, 301–2
human manipulation, U.S., 208
human populations
Aridisols, 281
Entisols, 282, 292
Oxisols, 354
humification, 352
Humults, 381–2
humus, 361–3
hushabye, 385
hydrology, 308–9, 309. See
also groundwater
hydrophytic plants, 309
imogolite threads, 254
Inceptisols
andic soil properties, 322
classification, 327–8
kaolinite
gibbsite formation, 322
pedogenic processes, 321–4
setting, 321
suborders and great
groups, 327–8
uses, 324–6
weathering, 332
intrasolum translocations
and transformations, 16
alkalization, 173
biocycling, 170–1
braunification,
rubification, and
ferrugination
processes, 175
calcification and
podzolization, 167, 169
calcium-bearing primary
minerals, 170
dealkalization, 173
decalcification, 172
decomposition, 174,
175–6
desalinization, 172
desilication, 174
eluviation and
illuviation, 172
faunal debris, 174
gibbsite, 170
gleization, 175
granular structure,
176
haploidization processes,
176–7
lessivage, 173–4
leucinization, 174
loosening and hardening,
175
material translocations,
171
mineral transformation,
171
mineralization, 175
organic or mineral
material, 171
paludization, 174
pedogenic processes, 170
platy structure, 176
podzolization, 174
ripening, 175
salinization, 172–3
shrink-swell potential,
175
soil compression, 175
soil subprocesses and
reactions, 167–8,
171–2
Udalfs, 170
iron oxides
Alfisols, 238, 240
Aridisols, 272
classification, soil, 434
Inceptisols, 323–4
Oxisols, 351–3
soil survey
interpretation, 434
kandic horizons
Alfisols, 244–5
Oxisols, 349, 357
Ultisols, 375, 377–8,
380–2
kaolinite, 322
Kubiena system, 184–6,
185–6
Land Capability
Classification (LCC)
system, 431, 435
landscape, soil individuals,
30–2
Soil Genesis and Classification

