Contents

About the Authors

Preface

1 Introduction

1.1 Transport Planning and Modelling
 - 1.1.1 Background
 - 1.1.2 Models and their Role

1.2 Characteristics of Transport Problems
 - 1.2.1 Characteristics of Transport Demand
 - 1.2.2 Characteristics of Transport Supply
 - 1.2.3 Equilibration of Supply and Demand

1.3 Modelling and Decision Making
 - 1.3.1 Decision-making Styles
 - 1.3.2 Choosing Modelling Approaches

1.4 Issues in Transport Modelling
 - 1.4.1 General Modelling Issues
 - 1.4.2 Aggregate and Disaggregate Modelling
 - 1.4.3 Cross-section and Time Series
 - 1.4.4 Revealed and Stated Preferences

1.5 The Structure of the Classic Transport Model

1.6 Continuous Transport Planning

1.7 Theoretical Basis Versus Expedience

2 Mathematical Prerequisites

2.1 Introduction

2.2 Algebra and Functions
 - 2.2.1 Introduction
 - 2.2.2 Functions and Graphs
 - 2.2.3 Sums of Series

2.3 Matrix Algebra
 - 2.3.1 Introduction
 - 2.3.2 Basic Operations of Matrix Algebra

2.4 Elements of Calculus
 - 2.4.1 Differentiation
 - 2.4.2 Integration
 - 2.4.3 The Logarithmic and Exponential Functions

COPYRIGHTED MATERIAL
Contents

2.4.4 Finding Maximum and Minimum Values of Functions 40
2.4.5 Functions of More Than One Variable 41
2.4.6 Multiple Integration 43
2.4.7 Elasticities 43
2.4.8 Series Expansions 44

2.5 Elementary Mathematical Statistics 44
2.5.1 Probabilities 44
2.5.2 Random Variables 46
2.5.3 Moments around Zero 47
2.5.4 More Advanced Statistical Concepts 48

3 Data and Space 55
3.1 Basic Sampling Theory 55
3.1.1 Statistical Considerations 55
3.1.2 Conceptualisation of the Sampling Problem 60
3.1.3 Practical Considerations in Sampling 63
3.2 Errors in Modelling and Forecasting 65
3.2.1 Different Types of Error 65
3.2.2 The Model Complexity/Data Accuracy Trade-off 68
3.3 Basic Data-Collection Methods 71
3.3.1 Practical Considerations 71
3.3.2 Types of Surveys 73
3.3.3 Survey Data Correction, Expansion and Validation 86
3.3.4 Longitudinal Data Collection 90
3.3.5 Travel Time Surveys 93
3.4 Stated Preference Surveys 94
3.4.1 Introduction 94
3.4.2 The Survey Process 99
3.4.3 Case Study Example 117
3.5 Network and Zoning Systems 128
3.5.1 Zoning Design 129
3.5.2 Network Representation 131
Exercises 135

4 Trip Generation Modelling 139
4.1 Introduction 139
4.1.1 Some Basic Definitions 139
4.1.2 Characterisation of Journeys 141
4.1.3 Factors Affecting Trip Generation 142
4.1.4 Growth-factor Modelling 143
4.2 Regression Analysis 144
4.2.1 The Linear Regression Model 144
4.2.2 Zonal-based Multiple Regression 151
4.2.3 Household-based Regression 153
4.2.4 The Problem of Non-Linearity 154
4.2.5 Obtaining Zonal Totals 156
4.2.6 Matching Generations and Attractions 156
Contents

4.3 Cross-Classification or Category Analysis 157
 4.3.1 The Classical Model 157
 4.3.2 Improvements to the Basic Model 159
 4.3.3 The Person-category Approach 162

4.4 Trip Generation and Accessibility 164

4.5 The Frequency Choice Logit Model 165

4.6 Forecasting Variables in Trip Generation Analysis 167

4.7 Stability and Updating of Trip Generation Parameters 168
 4.7.1 Temporal Stability 168
 4.7.2 Geographic Stability 169
 4.7.3 Bayesian Updating of Trip Generation Parameters 170
Exercises 172

