INDEX

2-D features, see also Information processing
 extracted from retinal image, 37
 extraction during perception, 3
 use in surface analysis, 4
2-D retinal image, 29
2.5-D sketch, see also Information processing
 surface representation, 40
3-D internal representation, 44. See also
 Information processing
 3-D representations
 creation and use of during perception, 4
3-D surfaces, see also Information processing
 perceiving, 38
Absorption spectra of cones in retina, 50
Abstract class, 154. See also Protovis
Abstraction defined in Protovis, 21
Accuracy in tasks, 13. See also Task analysis
 Achromatic channel in color perception,
 see Luminance channel
 Action associations, object/
 conceptual models and, 14
 Action sequence, 113. See also Action theory
 Action theory, 112–113: See also Design process
 application to design, 114–115
Actions, 116. See also Object/action analysis
 grouping of in user interfaces, 130
 invisible, 130
 organization of, 129
 signifiers of, 129–130
Adelson, E. H., 37
Adobe Illustrator, 146
Aesthetic attributes
 defined, 88, 95–96
 examples of, 96
Aesthetics, 87. See also Graphic pipeline
 importance of, in design, 122
Agrawala, M., 276
AI, see Artificial intelligence
Algorithmic level of explanation, 30–31
Ambient optic array in vision, 31
Amygdala, in brain, 61
 Analogies, designing conceptual models from, 13
 Analysis, in visual analytics, 2
 Analysis of tasks, see Task analysis
 Anchors in Protovis, 194–98. See also Protovis anchors
 Area(s)
 as graphical element, 65, 76, 78. See also
 Graphical elements
 Protovis, see Protovis areas
 Arrays, in Protovis, 211. See also Data, Protovis
 Artifact models, 113. See also Work models
 Artifacts of work, 111. See also
 Design process
 Artificial intelligence contrasted with amplified intelligence, 2
 Attention, 112. See also Cognition
 visual interfaces and, 123
 visual perception and, 53
 focus of, 53
 Attention, visual, see Visual attention
 Attentional focus, see Focus of attention
 Attentional system, in human brain, 4
 Attributes, object
 identifying, in object/action analysis, see
 Object/action analysis
 conceptual models and, 14. See also
 Conceptual models
Auditory perception, in semiotics, 68
Axes, 92, 139. See also Graphical grammar components
Axes, Protovis, see Protovis axes
Axons, function of, in brain, 25
Backward connections in neural networks, 36.
See also Neural networks
Baddeley, A., 59
Bars, Protovis, see Protovis bars
Becker, R. A., 6, 103
Bederson, B. B., 7, 276
Bell, G., 18
Berrar, B. P., 106
Bertin, J., 6 17, 66, 103, 145
Beyer, H., 111 118 144
Biological computation, information-processing paradigm and, 24
Blue/yellow, 48. See also Color balance
Bostock, M., 96, 101, 147, 276
Bottom-up processing in perception, 53
Brain
biological computation and, 25
regions of, 34
role in visual perception, 25
topological mappings in, 34
Brightness, as emitted light, 47
Brooks, F. P., Jr., 2, 18
Cancer cell lines, 7
Canvas, Protovis, 152
Card, S. K., 6, 19, 145
Cartesian coordinate system, see Coordinate systems, Cartesian
Category-based processing, 3, 4, 44–45. See also Information theory
Category-based stage in visual perception, 30
Cell body function in brain, 25
Cerebral cortex in brain, 61
CERN Hadron particle accelerator, 1
Chambers, J., 103
Chandler, D., 103
Characteristics as defined by Bertin, 17
Charting tools, 146
disadvantages of, 147
Checkershadow illusion, 37, 38
Chiasma, 34. See also Visual pathways
Chromatic channels as mechanisms for color perception, 49, 50
Ciliary muscles of eye, 31
Class as used in Protovis, 154
Class, abstract, as used in Protovis, 154
Class, concrete, as used in Protovis, 154
Classification of objects in perception, 4.
See also Visual perception
Cleveland, W. S., 140, 145
Closure, Gestalt principle of, 41. See also Gestalt principles; Palmer principles
Clues as navigational aids, 125. See also Navigation
Cockburn, A., 145
Codes, defined in semiotics, 66
Cognition, mental processes of, 112
Cognition
representation and, ix
role of in Intelligence Amplified system, 9
value of representation in, 21
Cognitive processes
influence on perception of, 53
perception and, 5
Cognitive psychology, visualization and, ix
Cognitive science, visualization and, ix
Cognitive system, 24–29
Cognitive task(s)
effect of saccade on, 55
example of, 4–5
impact of external representations on, 22
Cognitive tools
external representations as, 21
history of, 20
Cognitive work, 112
Color(s), 3, 77. See also Properties of 2-D features
as design elements for visual forms, 10
perception of, 46–50
physics of, 45
as mixture of wavelengths, 47
phenomena of primary, 48–49
primary, 47
Protovis, 187–191. See also Protovis colors
Color afferimages as phenomena of color, 48
Color balance as phenomena of color, 48–49
Color blindness
as phenomena of color, 48
monochromatic or dichromatic, 48
Color constancy, 51
Color light mixtures as phenomena of color, 47–48
Color models, Munsell, 47
Color perception theories
dual-process theory, 49
opponent process theory, 49
trichromatic theory, 48
Color processing of retinal image, 51
Color receptors' role in color perception, 47–48
Color, simultaneous contrast as phenomena of, 48
Color space dimensions of, 46
graphical grammars and, 92
Command interaction style, 14. See also Interaction style
Common fate, Gestalt principle of, 41. See also Gestalt principles; Palmer principles
Common region, Gestalt principle of, 41. See also Gestalt principles; Palmer principles
Complexity defined, 104. See also Simplicity
Complexity, designing for, 104–108
Complexity, managing in visualization design, 132
Complexity in navigation, 124
Components, data
graphic representations of, 71. See also Information analysis
Computation in data processing pipelines, 15
Computational level of explanation, 30–31
Computational theory of the mind, 27
Computational tools for high-throughput analysis, 8
Computer graphics
in visual form design, 8
role in visualization, 2
Computer vision role in understanding visual perception, 28
Conceptual models, 13, 105, 107
as specifications, 119
design of, 13–14, 108
designing, 114–115
effects of poorly designed, 106
extracting details for designing, 111
factors in designing, 106
purpose of, 117
questions for design of, 115
Concrete class, 154. See also Class
Cones, types of, in eye, 50
Constantine, L., 113, 118, 145