Landscapes pattern
Entisols, 284
Histosols, 308
Laterites, 349, 352, 376
Latosols, 376
Leaching, 16
Alfisols, 240–1
Andisols, 257
Aridisols, 265–6, 268, 277, 281
Inceptisols, 321, 324
Ultisols, 375, 377
Lessivage
Alfisols, 237
Inceptisols, 323
Mollisols, 337
Ultisols, 377–8
Vertisols, 391
Limestones and dolomites, 95–6
Linnean principles, 202
Marbut classification system, 26–7
Mass wasting, 284
Matric horizons, 268, 273, 278, 280
Alfisols, 244–5
Vertisols, 393
Melanization, 286, 335
Alfisols, 241–2
Entisols, 286–7
Mollisols, 335–6, 338, 345
Oxisols, 352, 353
Ultisols, 378
Microclimates
Entisols, 284
Vertisols, 386
Microorganisms, 365, 367
Microtopography, Humboldt loess belt, 266
Mima mounds, 117
Mineralogy, 223–4
Mollisol classification, 342–7
Albolls, 343
Aquolls, 343–4
Cryolls, 346
Gelolls, 345–6
Nutrient cycling, 343
Rendolls, 345
Suborders and great groups, 344
Udolls, 347
Ustolls, 346
Xerolls, 346
clay translocation, 337
definition, 331
Pedogenic processes
Carbonates
Translocation, 336–7
cumulization, 339
Humus formation, 336
Melanization, 335
Microbial activity, 336
Organic carbon accumulation, 335–6
Properties, 334
Settings, 331–5
Uses, 340–2
Vegetation, 347
Munsell system, 36
National Cooperative Soil Survey, 207, 428, 435
National Soil Information System (NASIS), 428, 435
National Soil Survey Center, Lincoln, Nebraska, 428
Histosols, 310
Histosols, 307–8, 308, 311
Organic carbon content, 51, 54, 56
Entisols, 284
Mollisols, 336
Oxisols, 352
Soil taxonomy, 69–70
Soil material and weathering, 146
Spodosols, 372
Ultisols, 378
Organic fiber content, 211
Distribution, 340
Entisols, 290
Gelisols, 301
Histosols, 307–8, 308, 311
Organic soils, 310. See also Histosols
Natraqualfs, 215
Netherlands soil classification, 186, 191, 193
New Zealand, 190–2, 192
Ochric epipedon, 241
Soil forming factors, 102, 106, 107
Spodosols, 372
U.S. taxonomy, 213
National Cooperative Soil Survey, 207, 428, 435
National Soil Information System (NASIS), 428, 435
National Soil Survey Center, Lincoln, Nebraska, 428
Histosols
organisms
animals and soils, 228
ants, 125
biomass, 124
cicada, 126
coral reef, 124
earthworms, 125
flagellate protozoan, 124
food crops and pine trees, 128–9
human food production, 127–8, 128
humans and soils, 126–7
soil fauna, 124
soil invertebrates, 124
soil taxonomy, 127
vertebrates and soils, 126
flora and fauna, 118
net primary production, 119
nutrient element ratios, 119
plant biotic environment, 118
soil and biota, 118
soil biosequences, 120–2
soil single trees effects, 122–4, 123
unicellular and acellular organisms, 119–20, 120
vegetation types, 119
organogenic soil, 186, 190
organometallic compounds, 364, 365, 372
Orthels, 305
Orthents, 290
Orthods, 362, 364, 366, 372
Ortstein, 228
oxic horizon, 29, 67, 71–2, 78, 196, 212, 244, 313, 349
Oxisols
classification
ECEC, 357
gibbsitic, isohyperthermic
Typic Acrustox profile, 358
kandi, 357
mineralogy, 358
suborders and great groups, 356, 357
definition, 349
pedogenic processes
aluminum desilication and concentration, 351
gleization, 352–3
humification, 352
hydrology, 352
iron oxide desilication and concentration, 351
melanization, 352
profiles, 349
setting, 349–51
soils, 349
uses
soil analysis, 354–5
vegetation, 353–4
weatherable minerals, 358–9
Palmer-Havens nomographs, 108
Pascopyrum smithii, 333
peats, 309–10, 315
Gelisols, 296, 302
Histosols, 309–10, 314, 317
pedogenic horizons, Entisols, 283, 285
pedogenic landform, 385
pedology
definition, 3
soil classification, 4–5
soil genesis, 3–4
soil morphology, 5
pedons
evolution, 238
saturation, 243
pedoturbation, 176
Gelisols, 305
Oxisols, 353
Ultisols, 378
permafrost
distribution map, 294, 295
Gelisols, 305
materials, 295
perudic soil moisture regime, 85 plants.
See also vegetation
Aridisols, 233, 241
Entisols, 286, 288, 290
Gelisols, 296, 299–300
Histosols, 309, 314, 316–17
Oxisols, 353
plinthite, 378
Podzols, 361
precipitation
Aridisols, 265–6, 272, 276, 281
Mollisols, 332, 333, 337
Oxisols, 355
Psamments, 223, 289–90, 376
Purshia, 346
Quartzipsamments, 224, 228, 350
redoximorphic features, 38, 82–3, 148, 175
Alfisols, 245
Andisols, 260
Entisols, 289–90
Inceptisols, 324, 327
