Contents

About the Author ix
Preface x
Notation Index xi
About the Companion Website xvi

1 **Classification and Physical Properties of Soils**
1.1 Agricultural and engineering soil 1
1.2 Engineering definitions 2
1.3 Clay soils 4
1.4 Field identification of soils 5
1.5 Laboratory classification of soils 6
1.6 Activity of a clay 14
1.7 Soil classification and description 14
1.8 Soil properties 21
Exercises 30

2 **Permeability and Flow of Water in Soils** 33
2.1 Subsurface water 33
2.2 Flow of water through soils 35
2.3 Darcy’s law of saturated flow 36
2.4 Coefficient of permeability, \(k \) 36
2.5 Determination of permeability in the laboratory 36
2.6 Determination of permeability in the field 40
2.7 Approximation of coefficient of permeability 42
2.8 General differential equation of flow 42
2.9 Potential and stream functions 44
2.10 Flow nets 45
2.11 Critical flow conditions 49
2.12 Design of soil filters 51
2.13 Capillarity and unsaturated soils 54
2.14 Earth dams 59
2.15 Seepage through non-uniform soil deposits 62
Exercises 71

3 **Total and Effective Stress** 74
3.1 State of stress in a soil mass 74
3.2 Total stress 75
3.3 Pore pressure 76
3.4 Effective stress 77
3.5 Stresses induced by applied loads 80
Exercises 89
4 Shear Strength of Soils

4.1 Friction
4.2 Complex stress
4.3 The Mohr circle diagram
4.4 Cohesion
4.5 Coulomb’s law of soil shear strength
4.6 Modified Coulomb’s law
4.7 The Mohr–Coulomb yield theory
4.8 Determination of the shear strength parameters
4.9 Determination of the shear strength parameters from triaxial testing
4.10 The pore pressure coefficients A and B
4.11 The triaxial extension test
4.12 Behaviour of soils under shear
4.13 Operative strengths of soils
4.14 The critical state
4.15 Sensitivity of clays
4.16 Residual strength of soil
Exercises

5 Eurocode 7

5.1 Introduction to the Structural Eurocodes
5.2 Introduction to Eurocode 7
5.3 Using Eurocode 7: basis of geotechnical design
5.4 Geotechnical design by calculation
5.5 Ultimate limit states
5.6 The EQU limit state
5.7 The GEO limit state and design approaches
5.8 Serviceability limit states
5.9 Geotechnical design report

6 Site Investigation

6.1 EN 1997-2:2007 – Ground investigation and testing
6.2 Planning of ground investigations
6.3 Site exploration methods
6.4 Soil and rock sampling
6.5 Groundwater measurements
6.6 Field tests in soil and rock
6.7 Geotechnical reports

7 Lateral Earth Pressure

7.1 Earth pressure at rest
7.2 Active and passive earth pressure
7.3 Rankine’s theory: granular soils, active earth pressure
7.4 Rankine’s theory: granular soils, passive earth pressure
7.5 Rankine’s theory: cohesive soils
7.6 Coulomb’s wedge theory: active earth pressure
7.7 Coulomb’s wedge theory: passive earth pressure
7.8 Surcharges
7.9 Choice of method for determination of active pressure
7.10 Backfill material
7.11 Influence of wall yield on design
7.12 Design parameters for different soil types
Exercises
8 Retaining Structures 221
8.1 Main types of retaining structures 221
8.2 Gravity walls 221
8.3 Embedded walls 224
8.4 Failure modes of retaining structures 225
8.5 Design of gravity retaining walls 226
8.6 Design of sheet pile walls 236
8.7 Braced excavations 248
8.8 Reinforced soil 250
8.9 Soil nailing 251
Exercises 252

9 Bearing Capacity and Shallow Foundations 255
9.1 Bearing capacity terms 255
9.2 Types of foundation 255
9.3 Ultimate bearing capacity of a foundation 256
9.4 Determination of the safe bearing capacity 263
9.5 The effect of groundwater on bearing capacity 264
9.6 Developments in bearing capacity equations 265
9.7 Designing spread foundations to Eurocode 7 269
9.8 Non-homogeneous soil conditions 284
9.9 Estimates of bearing capacity from in situ testing 285
Exercises 288

10 Pile Foundations 290
10.1 Introduction 290
10.2 Classification of piles 290
10.3 Method of installation 291
10.4 Pile load testing 294
10.5 Determination of the bearing capacity of a pile 296
10.6 Designing pile foundations to Eurocode 7 303
10.7 Pile groups 311
Exercises 313

11 Foundation Settlement and Soil Compression 315
11.1 Settlement of a foundation 315
11.2 Immediate settlement 316
11.3 Consolidation settlement 325
11.4 Application of consolidation test results 335
11.5 General consolidation 336
11.6 Eurocode 7 serviceability limit state 343
11.7 Isotropic consolidation 344
11.8 Two-dimensional stress paths 346
Exercises 352

12 Rate of Foundation Settlement 355
12.1 Analogy of consolidation settlement 355
12.2 Distribution of the initial excess pore pressure, \(u_i \) 355
12.3 Terzaghi's theory of consolidation 355
12.4 Average degree of consolidation 359
12.5 Drainage path length 359
12.6 Determination of the coefficient of consolidation, \(c_v \), from the consolidation test 360
12.7 Determination of the permeability coefficient from the consolidation test 362
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8 Determination of the consolidation coefficient from the triaxial test</td>
<td>362</td>
</tr>
<tr>
<td>12.9 The model law of consolidation</td>
<td>365</td>
</tr>
<tr>
<td>12.10 Consolidation during construction</td>
<td>366</td>
</tr>
<tr>
<td>12.11 Consolidation by drainage in two and three dimensions</td>
<td>369</td>
</tr>
<tr>
<td>12.12 Numerical determination of consolidation rates</td>
<td>369</td>
</tr>
<tr>
<td>12.13 Construction pore pressures in an earth dam</td>
<td>374</td>
</tr>
<tr>
<td>12.14 Numerical solutions for two- and three-dimensional consolidation</td>
<td>376</td>
</tr>
<tr>
<td>12.15 Sand drains</td>
<td>378</td>
</tr>
<tr>
<td>Exercises</td>
<td>384</td>
</tr>
<tr>
<td>13 Stability of Slopes</td>
<td>386</td>
</tr>
<tr>
<td>13.1 Planar failures</td>
<td>386</td>
</tr>
<tr>
<td>13.2 Rotational failures</td>
<td>390</td>
</tr>
<tr>
<td>13.3 Slope stability design charts</td>
<td>408</td>
</tr>
<tr>
<td>13.4 Wedge failure</td>
<td>414</td>
</tr>
<tr>
<td>13.5 Slope stability analysis to Eurocode 7</td>
<td>416</td>
</tr>
<tr>
<td>Exercises</td>
<td>421</td>
</tr>
<tr>
<td>14 Compaction and Soil Mechanics Aspects of Highway Design</td>
<td>432</td>
</tr>
<tr>
<td>14.1 Field compaction of soils</td>
<td>432</td>
</tr>
<tr>
<td>14.2 Laboratory compaction of soils</td>
<td>434</td>
</tr>
<tr>
<td>14.3 Specification of the field compacted density</td>
<td>441</td>
</tr>
<tr>
<td>14.4 Field measurement tests</td>
<td>442</td>
</tr>
<tr>
<td>14.5 Highway design</td>
<td>446</td>
</tr>
<tr>
<td>Exercises</td>
<td>457</td>
</tr>
</tbody>
</table>

References: 460
Index: 466