Containers, 118. See also Graphical components
Containers as support for activities of users, 122
Containment relationship, 116. See also Object/action analysis
Context switching, mental, 134
designing to reduce, 125
Context + detail as interactive visualization technique, 7
Contextual design
storyboarding in, 117
visioning in, 117
Contextual inquiry, 111. See also Work, methods for observing use of results of, 115
Continuity, Gestalt principle of, 41. See also Gestalt principles; Palmer principles
Continuous surface, 39. See also Surface orientation
Contours in surface analysis, 38. See also Information processing
Contrast edges, analysis of, 51–53
Controls, 118. See also Graphical components as signifiers in visual interfaces, 122
Conventions defined in semiotics, 66
Conversational interaction style, 14. See also Interaction styles
Cook, K., 2
COORD statement in Wilkinson graphics specification, 89
Coordinate systems, 94–95. See also Graphical grammar components
guides and, 89, 90, 92, 95
rendering tick marks and, 95
Cartesian, 66, 85, 89, 95
Cartesian, as semiotic code, 66
polar, 85, 86, 87, 89, 95
Coordinate transformations, benefits of, 95
Coordinates, 87. See also Graphic pipeline, coordinates
Covert acts as mechanism for focusing attention, 53. See also Focus of attention
CSV files, converting to JSON, 276
Curved surfaces, effect on reflection, 39. See also Surface orientation
D3 graphics library, 276
Data
cleaning in data processing pipelines, 15
integration across microarray experiments, 8
levels of organization, 73–74
normalization of, in data processing pipelines, 15
sources of, for analysis, 8
Data arrays, Protovis
handling nested, 212
handling of object, 212
Data components
properties of qualitative, 74
comparing ordered, 74
differentiating ordered, 74
length of, 75
long, 75
Data components (continued)
of type interval, 73
of type nominal, 73
of type ordered (O), 73
of type ordinal, 73
of type ratio, 73
permuting, 74
positioning marks in, 74
qualitative (N), 73
quantitative (Q), 73
reordering, 74
short, 75
Data graphics
contribution to exploratory data analysis, 6
creating with grammar-based approaches, 147
in visual form design, 8
Data graphics, Protovis
creating, 151–163
creating through composition, 151–152
creating web-based, 147
Data overload, visualization and, 2
Data processing pipeline, 15
Data, Protovis
examples, 214
filtering, 211–12
handling, in plot specifications, 211–12
in JSON format, 212
normalizing, 212
reading from files or external sources, 212–214
Data, sources of raw, 15
Data tables
nomenclature for, 16
use in data pipelines, 15
Data variables, 73. See also Data components
Data visualization(s), 146. See also Visualizations
contribution to exploratory data analysis, 6.
See also Visualization
Data-analysis process of microarray data, 110
Data-analysis tools for generating charts, 146
Data-driven processes in perception, 53
Data-intensive science
emergence of, 7
elements of, 1
transformed methods in, 1
Data-intensive systems, ix, 106
analysis in, 104
collaboration in, 104
emergence of, 1
Dataset, nomenclature for, 16
Dataset training in Wickham pipeline, 98
Date formatting in Protovis, 273. See also Protovis text
de Saussure, F., 66
Decision making, 112. See also Cognition
Decision processing, 4. See also Visual perception
during perception, 4
Declarative memory, 61. See also Memory
def Protovis method, 266. See also Protovis
Dendrites, function of, in brain, 25
Depth edges, 39. See also Edges
Depth perception
heuristics used to solve, 38
location on retinal image as visual cue for, 5
occlusion as visual cue for, 5
problems of, 38
relative object sizes as visual cue for, 5
stereopsis as visual cue for, 5
Design of user interfaces, 10
Design, interaction, process of, 11–15
Design process
abstract steps in, 109
analysis, 110–114
analysis of users and work environment, 109
conceptual model design, 109
concrete steps in, 109
critical activities of, 107
interface architecture design, 109
outline for, 109
prototype design, 114
prototype development, 109
prototyping, 109
simplest description of, 108
task analysis, 109
usability evaluation, 109
visual interaction design, 109
Designs, developing alternative, 13
Desktop as example of conceptual model, 13
Diagrams as semiotic systems, 69. See also Semiotics
Dialog box, 123. See also Interaction spaces
Dichromats, 48. See also Color blindness
Direct manipulation as visualization technique, 7
Direct manipulation interaction style, 14
Direct manipulation interfaces in exploratory data analysis, 6
Direct observation as method for observing work, 111. See also Work, methods for observing
Disassociative visual variables, 80. See also Visual variables
Display space as medium for rendering graphics, 88
Distances, spatial, 65
Distributed attention, 56. See also Visual attention
Domain experts
designing for, 12
interviewing, 114
learning about, 114
Dorsal pathway, 35. See also Visual pathways
Dots, Protovis, see Protovis dots
Drag interaction, 267, 271. See also Protovis framework, types of interactions
Drug discovery as data-intensive science, 1
Dual-process theory of color, 49. See also Color perception theories
Dynamic queries as interactive visualization technique, 7. See also Visualizations, interactive
EDA, 6. See also Exploratory data analysis
Edge 2-D, 3. See also 2-D features
Edges
contrast of light between, 51
detection of, 39
in surface analysis, 38. See also Information processing
types of, 39
depth, analysis of, 39
illumination, analysis of, 39
luminance, 52
reflectance, 52
reflectance, analysis of, 39
Eichenbaum, H., 59
Electrical impulses, recording, in brain, 27
Electromagnetic spectrum, 46
Element connectedness, Gestalt principle of, 41.
See also Gestalt principles; Palmer principles
ELEMENT statement in Wilkinson graphics specification, 89
Emitted light, 30
Emotional memory, 61. See also Memory
Emotions
importance of, in design, 122
negative, effect on the mind, 13
positive, effect on the mind, 13
Environment, representations of, 21
EPA Fuel Economy Guide Dataset, 70
Ethnographic interviews, 111. See also Work, methods for observing
Evaluation
of prototypes, 15
stages of, 113. See also Action theory
of prototypes vs. usability assessments, 15
Excitation, synaptic, in neuron cells, 26
Execution, stages of, in action theory, 113.