5 Trip Distribution Modelling 175
5.1 Definitions and Notation 176

5.2 Growth-Factor Methods 178
 5.2.1 Uniform Growth Factor 178
 5.2.2 Singly Constrained Growth-Factor Methods 179
 5.2.3 Doubly Constrained Growth Factors 180
 5.2.4 Advantages and Limitations of Growth-Factor Methods 181

5.3 Synthetic or Gravity Models 182
 5.3.1 The Gravity Distribution Model 182
 5.3.2 Singly and Doubly Constrained Models 183

5.4 The Entropy-Maximising Approach 184
 5.4.1 Entropy and Model Generation 184
 5.4.2 Generation of the Gravity Model 186
 5.4.3 Properties of the Gravity Model 188
 5.4.4 Production/Attraction Format 190
 5.4.5 Segmentation 191

5.5 Calibration of Gravity Models 191
 5.5.1 Calibration and Validation 191
 5.5.2 Calibration Techniques 192

5.6 The Tri-proportional Approach 193
 5.6.1 Bi-proportional Fitting 193
 5.6.2 A Tri-proportional Problem 195
 5.6.3 Partial Matrix Techniques 196

5.7 Other Synthetic Models 198
 5.7.1 Generalisations of the Gravity Model 198
 5.7.2 Intervening Opportunities Model 199
 5.7.3 Disaggregate Approaches 200

5.8 Practical Considerations 201
 5.8.1 Sparse Matrices 201
 5.8.2 Treatment of External Zones 201
 5.8.3 Intra-zonal Trips 201
 5.8.4 Journey Purposes 202
 5.8.5 k Factors 202
 5.8.6 Errors in Modelling 202
 5.8.7 The Stability of Trip Matrices 204
Exercises 205
Contents

6 Modal Split and Direct Demand Models 207
6.1 Introduction 207
6.2 Factors Influencing the Choice of Mode 208
6.3 Trip-end Modal-split Models 209
6.4 Trip Interchange Heuristics Modal-split Models 209
6.5 Synthetic Models 211
 6.5.1 Distribution and Modal-split Models 211
 6.5.2 Distribution and Modal-split Structures 213
 6.5.3 Multimodal-split Models 214
 6.5.4 Calibration of Binary Logit Models 217
 6.5.5 Calibration of Hierarchical Modal-split Models 218
6.6 Direct Demand Models 219
 6.6.1 Introduction 219
 6.6.2 Direct Demand Models 220
 6.6.3 An Update on Direct Demand Modelling 221
Exercises 223

7 Discrete Choice Models 227
7.1 General Considerations 227
7.2 Theoretical Framework 230
7.3 The Multinomial Logit Model (MNL) 232
 7.3.1 Specification Searches 232
 7.3.2 Universal Choice Set Specification 233
 7.3.3 Some Properties of the MNL 234
7.4 The Nested Logit Model (NL) 235
 7.4.1 Correlation and Model Structure 235
 7.4.2 Fundamentals of Nested Logit Modelling 237
 7.4.3 The NL in Practice 240
 7.4.4 Controversies about some Properties of the NL Model 241
7.5 The Multinomial Probit Model 248
 7.5.1 The Binary Probit Model 248
 7.5.2 Multinomial Probit and Taste Variations 249
 7.5.3 Comparing Independent Probit and Logit Models 250
7.6 The Mixed Logit Model 250
 7.6.1 Model Formulation 250
 7.6.2 Model Specifications 251
 7.6.3 Identification Problems 254
7.7 Other Choice Models and Paradigms 256
 7.7.1 Other Choice Models 256
 7.7.2 Choice by Elimination and Satisfaction 256
 7.7.3 Habit and Hysteresis 258
 7.7.4 Modelling with Panel Data 259
 7.7.5 Hybrid Choice Models Incorporating Latent Variables 265
Exercises 266