Oxisols, 345, 352–3
Spodosols, 370
Ultisols, 378–9, 381
Vertisols, 393
residual soil types, 22
rice, 289, 367
rock, fragments and voids, 223
Russian soil classification, 184, 186–90, 187–90
salic horizons, 211, 213, 215, 222
salt accumulation, 172, 301, 303
sandstones, 95
Schizachyrium scoparium, 333
sedimentation, 71, 115, 292, 427
sediments and sedimentary rocks
Brazilian and Guiana shields, 96
limestones and dolomites, 95–6
oxidized environment, 97
sandstones, 95
shales, 96
unconsolidated sediments, 96
weathered oxidized sediments, 96–7, 97
seismopedoturbation, 176
shales, 96
shrink-swell
Aridisols, 273
Vertisols, 385–95
siliceous crystalline rocks
granite and granite gneiss, 93–4
igneous and associated metamorphic rocks, 91
mafic rocks, 93
schists, 92, 94–5
soil
anatomical specimen, 13
characterization, 32
developmental stages, 7–8
energy transformer, 13–15, 14
interpretations, 32–3
materials and tectonics, 12
morphology, 4, 29–30
open system, 15, 15–16
survey, 33–4
taxonomy, 5
soil and farm management, 427
soil classification
Adansonian principle, 202
Australia, 192–5, 195
Brazil, 195–198, 197–8
Canada, 191–3, 193
categorization, 18–19
CEC, 434
Chinese, 196, 198–9, 199
definition, 17–18
Europe, 184–6, 185–6
equations
arable lands, 431
capability unit, 432
defactors, 432
grades, 433–5
nonarable lands, 431
nontimber, 434
redwood, 434
soil index rating, 432–3
Storie Index Rating, 432
examples, 431–5
history
early American period, 24–5
early technical period, 22–3
middle American period, 25–7
modern quantitative period, 28–9
pedology founding, 23–4
indigenous, 182–3
kinds, 19–20
Linnean principles, 202
logic and cognitive science, 181–2
map units, 430–1
materials and horizons, 430
Netherlands, 186, 191, 193
New Zealand, pedology, 190–2, 192
numerical taxonomy, 204
Oxisols, 355
principles, 20–1
regional and national, 181–2
rigor mortis, 21–2
Russia, 184, 186–90, 187–90
soil interpretation, 428–30
soil properties, 202, 204
soil taxa, 202
succession, 21
technical maps, 427–8
Vertisols, 391
WRB, 200–4, 203–4
soil composition and characterization
data acquisition, 62–3
laboratory determinations
acid oxalate extractions, 70
bulk density, 72–3
cation exchange capacity (CEC), 66–7
clay mineral inferences, CEC, 68
dithionite-citrate extractions, 70
exchangeable sodium percentage (ESP), 68
organic matter and its components, 69–70
particle-size analysis, 71–2
percent base saturation, 67–8
pH measurement, 68–9
phosphate retention, 71
saturated paste extract electrical conductivity, 71
shrink-swell capacity and linear extensibility, 73–4
soil moisture parameters, 73
soil samples collection, 63–5
soil formation
aerosol and fluvial deposition, 163
chronosequences, 139–40
cumulization, 92, 169
ecosystems, 89–91
energy and substance dynamics, 14–15, 163
energy exchange, 101, 164–5
erosion and depositional events, 130
Gelisols, 299
inorganic and organic components, 89, 163
interflow waters, 169
laboratory experiments, 138–9
lateral losses and gains, 169
leaching, 166, 168–9
manganese accumulation, 169
mature soil and the time factor, 135–6
parent material C and Cr horizons, 91–2
granite, glacial alluvial soils, 91
primary and secondary minerals, 91
pedologic threshold, 179
rate estimation, 138
relief (topography)
catenas and toposequences, 117–18
creep, 114
definition, 113
drainage systems, 116–17
hill slope position, 114
landscape positions, 113
slope configuration and positions, 115–16
soil characteristics, 114
soil profiles, 114
soil horizons and profiles, 136–8, 137
solid phase (ice), 163
solum development, 177–9, 179
space and time, 133–5, 134
spatial changes
bulk density, 94, 131
Coon Creek watershed, 133
dissolved and solid removal rates, 131
floodplains, 132
rivers, 131
soil surface vs. erosion, 130
watersheds, 131–3
static and dynamic pedology, 164
suction-plate lysimeters apparatus, 164
surficial erosion, 169
time zero concept, 130
water exchange processes, 165–8
weathering profile, 163
soil genesis, 209
classification, 5–7
concepts, 12–13
developmental stage, 7–8
history, 8–11
methods, 16–17
soil horizons, 250, 251
soil landscape patterns
Inceptisols, 325
individuality, 4, 31–2
map units, 32