See also Action theory
Experts, interviewing, 111. See also Work, methods for observing
Exploratory interaction style, 14
Exploratory data analysis
contribution of visualization to, 6
nature of data-intensive, 106
short history of, 6–9
External representations, 21–24
as aid to problem solving, 23
as making abstract concepts visible, 22
as memory aid, 22
as visual forms, 24
for clarifying or sharpening thinking, 24
for decision making, 24
for modeling, 24
roles played by, 22–24
External world, visual perception and, 28
Eye
anatomy of, 32–36
cross section of, 33
mechanisms in, for encoding light, 31
mechanisms in, for focusing light, 31
Eye color receptors' role in color perception, 47
Eye, compound, of housefly, 28. See also Vision
Eye, function of, 28. See also Vision
Eye movements
graphics design and, 85
in graphics, 82
tremors in, 54
attention and, 5
characterization of, 54–55
saccadic, 4–5, 54–55
scan paths of, 55
smooth pursuit, 54–55
types of, 54–55
visual interface design and, 126
role of rapid, in forming retinal image, 33
Eye photoreceptors in, 31
Facet construction in Wickham pipeline, 98
Facets defined, 96
Fekete, J. D., 145
FGED (Functional Genomics Data Society), 8
Field of view seen by right and left eyes, 33, 54
Figure/ground organization in vision, 42
Fired state in neuron cell, 26
Firing rate of neuron cell, 26
Fixation, eye movements and, 54. See also Eye movements
Flat surface, effect on reflection of, 39. See also Surface orientation
Flow models in contextual design, 113. See also Work models
Flow of thought
importance to design of, 9
in visual interfaces, 124
Focal points, creating, 126
Focus groups, 111. See also Work, methods for observing
Focus of attention
covert, 4
element of, 4—5
overt, 4
Focused attention, 56. See also Visual attention
Forward connections in neural networks, 36. See also Neural networks
Fourth paradigm and data-intensive science, 1
Fovea, 54
Foveal region of retina, 31
Frame in mathematical space, 94
Framework, Protovis, see Protovis framework
Frequency histogram plots, 223. See also Plots
Frontal lobe, 34. See also Brain, regions of
Functions, Protovis, see Protovis functions
Ganglion cells, 34
Genes, 7
Geometric objects, 101
Geometric objects, adjusting position of, 93
Geometric objects in grammar-based systems, 93
Geometric space
use of, in graphics, 65
visual representation and, 20
Geometry
in Wickham’s graphic pipeline, 93. See also Graphical grammar components
in Wilkinson’s graphic pipeline, 87. See also Graphic pipeline
Geoms as geometric objects in Wickham’s graphic pipeline, 101. See also Geometric objects
Gestalt principles, 41. See also Palmer principles
closure, 41
common fate, 41
continuity, 41
of perceptual grouping, 40—42
proximity, 41
similarity, 41
Gestalt school of psychology, 40
ggplot2, getting started with, 103
Gibson, J.J., 31
Global reflectance ratio across edges, 52
Goals in action theory, 53, 112. See also Action theory; cognitive processes
Google Earth, 7
Google Maps, 7
Google Spreadsheets, 146
Grammar of graphics, see Graphical grammars
Graph
as topological space, 88
defined, 88, 93
vs. graphic, 88
Graphic marks in, 72
planar variables of, 72
retinal variables of, 72
visual properties of marks in, 72
visual variables of, 72
Graphic pipeline
aesthetics, 87, 97
coordinates, 87, 97
elements of, 87
geometry, 87, 97
renderer, 87, 97
scales, 87, 97
statistics, 87, 97
variables, 87, 97
Wilkinson’s, 87
Graphic pipeline, Wickham’s layered, 97
Graphic representations
as memory, 66
as tool, 66
mathematical notations and, 68
Graphic specifications, 87
for faceting, 96
ggplot2, 96
Wickham’s, 98–102
Wilkinson’s, 89
Graphical components in visual interface and interaction design, 118
Graphical diagrams
preferred use of space in, 85
Graphical elements
in graphics, 65
in visual interface design, 118
Graphical grammar
components of, 91–96
description of, 86
elements of, 87
Wilkinson’s, 86–87
Graphical grammar components
aesthetic attributes, 99
axes, 92
coordinate systems, 94, 101
data variables, 99
facets, 101
geometry and, 93
guides, 92
labels, 92
layers, 100
legends, 92
marks, 101
scales, 92
statistical methods, 100
Wickham’s, 98–102
Graphical image design
coordinate system and, 85
eye movement and, 85
mappings of visual variables in, 85
perceptual issues in, 86
standard schemas used in, 85
use of space in, 85
Graphical images, 82–84
cost of perceiving, 78
defined, 78
elementary reading level of, 84
eye movement and, 85
foundation for design of, 84–86
global reading level of, 84
intermediate reading level of, 84
reading, 84
visually perceiving, 78
Graphical layers, composition of, 98
Graphical representations, spatial plane of, 78
Graphics
aesthetics of, 141–142
animation in, 65
as design elements for visual forms, 10
as graphical representations, 123
as representation of abstract concepts, 65
automatic perception of, 84
axes, 139
central role for visual perception in, 69
classification of, 85
constructing efficient, 82–84
data-ink in, 138
data-ink ratio of, 138
defined, 65
definition of efficient, 84
design of, 137–142
displaying data using, 138–139
efficient, 78
exploratory questions asked through, 140
eye movements in, 82
information analysis for, 72
integrity of, 141
keys in, 139
legends in, 139
nondata-ink in, 138
perception of, 140–141
preferred coordinate systems in, 85
properties of efficient, 69
properties/structure of information in, 69, 71–74
quantitative, 137
redundant data-ink in, 138
role in Intelligence Amplified system, 9
rules for constructing efficient, 69
tables and, 142
Graphics diagrams, standard schemas for, 85
Graphics scales
guidelines on use of, 139–140
minimum and maximum limits and, 139
nice numbers of tick marks for, 139
use of logarithmic, 140
use of multiple, 140
use of scale breaks in, 140
use of zeros in, 140
Graphics systems
reading, 75
as “text”, 75
identifying mappings in, 75
identifying what is external to, 75
image theory of, 77
perceiving marks in, 76
properties of, 69, 75–82
Graphics visualization as
two phase process, 69
Graphs, geometric, 93
classification of, 93–94
Gray, Jim, 18
Green, M., 78
Grid layouts, Protovis, 253
Grouping, perceptual organization and, 42
GUIDE statement in Wilkinson graphics specification, 89
Guides, 118. See also Graphical components
use of, in graphics, 90
Gulf of evaluation in action theory, 113. See also Action theory
Gulf of execution in action theory, 113. See also Action theory
Gutter in bar charts, 165
HCI (Human Computer Interaction), 6
Hearing, internal representations and, 22
Heatmap as external representation, 23
Heer, J., 96, 101, 147, 276
Henderson, A., 115
Hering, E., 49
Hey, T., 1, 18
High-fidelity prototypes, 11, 120, 121. See also Prototypes, high-fidelity
exploring designs with, 15
High-throughput data exploration, designing for, 9
Hippocampus in brain, 61
Histogram plots, 223. See also Plots
Holzblatt, K., 111, 118, 144, 145
Homeland Security, 1
Horizon line, use in depth perception of, 38.