8 Specification and Estimation of Discrete Choice Models 269
8.1 Introduction 269
8.2 Choice-Set Determination 270
 8.2.1 Choice-set Size 270
 8.2.2 Choice-set Formation 271
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Specification and Functional Form</td>
<td>272</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Functional Form and Transformations</td>
<td>272</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Theoretical Considerations and Functional Form</td>
<td>273</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Intrinsic Non-linearities: Destination Choice</td>
<td>274</td>
</tr>
<tr>
<td>8.4</td>
<td>Statistical Estimation</td>
<td>275</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Estimation of Models from Random Samples</td>
<td>275</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Estimation of Models from Choice-based Samples</td>
<td>288</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Estimation of Hybrid Choice Models with Latent Variables</td>
<td>288</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Comparison of Non-nested Models</td>
<td>291</td>
</tr>
<tr>
<td>8.5</td>
<td>Estimating the Multinomial Probit Model</td>
<td>292</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Numerical Integration</td>
<td>292</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Simulated Maximum Likelihood</td>
<td>293</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Advanced Techniques</td>
<td>294</td>
</tr>
<tr>
<td>8.6</td>
<td>Estimating the Mixed Logit Model</td>
<td>295</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Classical Estimation</td>
<td>296</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Bayesian Estimation</td>
<td>298</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Choice of a Mixing Distribution</td>
<td>302</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Random and Quasi Random Numbers</td>
<td>305</td>
</tr>
<tr>
<td>8.6.5</td>
<td>Estimation of Panel Data Models</td>
<td>307</td>
</tr>
<tr>
<td>8.7</td>
<td>Modelling with Stated-Preference Data</td>
<td>308</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Identifying Functional Form</td>
<td>309</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Stated Preference Data and Discrete Choice Modelling</td>
<td>310</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Model Estimation with Mixed SC and RP Data</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>329</td>
</tr>
<tr>
<td>9</td>
<td>Model Aggregation and Transferability</td>
<td>333</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>9.2</td>
<td>Aggregation Bias and Forecasting</td>
<td>334</td>
</tr>
<tr>
<td>9.3</td>
<td>Confidence Intervals for Predictions</td>
<td>335</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Linear Approximation</td>
<td>336</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Non Linear Programming</td>
<td>337</td>
</tr>
<tr>
<td>9.4</td>
<td>Aggregation Methods</td>
<td>338</td>
</tr>
<tr>
<td>9.5</td>
<td>Model Updating or Transferance</td>
<td>341</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Introduction</td>
<td>341</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Methods to Evaluate Model Transferability</td>
<td>341</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Updating with Disaggregate Data</td>
<td>343</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Updating with Aggregate Data</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>345</td>
</tr>
<tr>
<td>10</td>
<td>Assignment</td>
<td>349</td>
</tr>
<tr>
<td>10.1</td>
<td>Basic Concepts</td>
<td>349</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Introduction</td>
<td>349</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Definitions and Notation</td>
<td>350</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Speed–Flow and Cost–Flow Curves</td>
<td>351</td>
</tr>
<tr>
<td>10.2</td>
<td>Traffic Assignment Methods</td>
<td>355</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Introduction</td>
<td>355</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Route Choice</td>
<td>356</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Tree Building</td>
<td>358</td>
</tr>
<tr>
<td>10.3</td>
<td>All-or-nothing Assignment</td>
<td>359</td>
</tr>
</tbody>
</table>
10.4 Stochastic Methods
10.4.1 Simulation-Based Methods
10.4.2 Proportional Stochastic Methods
10.4.3 Emerging Approaches

10.5 Congested Assignment
10.5.1 Wardrop’s equilibrium
10.5.2 Hard and Soft Speed-Change Methods
10.5.3 Incremental Assignment
10.5.4 Method of Successive Averages
10.5.5 Braess’s Paradox

10.6 Public-Transport Assignment
10.6.1 Introduction
10.6.2 Issues in Public-Transport Assignment
10.6.3 Modelling Public-Transport Route Choice
10.6.4 Assignment of Transit Trips

