Contents

Preface xi

1 Review of Power Cable Standard Rating Methods 1
 1.1 Introduction 1
 1.2 Energy Conservation Equations 2
 1.2.1 Heat Transfer Mechanism in Power Cable Systems 2
 1.2.1.1 Conduction 2
 1.2.1.2 Convection 3
 1.2.1.3 Radiation 3
 1.2.1.4 Energy Balance Equations 4
 1.2.2 Heat Transfer Equations 5
 1.2.2.1 Underground Directly Buried Cables 5
 1.2.2.2 Cables in Air 6
 1.2.3 Analytical Versus Numerical Methods of Solving Heat Transfer Equations 7
 1.3 Thermal Network Analogs 7
 1.3.1 Thermal Resistance 8
 1.3.1 Thermal Capacitance 10
 1.3.3 Construction of a Ladder Network of a Cable 10
 1.3.3.1 Representation of Capacitances of the Dielectric 11
 1.3.3.2 Reduction of a Ladder Network to a Two-Loop Circuit 15
 1.4 Rating Equations—Steady-State Conditions 19
 1.4.1 Buried Cables 19
 1.4.1.1 Steady-State Rating Equation without Moisture Migration 19
 1.4.1.2 Steady-State Rating Equation with Moisture Migration 21
 1.4.2 Cables in Air 24
 1.5 Rating Equations—Transient Conditions 24
 1.5.1 Response to a Step Function 25
 1.5.1.1 Preliminaries 25
 1.5.1.2 Temperature Rise in the Internal Parts of the Cable 26
 1.5.1.3 Second Part of the Thermal Circuit—Influence of the Soil 29
1.5.1.4 Groups of Equally or Unequally Loaded Cables 30
1.5.1.5 Total Temperature Rise 31
1.5.2 Transient Temperature Rise under Variable Loading 32
1.5.3 Conductor Resistance Variations during Transients 32
1.5.4 Cyclic Rating Factor 32
1.6 Evaluation of Parameters 36
1.6.1 List of Symbols 36
1.6.1.1 General Data 36
1.6.1.2 Cable Parameters 36
1.6.1.3 Installation Conditions 38
1.6.2 Conductor ac Resistance 38
1.6.3 Dielectric Losses 40
1.6.4 Sheath Loss Factor 41
1.6.4.1 Sheath Bonding Arrangements 42
1.6.4.2 Loss Factors for Single-Conductor Cables 45
1.6.4.3 Three-Conductor Cables 48
1.6.4.4 Pipe-Type Cables 49
1.6.5 Armor Loss Factor 49
1.6.5.1 Single-Conductor Cables 50
1.6.5.2 Three-Conductor Cables—Steel Wire Armor 51
1.6.5.3 Three-Conductor Cables—Steel Tape Armor or Reinforcement 52
1.6.5.4 Pipe-Type Cables in Steel Pipe—Pipe Loss Factor 52
1.6.6 Thermal Resistances 52
1.6.6.1 Thermal Resistance of the Insulation 54
1.6.6.2 Thermal Resistance between Sheath and Armor, \(T_2 \) 58
1.6.6.3 Thermal Resistance of Outer Covering (Serving), \(T_3 \) 58
1.6.6.4 Pipe-Type Cables 59
1.6.6.5 External Thermal Resistance 60
1.6.7 Thermal Capacitances 69
1.6.7.1 Oil in the Conductor 69
1.6.7.2 Conductor 71
1.6.7.3 Insulation 71
1.6.7.4 Metallic Sheath or Any Other Concentric Layer 72
1.6.7.5 Reinforcing Tapes 72
1.6.7.6 Armor 72
1.6.7.7 Pipe-Type Cables 72
1.7 Concluding Remarks 72
References 73

2 Ampacity Reduction Factors for Cables Crossing Thermally Unfavorable Regions 77
2.1 Cables Crossing Thermally Unfavorable Regions 77
2.1.1 Introduction 77
2.1.2 Ampacity Reduction Modeling 78
2.1.3 Temperature Distribution Along the Rated Cable 78
2.1.4 Derating Factor 84
2.1.5 Cyclic Rating for Cable Crossing Unfavorable Region 90
2.1.6 Soil Dryout Caused by Moisture Migration 99

2.2 Ventilated Routes 101
 2.2.1 Cable Laid in a Pipe with Air Convection 102
 2.2.1.1 Self-Supporting Air Convection 102
 2.2.1.2 Forced Air Convection 108
 2.2.2 Numerical Example Illustrating the Cooling Pipe Concepts 108
 2.2.3 Reduction of a Magnetic Field 112

2.3 Concluding Remarks 117
2.4 Chapter Summary 117
References 119

3 Cable Crossings—Derating Considerations 121
 3.1 Introduction 121
 3.2 Utility Practices 122
 3.3 Derating Factor 124
 3.4 Temperature Distribution Along the Rated Cable and the Mutual Thermal Resistance
 3.4.1 Single External Heat Source 125
 3.4.2 Heating by a Steam Pipe 131
 3.4.3 Multiple Crossing Heat Sources 134
 3.5 Consideration of a Screen Longitudinal Heat Flow 140
 3.6 Transient Temperature Rise of Cable Crossings 145
 3.6.1 Transient External Thermal Resistance 145
 3.6.2 Cyclic Rating
 3.6.2.1 Cyclic Loading of the External Heat Source 147
 3.6.2.2 Rated Cable with Cyclic Load 149
 3.7 Soil Dryout Caused by Moisture Migration 156
 3.8 Concluding Remarks 161
 3.9 Chapter Summary 161
References 164