See also Depth perception
HSL color in protovis, 273. See also Protovis colors
HTML in Protovis, 149
Hue as dimension in color space, 46, 47
Human-computer interaction
exploratory data analysis and, 6
visualization and, ix
IA system, 2, 9. See also Intelligence Amplified system
ID, see Interaction design
Illumination, interaction with surfaces, 30
Illuminated environments, perception of, 30
Illumination edges, 39. See also Edges
Illumination spectrum, 51
Image, see Graphical images
Image analysis for microarray experiments, 8
Image, retinal, see Retinal image
Image theory of graphics systems, 77. See also Graphic systems
Image-based processing, 3. See also Information theory
as stage in information theory, 3
Image-based representations, visual perception and, 30
Image-based stage, 37. See also Information processing
in visual perception, 30
of perception, 3
Images, Protovis, see Protovis images
Implantations in Bertin’s theory, 76. See also Graphical elements
Implementation level of explanations, 30–31
Inattentiveness, 57. See also Visual attention
Informatics, visualization and, ix
Information abstract, 131
Information analysis
biological, 27
for graphics, 72
length of data components, 72
number of data components, 72
2-D features, see 2-D features
2.5-D sketch, 40
category-based stage of, 42, 44–45
image-based stage of, 37
key modules in, 28
object-based stage of, 40
pathways, 28
perceptual organization and, 40
shape recognition and, 40
stages of, in visual perception, 37–44
surface-based stage of, 38
visual constancy and, 40
visual interpolation and, 40
Information theory of visual perception, 3
Information visualization, ix. See also Visualization
exploratory data analysis and, 7
in visual form design, 8
techniques, 7
Inhibition, synaptic, in neuron cell, 26
Integral dimensions, selective attention and, 57
Integral visual variables, 57
Intelligence Amplified system, conceptualization of, 9
Intention in action theory, 113. See also Action theory
Interaction, role of, in Intelligence Amplified system, 9
Interaction time, thresholds for types of, 142
Interaction design
for high-throughput data exploration, 9
process of, 11–15
responsiveness and, 142
Interaction spaces
navigational, 124–126
physical, 123
Interaction styles
conceptual models and, 14
conversing, 129
direct manipulation, 129
exploring, 129
instructing, 129
types of, 129
Interactions
user, design of, 118–120
Interactive graphics, see also Data graphics
analysis of, 6
Interface architectures
as specifications, 119
design of, 117, 118
interaction spaces in, 118
organizing objects and actions in, 118
supporting action sequences in, 118
supporting tasks in, 118
Interface types, conceptual models and, 14
Internal representations, 28–29
3-D, 44
as patterns of neural data, 27
categorization and, 45
defined, 22
neural patterns and, 24
primal sketch, 38
sensory input and, 22
Interview questions for users, 111–112
Invariant of diagram in graphics, 71
Jakob Nielsen on usability, 144
Java 2D, 146
JavaScript use in Protovis, 102, 149
JavaScript library, 147
JMP, 146
Johnson, J., 15, 107, 115, 142
JSON format, 212–213, 276
Judgment, 3. See also Cognitive processes
Keys in graphics, 139. See also Graphics
Knight Digital Media Center, 276
Kosslyn, S. M., 138, 145
Kuniavsky, M., 145
Labels, 92. See also Graphical grammar components
in Protovis, see Protovis labels
Land, E. H., 52
Lateral geniculate body in visual pathways, 35. See also Visual pathways
Layered grammar in ggplot2, 96
Layering in visualizations, 133
Learning, 3, 112. See also Cognition; cognitive processes
Legends, 92, 139. See also Graphical grammar components
Length of data component, 72. See also Information analysis
Lens of eye, 31
Level of organization in graphics, 72
Levels of explanation for information-processing systems, 30–31
LGN (lateral geniculate body), 35. See also Visual pathways
Light, physics of, 45
Light, absorbed, solving perception problem of, 38
Light intensity encoding in retinal image, 31
Light intensity representation, processing of, 37
Light, monochromatic, 46
Light, polychromatic, 46
Light, reflected, solving perception problem of, 38
Lightness
as dimension in color space, 46
as reflected light, 47
Lightness constancy, 51
calculation of, 52
Line segments, 3. See also 2-D features
Linear scales, 90. See also Scales
Lines
as graphical elements, 65. See also Graphical elements
as marks, 76, 78. See also Marks
in surface analysis, 38. See also Information processing
Protovis, see Protovis lines
Listening, 112. See also Cognition
Lobes of brain, 34
Locating objects in perception, 5. See also Depth perception
Lockwood, L. A. D., 113, 118, 145
Long-term memory, 62. See also Memory
Long-wavelength cones in eye, 50
Low-fidelity prototypes, 11 120. See also Prototypes, low-fidelity
exploring designs with, 14
Luck, S. J., 59
Luminance channel, 50
as mechanism for color perception, 49
Luminance edges, 52
Luminance ratios between edges, 52
Luminance spectrum, 51
Mack, A., 64
Malacara, D., 64
maps, 65
as navigational aids, 125
as semiotic systems, 69. See also Semiotics
visual representation and, 20
Mark classes, Protovis, see Protovis mark classes
Mark properties, Protovis, see Protovis mark properties
Marks, 5 118. See also Graphical components control over, in software libraries, 147
generating, in graphic pipeline, 88
in graphics, 72. See also Graphic
perceiving in graphics systems, 76. See also Graphics systems
Protovis, see Protovis marks
Marr’s 2.5-D sketch, 40
Marr, D., 28, 29, 37, 38
Maxwell, J. C., 47
McCann, J., 52
Measurement theory, 92
Medium-wavelength cones, 50
Memorability, 13
Memory, 112. See also Cognition
and vision, 59–62
attributes of, 60–61
capacity, 61
content, 60