10.7 Limitations of the Classic Methods
10.7.1 Limitations in the Node-link Model of the Road Network
10.7.2 Errors in Defining Average Perceived Costs
10.7.3 Not all Trip Makers Perceive Costs in the Same Way
10.7.4 The Assumption of Perfect Information about Costs in All Parts of the Network
10.7.5 Day-to-day Variations in Demand
10.7.6 Imperfect Estimation of Changes in Travel Time with Changes in the Estimated Flow on Links
10.7.7 The Dynamic Nature of Traffic
10.7.8 Input Errors

10.8 Practical Considerations

Exercises

11 Equilibrium and Dynamic Assignment
11.1 Introduction
11.2 Equilibrium
11.2.1 A Mathematical Programming Approach
11.2.2 Social Equilibrium
11.2.3 Solution Methods
11.2.4 Stochastic Equilibrium Assignment
11.2.5 Congested Public Transport Assignment

11.3 Transport System Equilibrium
11.3.1 Equilibrium and Feedback
11.3.2 Formulation of the Combined Model System
11.3.3 Solving General Combined Models
11.3.4 Monitoring Convergence

11.4 Traffic Dynamics
11.4.1 The Dynamic Nature of Traffic
11.4.2 Travel Time Reliability
11.4.3 Junction Interaction Methods
11.4.4 Dynamic Traffic Assignment (DTA)

11.5 Departure Time Choice and Assignment
11.5.1 Introduction
11.5.2 Macro and Micro Departure Time Choice
Contents

11.5.3 Underlying Principles of Micro Departure Time Choice 421
11.5.4 Simple Supply/Demand Equilibrium Models 423
11.5.5 Time of Travel Choice and Equilibrium Assignment 424
11.5.6 Conclusion 425
Exercises 426

12 Simplified Transport Demand Models 429
12.1 Introduction 429
12.2 Sketch Planning Methods 430
12.3 Incremental Demand Models 431
12.3.1 Incremental Elasticity Analysis 431
12.3.2 Incremental or Pivot-point Modelling 433
12.4 Model Estimation from Traffic Counts 435
12.4.1 Introduction 435
12.4.2 Route Choice and Matrix Estimation 436
12.4.3 Transport Model Estimation from Traffic Counts 436
12.4.4 Matrix Estimation from Traffic Counts 439
12.4.5 Traffic Counts and Matrix Estimation 444
12.4.6 Limitations of ME2 446
12.4.7 Improved Matrix Estimation Models 447
12.4.8 Treatment of Non-proportional Assignment 448
12.4.9 Quality of Matrix Estimation Results 450
12.4.10 Estimation of Trip Matrix and Mode Choice 450
12.5 Marginal and Corridor Models 452
12.5.1 Introduction 452
12.5.2 Corridor Models 453
12.5.3 Marginal Demand Models 454
12.6 Gaming Simulation 456
Exercises 458

13 Freight Demand Models 461
13.1 Importance 461
13.2 Factors Affecting Goods Movements 462
13.3 Pricing Freight Services 463
13.4 Data Collection for Freight Studies 463
13.5 Aggregate Freight Demand Modelling 466
13.5.1 Freight Generations and Attractions 466
13.5.2 Distribution Models 466
13.5.3 Mode Choice 468
13.5.4 Assignment 468
13.5.5 Equilibrium 469
13.6 Disaggregate Approaches 470
13.7 Some Practical Issues 471