4 Application of Thermal Backfills for Cables Crossing Unfavorable Thermal Environments 165
 4.1 A Brief History of Soil Thermal Resistivity Measurements 166
 4.2 Optimization of Power Cable and Thermal Backfill Configurations 168
 4.2.1 Analysis of the Effect of Parameter Variations 169
 4.2.2 Formulation of the Optimization Problem 170
 4.2.3 Assessment of Sensitivities to Ambient Fluctuations 178
 4.3 Parameter Uncertainty in Rating Analysis of Cables Crossing Unfavorable Thermal Environments
 4.3.1 Sample Cable System 188
4.3.2 Statistical Variations of Cable Circuit Parameters 190
 4.3.2.1 Load Probability Distribution 190
 4.3.2.2 Ambient Temperature Probability Distribution 190
 4.3.2.3 Native Soil and Backfill Probability Distributions 190
4.3.3 Computation of Temperature Distribution Using Monte Carlo Simulation
 4.3.3.1 Steady-State Analysis 194
 4.3.3.2 Transient Analysis 196
4.3.4 Sample Applications 197
4.4 Stochastic Optimization 202
4.5 Concluding Remarks 206
4.6 Chapter Summary 207
References 209

5 Special Considerations for Real-Time Rating Analysis and Deeply Buried Cables 211
 5.1 Introduction 211
 5.2 Prediction of Conductor Temperature from the Conductor Current 213
 5.2.1 Introduction 213
 5.2.2 Mathematical Model 213
 5.3 Practical Application of the Temperature Prediction Equation 222
 5.4 Field Verification of the Temperature Calculations 223
 5.5 Loss Factor Calculations in Rating Standards 224
 5.5.1 Daily Load Cycle 224
 5.5.2 Consideration of Weekly Load Variations 230
 5.5.2.1 Characteristic Diameter 233
 5.6 Deeply Buried Cables 237
 5.6.1 Characteristic Diameter 238
 5.6.2 Temperature Changes for Deeply Buried Cables 242
 5.7 Concluding Remarks 242
 5.8 Chapter Summary 243
References 245

6 Installations Involving Multiple Cables in Air 247
 6.1 Introduction 247
 6.2 Current Rating of Multicore Cables 247
 6.2.1 Introduction 248
 6.2.2 Background 249
 6.2.2.1 Evaluation of the Jacket Thermal Resistance 249
 6.2.2.2 Rating Equations 250
 6.2.2.3 Evaluation of the External Thermal Resistance 251
 6.2.3 Heat Conduction Inside the Cable Bundle 254
 6.2.3.1 Uniform Loss Density 254
6.2.3.2 Unequally Loaded Bundle 262

6.3 Examples of Derating Factors 266

6.3.1 Rating Factors 267

6.3.1.1 Laying in a Single Layer on Wall, Floors, or in Cable Trays 267

6.3.1.2 Laying in a Single Layer under Ceilings 268

6.3.1.3 Laying in a Single Layer on Ventilated Cable Trays 268

6.3.1.4 Laying in a Single Layer on Cable Ladders, Brackets, or Wire Mesh 269

6.3.1.5 Laying in Several Layers 270

6.3.1.6 Several Cables Connected in Parallel 270

6.4 Concluding Remarks 270

6.5 Chapter Summary 273

6.5.1 Cables in Free Air 273

6.5.2 Cables in Moving Air 274

6.5.3 Unequally Loaded Bundle 275

6.5.3.1 Central Part Loaded 275

6.5.3.2 Outer Part Loaded 275

References 276

7 Rating of Pipe-Type Cables with Slow Circulation of Dielectric Fluid 279

7.1 Nomenclature 279

7.2 Introduction 280

7.3 Thermal Effects of Dielectric Fluid Circulation 283

7.3.1 Background Information 284

7.3.1.1 Calculation of Coolant Parameters 284

7.3.1.2 Thermal Calculations 285

7.3.2 Buller’s Model 285

7.3.2.1 Effective Cooling Distance 287

7.3.3 Model for Real-Time Rating Computations 291

7.3.3.1 Oil Velocity Profile 292

7.3.3.2 Oil Temperature Distribution 293

7.3.3.3 Thermal Resistances of the Oil Film 294

7.4 Concluding Remarks 299

7.5 Chapter Summary 300

References 302

Appendix A: Model Cables 303

Model Cable No. 1 303
Model Cable No. 2 303
Model Cable No. 3 305
Model Cable No. 4 305
Model Cable No. 5 305
Appendix B: Computations of the Mean Moisture Content in Media Surrounding Underground Power Cables

Introduction 313
Soil–Water Balance 314
Determination of Potential Evapotranspiration 315
Weekly Soil–Water Balance Calculations 315
References 315

Appendix C: Estimation of Backfill Thermal Resistivity 317
Reference 319

Appendix D: Equations for Dielectric Fluid Parameters 321

Index 323