declarative, 61
duration of, 60
emotional, 61
external representations and, 62
long-term, 62
loss in, 60
maintenance of, 61
new, 61
patterns of neural activation and, 62
perceptual, 61
priming, 61, 62
procedural, 61, 62
semantic, 61, 62
sensory information stores, 61
short-term, 62
types of, 61–62
visual, 62
working, 61
Mental models
benefits of well designed, 106
defined, 105
formation of, 11
use of, 105
Mental processes, 28–29
Mental representations, 3
Metamorphs, 47
Metaphors, designing conceptual models from, 13
MIAME (Minimum Information About a Microarray Experiment), 8
Micro/macro visualizations, 132. See also Visualizations
Microarray use in experiments, 8
Microarray data, 106
Microarray data-analysis process, 110
Microarray technology, 110
Microsoft Excel, 146
Microsoft Visio, 146
Monochromatic light, 46
Monochromats, 48. See also Color blindness
Motivations, 53. See also Cognitive processes
Mullet, K., 145
Multidimensional data, visualization of, 132
Multiple windows, 123
Munsell, A., 47
Myatt, G. J., 15
Named colors, 273. See also Protovis colors
National Institutes of Health, xiii, 7
National Visualization and Analytics Center (NVAC), 1
Navigation
cognitive constraints on, 124
cognitive cost of, 124
complexity of, 124
cost of switching contexts in, 125
designing for, 125
global maps for, 125
in interaction spaces, 124–126
local maps for, 125
organization of interaction spaces for, 124
perceptual constraints on, 124
signage for, 125
Navigational aids, 124–125
Negative feelings, effect on mental state, 122
Network diagrams as semiotic systems, 69. See also Semiotics
Neural connections, function of,
in brain, 25, 27
Neural network of pigeon’s brain, 26–27
Neural networks, 26
as mental modules, 27
backward connections in, 36
forward connections in, 36
Neuron cell
function of, in brain, 25
model of, 26
Neurons
memory and, 59
role in visual perception, 3
New memories, 61. See also Memory
Newton, I., 45 47
Nice numbers in graphics, 139
Nice scales in graphics, 139
Nielsen Norman Group, 144
Nielsen, J., 145
NIH (National Institutes of Health), xiii, 7
Nonspatial attributes in graphical grammars, 88
Nonspatial selection of object properties, 57
Norman, D., 112, 121
Notation for designing graphics, 79
Number of data components, 72–73. See also Information analysis
Numbers formatting, 273. See also Protovis numbers
NVAC, 1. See also National Visualization and Analytics Center

Oberlander, K., 63
Object categorization in visual perception, 44
Object identification in visual perception, 44
Object sizes and depth perception, 39. See also
Depth perception
Object-action models, conceptual models and, 14
Object-based processing, 3. See also
Information theory
as stage in information theory, 3, 4
Object-based stage
in visual perception, 30
of information processing, 40
Object/action analysis, 116–117
containment relationship, 116
identifying attributes in, 116
results of, 117
super/subtype relationship, 116
whole/part relationship, 116
Objects, 116. See also Object/action analysis
as defined by Bertin, 17
Observations as defined in datasets, 17
Occipital lobe, 34. See also Brain regions of
Occlusion problem with, 42
Off state of neuron cell, 26
On state of neuron cell, 26
Operational simplicity, 104.
See also Simplicity
Opponent process theory, 49. See also Color
perception theories
mechanism for, 49
of color, 49
explanation of color representation in visual perception, 50
Optic array in vision, 45
Optic chiasma in visual pathways, 35. See also
Visual pathways
Optic nerve, 31, 34. See also Brain
Optic nerve fibers, 34
Optical flow in vision, 3, 4
Orientation
as design element for visual forms, 10
as feature, 3. See also Properties of 2-D features
as property of mark, 77
Overt acts for focusing attention, 53

Page, 123. See also Interaction space
Page design
focal points and, 126

Perceived simplicity, 104.
See also Simplicity
Perception, 112. See also Cognition
of scenes, 3
of depth, 38. See also Depth perception
Perceptual classification
measurements of, 45
priming and, 45
speed and accuracy in, 45
Perceptual color space, 47
Perceptual constancy, 43–44
Perceptual memory, 61. See also Memory
Perceptual organization
figure/ground organization, 42
implications for design, 40
region analysis and, 42
Perceptual, Gestalt principles of, 40–42
Perceptual processes, theories of, 3
Performance in tasks, 13
Photons, 30, 45, 46
Photons, processing of color and, 51
Photoreceptors in retina, 31
Pinker, S., 25, 39, 64
Plaisant, C., 12, 136, 145
Planar variables, 76, 79
comparing marks using, 79
of graphic, 72. See also Graphic
Plane
in graphical representations, 78
signifying space of, 78
Planning, 3, 112. See also Cognition; cognitive processes

INDEX
Plot
illustration of complex, using Protovis, 152
construction in Wickham pipeline, 98
Plot specifications, Protovis syntax issues when
writing, 211
Plots
creating basic, with Protovis, 211–222
heatmap, implementing with Protovis, 253
specifying, with ggplot2, 96
Plots, box-and-whisker
calculating upper/lower quantiles, 229–230
implementing with Protovis, 228–232
Plots, frequency histogram
implementing with Protovis, 223–28
Protovis functions for generating, 223
Protovis functions for generating bins of, 223
Plots, grouped
implementing with Protovis, 237–38
Plots, histogram
bins of, 223
Plots, matrix
implementing with Protovis, 242–53
Plots, scatterplot, 232–237
Point
as design element for visual forms, 10
as graphical element, 65. See also Graphical
elements
as type of mark, 76, 78
Point method, 267. See also Protovis
framework
Polar coordinate systems, see Coordinate
systems, polar
Polychromatic light, 46
Position scales, 90. See also Scales
Positional attributes of Protovis marks, 155.