pedon, 4, 30–1
polypedon, 4, 31
soil macromorphology
abrupt textural change, 60
albic material, 60
anhydrous conditions, 60
argillic and calcic horizons, 57
cambic horizon, 58
coefficient of linear extensibility (COLE), 60
concretions, 45
contrast, 38
diagnostic contacts, 62
duripan, 58
epipedon
anthropic, 55
folistic and histic, 56
melanic, mollic and ochric, 56
fragic soil properties, 60
fragipan, 58
free carbonates, 60
glacic layer, 58
histic, 56
horizon boundaries, 44–5
kandic horizon, 58
lamellae, 61
lithologic discontinuities, 61
mineral soil materials, 51–5
n Value and plinthite, 61
natric horizon, 58
organic soil materials, 51, 52
fibers and fibrile, 54
hemic and humilluvic, 55
limnic and sapric, 55
ped coating, 45
pedon, 35
petrocalcic and petrogypsic horizon, 59
pH, 45
placic horizon, 59
plaggen, 57
plasticity, 43
resistant and weatherable mineral, 62
rock fragments, 39
rupture resistance, 42–3
salic and sombric horizon, 59
salinity, 45
soil color, 37
soil horizon boundaries, 36
soil horizon designations discontinuities, 50
master horizons and layers, 45–6
prime and caret symbol uses, 50–1
subordinate distinctions, 47–50
transitional and combination horizons, 46–7
soil materials, mineral (see soil materials)
soil profile, 35–6
soil properties, 36, 36
soil size, 38, 40, 40–1
soil structure, 41–2
soil texture, 38–9, 39
spodic and sulfuric horizon, 60
stickiness, 43
umbric, 57
volcanic glass, 62
soil management, 391
soil maps interpretation
agricultural use, 427
classification, 427–8
evaluation and prediction, 435
map units, 430–1
material in soil horizons, 430
nonagricultural use, 427
soil materials
albic, 52
coprogenous earth, 317
definition, 51
densic, 53
durinodes, 53
fibric, 316
humilluvic, 317
limnic, 317
mineral, 51–2
organic, 52
paralithic materials, 54
permafrost, 54
spric, 316–17
secondary carbonates, 53
spodic, 54
sulfidic materials, 54
soil micromorphology
definition, 76
soil genesis, 80
terminology
amorphous pedofeatures, 80
apedal soil material, 77
argillic and natric horizons, 77–8, 79
pedofeatures, 77
peds, 77–8, 78
pseudomorph, 76
redox depletions, 77
soil fabric, 76–7
soil moisture regime
Andisols, 250
anthric saturation, 83
aquic, 82–3
aquic conditions, 82
aridic, 85
Aridisols, 265, 267, 277, 279
climatic data, 83–4
endosaturation, 83
Inceptisols, 321, 323
moisture control section, 83
Mollisols, 342
Oxisols, 349–50, 355
perudic, 85
plant growth, 81–2
precipitation and potential evapotranspiration, 84
redoximorphic features, 82
saturated soil, 82
Soil Taxonomy, 82
torric, 85
U.S., 209, 211, 215
udic, 86
ustic, 86
Vertisols, 393
water balance calculations, 83–4
xeric, 85
soil morphology, 29–30
soil morphology and composition
dynamic soil properties
field measurements, 86
soil moisture and soil temperature, 80
soil temperature regime (STR), 80–1
macromorphology
(see soil macromorphology)
soil mineralogical composition
clay minerals and short-range order minerals, 75–6
sand and silt, 74–5
soil moisture and temperature dynamics, 35
soil void characteristics and hydraulic properties, 35
soil organic carbon contents, 106–7, 107
soil quality, 425
Soil Science Society of America, 3
soil structure, 41–2
soil survey, 33–4
soil survey interpretations, 425–6
Soil Survey Manual, 13
Soil Survey Staff
desired attributes, 207–8
soil properties, 208–9
soil taxonomy. See soil classification
soil temperature regime
Alfisols, 241–2
Andisols, 250, 253
Aridisols, 279–80
Gelisols, 302–3, 305
Inceptisols, 321, 323
Mollisols, 336
Oxisols, 349–50
U.S., 209, 227, 229
Vertisols, 395
soil texture, 38–9, 39
soil weathering
allophane and imogolite, 155–6
chelation, 151
chemical and physical alteration, 141
chemical weathering, 142–3, 143
hydration, 148–9, 149
hydrolysis, 149–50, 150
inherited minerals, 151
neoformed minerals, 152
oxidation, 143–5, 144
oxidation-reduction, 146–8, 147
oxides and hyroxides, 158–9
ferrihydrite, 158
gibbsite, 156–8, 157
goethite, 158
green rusts, 158
hematite, 101, 158–9
lepidocrocite and maghemite, 159
manganese oxides, 159
physical weathering, 141–2
potassium removal from micas, 151
primary and secondary minerals, 141
reduction, 145–6
Soil Genesis and Classification