14 Activity Based Models 473
14.1 Introduction 473
14.2 Activities, Tours and Trips 474
14.3 Tours, Individuals and Representative Individuals 477
14.4 The ABM System 478
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>Population Synthesis</td>
<td>479</td>
</tr>
<tr>
<td>14.6</td>
<td>Monte Carlo and Probabilistic Processes</td>
<td>481</td>
</tr>
<tr>
<td>14.7</td>
<td>Structuring Activities and Tours</td>
<td>482</td>
</tr>
<tr>
<td>14.8</td>
<td>Solving ABM</td>
<td>484</td>
</tr>
<tr>
<td>14.9</td>
<td>Refining Activity or Tour Based Models</td>
<td>485</td>
</tr>
<tr>
<td>14.10</td>
<td>Extending Random Utility Approaches</td>
<td>487</td>
</tr>
<tr>
<td>15</td>
<td>Key Parameters, Planning Variables and Value Functions</td>
<td>489</td>
</tr>
<tr>
<td>15.1</td>
<td>Forecasting Planning Variables</td>
<td>489</td>
</tr>
<tr>
<td>15.1.1</td>
<td>Introduction</td>
<td>489</td>
</tr>
<tr>
<td>15.1.2</td>
<td>Use of Official Forecasts</td>
<td>490</td>
</tr>
<tr>
<td>15.1.3</td>
<td>Forecasting Population and Employment</td>
<td>491</td>
</tr>
<tr>
<td>15.1.4</td>
<td>The Spatial Location of Population and Employment</td>
<td>493</td>
</tr>
<tr>
<td>15.2</td>
<td>Land-Use Transport Interaction Modelling</td>
<td>493</td>
</tr>
<tr>
<td>15.2.1</td>
<td>The Lowry Model</td>
<td>495</td>
</tr>
<tr>
<td>15.2.2</td>
<td>The Bid-Choice Model</td>
<td>496</td>
</tr>
<tr>
<td>15.2.3</td>
<td>Systems Dynamics Approach</td>
<td>497</td>
</tr>
<tr>
<td>15.2.4</td>
<td>Urban Simulation</td>
<td>499</td>
</tr>
<tr>
<td>15.3</td>
<td>Car-Ownership Forecasting</td>
<td>499</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Background</td>
<td>499</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Time-series Extrapolations</td>
<td>500</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Econometric Methods</td>
<td>503</td>
</tr>
<tr>
<td>15.3.4</td>
<td>International Comparisons</td>
<td>507</td>
</tr>
<tr>
<td>15.4</td>
<td>The Value of Travel Time</td>
<td>509</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Introduction</td>
<td>509</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Subjective and Social Values of Time</td>
<td>509</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Some Practical Results</td>
<td>510</td>
</tr>
<tr>
<td>15.4.4</td>
<td>Methods of Analysis</td>
<td>512</td>
</tr>
<tr>
<td>15.5</td>
<td>Valuing External Effects of Transport</td>
<td>522</td>
</tr>
<tr>
<td>15.5.1</td>
<td>Introduction</td>
<td>522</td>
</tr>
<tr>
<td>15.5.2</td>
<td>Methods of Analysis</td>
<td>524</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>530</td>
</tr>
<tr>
<td>16</td>
<td>Pricing and Revenue</td>
<td>533</td>
</tr>
<tr>
<td>16.1</td>
<td>Pricing, Revenue and Forecasting</td>
<td>533</td>
</tr>
<tr>
<td>16.1.1</td>
<td>Background</td>
<td>533</td>
</tr>
<tr>
<td>16.1.2</td>
<td>Prices and Perceptions</td>
<td>534</td>
</tr>
<tr>
<td>16.1.3</td>
<td>Modelling and Forecasting</td>
<td>534</td>
</tr>
<tr>
<td>16.2</td>
<td>Private Sector Projects</td>
<td>535</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Involvement of Private Sector in Transport Projects</td>
<td>535</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Agents and Processes</td>
<td>536</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Some Consequences of the Process</td>
<td>538</td>
</tr>
<tr>
<td>16.3</td>
<td>Risk</td>
<td>538</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Uncertainty and Risk</td>
<td>538</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Risk Management and Mitigation</td>
<td>539</td>
</tr>
<tr>
<td>16.4</td>
<td>Demand Modelling</td>
<td>539</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Willingness to Pay</td>
<td>539</td>
</tr>
<tr>
<td>16.4.2</td>
<td>Simple Projects</td>
<td>540</td>
</tr>
<tr>
<td>16.4.3</td>
<td>Complex Projects</td>
<td>541</td>
</tr>
</tbody>
</table>