See also Protovis marks
Positive feelings, effect on mental state, 122
Prefrontal cortex in brain, 61
PRIM-9, 6
Primal sketch, 38. See also Internal
representations
Primary visual cortex in brain, 35. See also
Visual pathways
Problem solving, 112. See also Cognition
Procedural memory, 61. See also Memory
Process of design, 107. See also Design process
Product design
behavioral level of reaction to, 122
user reactions to, 121–122
reflective level of reaction to, 122
visceral level of reaction to, 121
Proof-of-concept system, 15. See also
Prototypes
Properties of 2-D features
extraction during perception, 3
generation and use in perception, 4
Properties of information, 71. See also
Graphics
Protocols in scientific experiments, 7
Prototype, 107. See also Design process
Prototype in Protovis, 253. See also Protovis
marks
Prototypes
as communication medium with users, 120
design evaluation of, 121
development of, 120–121
high-fidelity, 11
implementing, 14–15
low-fidelity, 11
media for creating, 121
paper, 120
proof-of-concept, 121
qualities of low-fidelity, 120
throw-away, 121
use of for simulating actions, 120
Prototypes, high-fidelity, 120
as product specification, 121
Prototypes, high-fidelity
as proof-of-concept, 121
characteristics of, 121
exploring designs with, 15
measuring performance of, 121
Prototypes, low-fidelity, 120
exploring designs with, 14
Prototyping, evolutionary, 121
Prototyping as contextual inquiry, 121
Protovis, 14, 96, 101–102, 107, 137
Protovis
def method, 266
accessor functions, 225
basic mathematical and statistical operations
in, 232
browsers compatible with, 147
defined, 150
going started with, 147–150
HTML template code required by, 149–150
implementing nested panels with, 237
inheritance in, 238–40
installing, 147
off-screen inheritance in, 239
off-screen marks in, 239
property chaining in, 240–41
selected data handling functions in, 275
selected mathematical operations in, 275
subjects covered about, 150–151
use of data array index in, 157
use of for plots, 150
using extended expressions with off-screen marks, 239–40
Protovis anchors, 194–98
adding labels using, 195
annotating boundaries of areas using, 196
defined, 194
positioning, 194
positioning, in center of mark, 196
Protovis areas, 177–181, 273, 274
alignment of, 178
customizing appearance of, 179
defined, 177
examples, 178–181
positioning, 177
positioning, with multiple polylines, 177–180
setting interpolation parameter of, 180–181
uses of, 177
Protovis axes, 274
generating “nice” numbers for, 233
Protovis bar charts, spacing bars in, 165
Protovis bars, 273, 274
examples, 164–166
positioning in plots, 164–165
properties of, 164
properties specific to, 166
spatial properties of, 164
use of, in visualizations, 163–164
Protovis canvas, 152
Protovis colors, 187–191
HSL format, 273
named, 273
RGB format, 273
specifying named, 187–189
specifying HSL parameters for, 190–91
specifying RGB parameters for, 189–190
Protovis dots, 171–173, 273, 274
customizing appearance of, 172
defined, 171
examples, 171–173
positioning, 171–172
positional properties of, 171
setting shape of, 172
setting size of, 172
Protovis framework
annotating plots with tooltips, 263
binding event interactions to handlers, 267
default handlers for all events, 267
defining local variables, 266
examples of events, 268–271
handling events, 267
hyperlinks, 264–65
interactive plots, 263
layout management, 253–54
local variables for events, 266
types of interactions, 267
Protovis framework layouts, 253–260
grid, 253
hierarchical, 257–260
network, 254–56
Protovis framework sparklines visualization, 260
Protovis functions, 150, 157–159
as mappings from data to aesthetic space, 157
basic logical operations for, 158
basic mathematical operations for, 158
defined, 157
programming conventions for writing, 159
source code for defining, 157
use of in properties, 155
applying data to anonymous, 157
Protovis grid cell properties, 253
Protovis images, 184–186, 273
defined, 184
displaying, from file or data source, 185–86
positioning, 184–185
Protovis labels, 166–171, 273–274
adding static to plots, 168
annotating marks with, 169–170
controlling decimal places in numbers for, 193–94
creating titles with, 168
customizing appearance of, 170
defined, 171
examples, 167–171
format specification for generating, 192
formatting, 191–94
formatting numbers, times, and dates for, 191
formatting time with short/long formats for, 193
parsing text for, 192
placement of, 166
positional properties of, 166
strftime (C language) format for, 192
uses for, 166
using inheritance with, 169
Protovis lines, 174–177, 273–274
customizing appearance of, 175
customizing appearance of ends of, 176
defined, 174
positioning, 174
Protovis lines (continued)
setting interpolation parameter of, 176–177
setting type of segments in, 175
use of, in plots, 174
Protovis mark concrete classes, 156
Protovis mark properties
bottom, 273
data, 273
fillStyle, 273
height, 273
left, 273
lineWidth, 273
right, 273
strokeStyle, 273
title, 273
top, 273
visible, 273
width, 273
Protovis marks, 150, 152, 154–157
adding to panels, 154
associating data with, 154
bars, 152
basic properties of, 155–156
class of, 154
data field for, 154
data property of, 157
default values of, 155
defined, 152, 154
dots, 152
index property of, 157
inheriting basic properties of, 154, 156
mapping data values to visual attributes of, 155
parent class of, 157
positioning in panels, 155
prototype, 253
setting color properties in, 175–176
setting cursors of, 264–65
source code for displaying, 153
summary of basic properties of, 273
types of cursors, 265
uses of, 155
using title property for tooltips of, 263
visibility of, 155
visual attributes, 155
Protovis panels, 150
adding panels to, 153
defined, 152
Protovis panels root
basic properties of, 153
defined, 151
generating, 153
Protovis rule, 198–200, 274
creating axes with, 198–99
creating grid lines with, 199–200
customizing appearance of, 200
defined, 198
positioning, 198
Protovis scale as abstract class, 201
Protovis scales
defined, 200
displaying data with log, 206–207
displaying data with nth root, 207–08
functions provided by, 201
generating grid lines with, 204–205
generating tick marks with, 203–204
linear, 274
mapping categorical data to aesthetic space with, 201 208–210
mapping categorical data to colors with, 209–10
mapping continuous data to aesthetic space with, 201
mapping data to aesthetic variables using, 202–203
mapping discrete data to aesthetic space with, 201
ordinal, 201, 274
presenting evenly spaced categorical data and, 210
quantile, 201, 274
quantitative, linear, 201
quantitative, log, 201
quantitative, nth root, 201
subdividing domains or ranges of, 203
summary of common functions, 274
Protovis specification language, 149
Protovis specifications, embedding, in HTML web pages, 214
Protovis text
formatting dates, 273
formatting numbers, 273
formatting time, 273
Protovis this.index, 157
Protovis toolkit, 147. See also Protovis framework
Protovis variables, 150
Protovis variables
topology, 150–152
prototyping, 150–152
representing objects with, 161–162
reusing objects with, 160
role in writing plot specifications, 160
Protovis web site, 276
Protovis wedges, 181–184, 273, 274
calculating angles of, for pie charts, 182–183
constructing slices using, 181–182