soil weathering (cont’d)
- silica, 159–60
- solution, 150–1
- transformed minerals, 152

soil-vegetation patterns, 266

soils
- calcareous and reaction classes, 226–7
- cation exchange activity classes, 224–6
- classes of coatings, 228
- classes of cracks, 228
- definition, 209
- forming family name, 229
- mineral composition, 223–4
- mineralogy classes, 223–4
- nomenclature, 209–10
- particle-size classes, 220–3
- rupture-resistant class, 228
- series category
 - history, 229–30
 - mappable differences, concept, 230
 - mapping unit, 230–1
 - particle-size or texture, 231
- soil depth classes, 227–8
- soil temperature classes, 227
- substitute particle-size classes, 223
- system structure
 - concept, 218
 - extragrade subgroup, 219–20

formative elements, suborder names, 213
- great group category, 213–15
- great group formative elements, 214–15, 216–18
- Histosols, 211
- intergrade subgroup, 218–19
- intragrade subgroup, 220
- moisture regime, 211
- order category, 211–12
- soil order names and element, 211
- soil orders, 212
- soil taxonomy categories, 210
- subgroup category, 215–18
- suborder category, 212–13
- soilscape pattern, 244
- Aridisols, 278
- Histosols, 310
- Vertisols, 388
- solar radiation, 105, 107
- solifluction, 301

Sphagnum moss, 311

Spodosols
- cementation, 372–3
- classification, 370–2
- definition, 361
- Haplorthod, boreal forest, 362
- pedogenic processes, 363–68
- profile, 362
- setting, 361–3

suborders and great groups, 371
- uses, 368–70
- subsoil accumulations, 361–3
- Sulfaquepts, 325
- synlithogenic soil, 186

taxonomic information interpretation
agricultural use, 427
classification, 427–8
evaluation and prediction, 435
map units, 430–1
material in soil horizons, 430
nonagricultural use, 427
soil classification, 427–8
(see also soil classification)
tephra deposit, 250–1, 251, 255
thermokarst, 302
thixotropy, 259
treethrow, 367
Turbels, 304

U.S. Department of Agriculture (USDA), 3, 207

Udalfs, 245
udic soil moisture regime, 86
Oxisols, 350, 355
Ultisols, 375, 377
Udults, 382
Ultisols
- classification, 380–2
- definition, 375
grossarenic surfaces, 378
history, 309
pedogenic processes, 377–9
setting, 375–6
uses, 379–80
United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS), 428
Ustalfs, 245
Ustic soil moisture regime, 86
Oxisols, 350, 355
vegetation
Alfisols, 234, 237
Andisols, 250
Aridisols, 265–6, 280
Entisols, 283, 285
Gelisols, 296, 299–300, 305
Histosols, 309–10, 312, 314
Inceptisols, 324–5
Mollisols, 331–47
Oxisols, 351
Spodosols, 361, 368, 370
Ultisols, 375–7, 380, 384
Vertisols, 391–2
Vertisols
classification, 392–5
Aquerts, 393
Cryerts, 393
Grumosols, 392
suborders and great groups, 394
Torrerts, 393–4
Uderts and Usterts, 394
Xererts, 393
pasture, 395
pedogenic processes
leaching, 388
self-swallowing model, 389
shear failure model, 390
soil mechanics model, 390
soil properties, 389
weathering, 388
rocks, 386
self-swallowing model, 389
setting
humidity and hydrology, 386
microclimates, 386
soil moisture regimes, 385
vegetative, 387
shrink-swell, 385–95
soil mechanics, 390
uses, 391–2
volcanic ash, 251, 253
composition, 92, 100
lithosequences, 100–2, 101
magma cooling, 100
periodic deposits, 100
Wassents, 289
water balance calculations, 109, 109, 111
water table, Spodosols, 363, 365, 370, 372
water-storage capacity, 108
weathering, 15
Alfisols, 240
Andisols, 250, 252, 255, 257, 259
Aridisols, 272, 277, 281
Gelisols, 297
Inceptisols, 322–3
mineral, 277, 338, 377
Mollisols, 338
Oxisols, 350–1
Ultisols, 375, 378
wind erosion, 266, 278
World Reference Base (WRB), 200–4, 201–4
Xeralfs, 247
Xeric soil moisture regime, 85–6
Ultisols, 375, 377
Xerolls, 338
Xerults, 382
Yucca glauca, 331