creating pie charts with, 182
customizing appearance of, 183–184
defined, 181
normalizing, for use in pie charts, 182
positioning, 181
specifying inner/outer radius of, 182
use of, 182
Proximity, Gestalt principle of, 41. See also Gestalt principles; Palmer principles
PubChem, 223
Pupil of eye, 31
pv.Mark, 154
pv.Mark.class, 154
pv.panel(), 153
Pylyshyn, Z. W., 44
Questionnaires, 111. See also Work, methods for observing
R language/system, getting started with, 103
R system and language for statistics, 96
Rapid eye movements, 33. See also Eye movements
raw data, 15. See also Data
reading
as defined in semiotics, 66. See also Semiotics
as cognitive process, 112. See also Cognition
visual interfaces, 122
Real-time constraints in visual interface design, 142–143
Reasoning, 3 112. See also Cognition; cognitive processes
Recall, 3. See also Cognitive processes
Recall of objects, speed of, 124
Receptors retinal, 31
Recognition, 112. See also Cognition
Recognition of objects, speed of, 124
Red/green, 48. See also Color balance
Reflectance edges, 39, 52. See also Edges
Reflectance spectrum, 51
Reflected light, 30
Region analysis, perceptual organization and, 42
Reisberg, D., 63
Relational table, nomenclature for, 16
Relationships in action theory, 116. See also Object/action analysis
Relative object sizes, 5. See also Depth perception
Renderer, 87. See also Graphic pipeline
Representations
defined, 21
of color, 50
Representing world, defined, 21
Requirements, establishing initial, 12
Resize interaction, 267. See also Protovis framework types of interactions
Responsiveness in visual interfaces, 142
Resting state of neuron cell, 26
Retinal image
as internal representation, 30–31
encoding of light in, 30
formation of, 50–53
role in perceptual processing, 3
Retinal receptors, 31
Retinal variables, 76
comparing marks using, 79, 80
of graphics, 72. See also Graphics
perceiving order in, 79
Retinex theory of color, 52
Retrieval of objects, speed of, 124
RGB colors, 273. See also Protovis colors
Ribbons tool as methods for organizing actions, 131
Rock, I., 64
Rules, Protovis, see Protovis rules
S language, 103
Saccades, 4, 5, 54. See also Eye movements
Sano, D., 145
SAS, 146
Satisfaction, 13
Saturation as dimension in color space, 46 47
Scale breaks, 140. See also Graphics
SCALE statement in Wilkinson graphics specification, 89
Scale transformations, 93
in Wickham pipeline, 98
Scale, Protovis, as abstract class, 201
Scales
as functions, 88
categorical, 88
in graphic pipeline, 87. See also Graphic pipeline
in graphical components, 118. See also Graphical components
in graphics, 139. See also Graphics
linear, 90, 93
log, 93
mathematical space and, 92
positional, 90
power, 93
Scales (continued)
quantitative, 88
time, 93
types of, 93
Scales, Protovis, see Protovis scales
Scan paths, 55. See also Eye movements
Scatterplots, 232. See also Plots
Scatterplot matrix, 242. See also Plots, matrix
Scene recognition
determining constitution of objects in, 29
object identification in, 29
object recognition in, 29
problem of, 29 36
reconstructing third dimension in, 29
Scene reconstruction, 37
Scenes, perception of, 3
SeeNet, 6
Select interaction, 267. See also Protovis
framework types of interactions
Semantic memory, 61. See also Memory
Semiotic systems
decoding messages in, 68
encoding messages in, 68
monosemantic, 68
pansemic, 68
polysemic, 68
structure in, 67
types of, 68
Semiotics, 66—71
icon/iconic relationship of signifier/signified in, 67
index/indexical relationship of signifier/signified in, 67
pragmatics and, 67
relationship of signifier to signified in, 66—67
semantics and, 67
symbols/symbolic relationship of signifier/signified in, 66
syntax and, 67
Separable visual variables, 57–58
Separation in visualizations, 133
Sequence models, 113. See also Work models
Shape recognition, implications for design, 40
Shapes
as 2-D features, 3. See also Properties of 2-D features
as design elements for visual forms, 10
as retinal variables, 77
recognizing, in perception, 4
Sharp, H., 14
Shneiderman, B., 12, 136
Short-term memory, 62. See also Memory
Short-wavelength cones, 50
Sight, internal representations and, 22
Signage as navigational aids, 125
Signified, 66. See also Semiotics
Signifiers in visual interfaces, 122
Signs, 66. See also Semiotics
Similarity, Gestalt principle of, 41. See also Gestalt principles; Palmer principles
Simplicity
operational, 104
perceived, 104
Simulation in data processing pipelines, 15
Single-paged windows, 123
Size
as 2-D feature, 3. See also Properties of 2-D features
as design elements for visual forms, 10
as retinal variable, 76
SKA, 1
Slanting surface, 39. See also Surface orientation
Sliders as visualization technique, 7
Small multiples, 134. See also Visualizations visualization, 96
Smell, internal representations and, 22
Smooth pursuit, 54. See also Eye movements
Space, geometric, visual representation and, 20
Sparklines in Protovis, 260. See also Protovis framework
Spatial attributes in graphical grammars, 88
Spatial distance in external representations, 23
Spatial layout of objects in perception, 4
Speaking, 112. See also Cognition
Spence, R., 5
Square Kilometre Array, 1
Stages of evaluation in action theory, 113. See also Action theory
Stages of execution in action theory, 113. See also Action theory
Stat in Wickham’s pipeline, 100
Statistical calculations in graphic pipeline, 88
Statistical graphics, ix
Statistical transformations in Wickham pipeline, 98
Statistical variables as defined in datasets, 17
Statistics, controlling, in graphic pipeline, 93
Statistics in graphical grammars, 93
Stenning, K., 63
Stereopsis, 5. See also Depth perception
Stereoscopic information, 38. See also Information processing surface-based stage
Striatum, 61
Structure of information, 71. See also Graphics
Structured interviews, 111. See also Work, methods for observing
Style guides, organizing actions and, 130
Subject matter of experts, 12. See also Domain experts learning, for design, 12
Super/subtype relationship, 116. See also Object/action analysis
Surface analysis, 39
Surface orientation
effect of, on reflection, 39
analysis of, 39
Surface properties, object
determination of, 51
identifying during perception, 4
Surface-based processing stage in information theory, 3, 4. See also Information theory
Surface-based representations, visual perception and, 30
Surface-based stage in visual perception, 30
Surfaces, characterization of, 39
Surfaces, object
generating representations of, 38
perceiving, 38. See also information processing
Symbols, 66. See also semiotics
in representations, 21
Symbols/symbolic, 66. See also Semiotics
Synapse, function of, 25
Synaptic connections, memory and, 59
Tables
graphics and, 142
nomenclature for, 16
Task analysis, 108. See also Design process conceptual models and, 13
iterative nature of, 114
Task descriptions, 114
concepts identified in, 116
example of, 115
list of concepts from, 116
Tasks, 53. See also Cognitive processes
data analysis, 106
designing for frequently performed, 126
Taste, internal representations and, 22
Temporal lobe, 34. See also Brain regions of Text, Protovis, see Protovis text
Texts as defined in semiotics, 66. See also Semiotics
Texture
as design elements for visual forms, 10
as retinal variable, 77
This, M., 145
Thomas, J. J., 2
Threshold(s) for neural activation, 26. See also Neuron cell time, for interaction design, 142
Tidwell, J., 145
Tiled windows, 123
Tilting surface, 39. See also Surface orientation
Time formatting, 273. See also Protovis text
Time to learn task, 13
Tog’s first principles of interaction design, 144
Toolbars as methods for organizing actions, 131
Top-down processing in perception, 53
Touch, internal representations and, 22
Tracking, eye movements and, 54. See also Eye movements
Tremors, 54. See also Eye movements
Trichromatic representation of color for visual perception, 50
Trichromatic theory, 48. See also Color perception theories
Trichromats, 48
Tuft, E. R., 131, 145
Tukey, J., 6
Tversky, B., 63
Two-streams hypothesis, 35. See also Visual pathways
Unstructured interviews, 111. See also Work, methods for observing
Unwin, A., 145
Urbanek, S., 145
Usability defined, 12
Usability evaluation, 107–121. See also Design process
Usability goals, 12
accuracy, 13
memorability, 13
performance, 13
satisfaction, 13
time to learn task, 13
Usability testing vs. design evaluation, 121
Use cases, essential, 114
User interface(s), see Visual interfaces
Users, 111–112
general questions for, 111
identifying roles of, 12
interview questions for, 111–112
identifying needs of, 12
roles of, 112, 114
task-related questions for, 112, 114
work environment questions for, 112
V1, 35. See also Visual pathways
Value as retinal variable, 77
Variables, 87. See also Graphic pipeline
as defined in datasets, 17
Protovis, see Protovis variables
Ventral pathway, 35. See also Visual pathways
Visible objects used in design, 129
Vision
as process of stages, 37
defined, 28
Vision science, 2
Visual analytics, 106
defined, 2
emergence of, ix
exploration in, 132
in homeland security, 2
Visual attention, 53
capacity of, 56
distributed, 58–59
effect of learning on, 56
focused, 56–57
paradox of intelligent selection, 56
pop-out, 59
preattentive features and, 59
search strategy and, 56
selective, 57
selectivity of, 56
Visual attributes of Protovis marks, 155. See also Protovis variables
Visual centers of brain, 31
Visual constancy, implications for design, 40
visual perception and, 44
Visual cortex, 34. See also Brain, regions of
Visual cues, example of, 5
Visual field, 4
Visual flow
defined, 128
effect of focal points on, 128
of visual interfaces, 126
organization of graphical elements and, 128
use of visual properties to achieve, 128
visual grouping and, 128
Visual forms, 5
composition of, 10
defined, 6
digital storage of, 10
example of, 10
in data processing pipelines, 15
Visual grouping
Gestalt principles and, 128. See also Gestalt principles; Palmer principles visual flow and, 128
Visual hierarchical organization, perception of, 11
Visual hierarchies
alignment, 127
contrasting colors and, 127
fonts/colors and, 127
Gestalt principles and, 128–129
indentation and, 127
positioning and, 127
scan paths in, 126
white space in, 127
of visual interfaces, 126
Visual inattentiveness
attentional blink, 57
change blindness, 57
inattentional blindness, 57
types of, 57
Visual interaction design, 121
Visual interactions, designing, 106–107
Visual interface design, real-time constraints and, 142–143
Visual interface(s), ix, 123–131
as organization of content and tools, 123
as organizational system, 122
as semiotic system, 107
as visual form, 8
characteristics and style of, 122
complexity of, 105
components as design elements for, 10
controls as design elements for, 10
creating visual hierarchies in, 126–127
design of, 108, 118–120
interaction in exploratory data analysis, 6
mental model of, 11
perceptual limitations affecting, 123
role in Intelligence Amplified system, 9
types of interaction spaces in, 123
understanding complexity of, 105
visual flow in, 126
visual hierarchies in, 126
Visual interpolation, 42
implications for design, 40
Visual language, 122
Visual memory buffer in human visual system, 5
Visual pathways, 32–36
lateral geniculate body, 35
optic chiasma, 35
primary visual cortex, 35
two-stream hypothesis of, 35
Visual perception
category-based stage in, 30
ever-stage processes of, 36
focusing attention in, 53
image-based stage in, 30
INDEX

in semiotics, 68
information processing theory and, 3
introduction to, 2–5
later-stage processes in, 36
object-based stage in, 30
representations and, ix
role in Intelligence Amplifed system, 9
stages of, 30
surface-based stage in, 30
Visual pop-out, 59
Visual properties, 122
of mark in graphic, 72. See also Graphic
Visual queries
types of, 80
example of, 4–5
Visual representations, ix, 10. See also Visual forms
of statistical data, 123
Visual selection, 53–54
Visual system, cueing of, by tasks, 124
Visual system, human
compared with other species, 28
role in Intelligence Amplifed system, 9
Visual systems
defined, 3
emergence of, ix
human intelligence and, 2
in data processing pipelines, 15
key role of, 28
of housely, 28
role of, in visual perception, 28
Visual tasks
boundary detection, 59
counting, 59
estimation, 59
target detection, 59
Visual tools as semiotic systems, 122
Visual variables
differences between planar and retinal, 85
disassociative, 80
effects of ordered organization in, 81
length of, 78
levels of organization, 79
of graphic, 72. See also Graphic
perceptual organization of, 79
steps in, 78
summary of perceptual organization of, 80
with associative level of organization, 80
with ordered level of organization, 81
with quantitative level of organization, 82
with selective level of organization, 81
Visualization, 5–9
correlation to exploratory data analysis of, 6
defined, 5
disciplines involved in, ix
drawing packages for, 146
effort of, ix
importance of, 2
layering and separation, 133
role in Intelligence Amplifed system, 9
Visualization, information, 131
Visualization design
abstract stages of, 135–136
goals of, 132
problems of multidimensional data in, 132
Visualization systems
defined, 10
questions to ask when designing, 6
Visualization tools, 6. See also Visualization systems
Visualizations, 131–136
as graphical representations, 123
methods for managing complexity in,
132–136
micro/macro, 132
small multiples, 134
Visualizations, data
methods for generating, 146
software libraries for creating, 146
Visualizations, interactive
creating subsets of data in, 135
displaying relationships between items in, 135
filtering irrelevant information in, 135
focus + context and, 136
interaction schemas for, 136
managing complexity in, 134–135
multiple levels of detail and, 134
overview + detail and, 136
rearranging data in, 135
scrolling data in, 135
zooming in, 136
Volumes, 65. See also Graphical elements
von Helmholtz, H., 47
von Neumann, J., 27
Wainer, H., 145
Ware, C., 64
Wavelengths of light, 45–46
Wedges, Protovis, see Protovis wedges
Wertheimer, M., 40
What pathway, 35. See also Visual pathways
Where pathway, 35. See also Visual pathways
Whole/part relationship, 116. See also Object/ action analysis
Wickham, H., 96
Wilkinson L., 86, 123, 139, 145
Wilks, A., 103
Windows, 123. See also Interaction spaces
Work, methods for observing, 111
Work environment, 111–112
Work models
 artifact models, 113
 as specifications, 119
 flow models, 113
 sequence models, 113
Working memory, 61. See also Memory
Xerox Star, 13
Yaffa, J., 145
Yarbus, A. L., 55
Young, T., 47
Zhang, J., 63
Zooming as visualization technique, 7