Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
<td>xix</td>
</tr>
<tr>
<td>Executive Overview</td>
<td>xxiii</td>
</tr>
<tr>
<td>My First Monte Carlo Application One-Factor Problems</td>
<td>1</td>
</tr>
<tr>
<td>0.1 Introduction and objectives</td>
<td>1</td>
</tr>
<tr>
<td>0.2 Description of the problem</td>
<td>1</td>
</tr>
<tr>
<td>0.3 Ordinary differential equations (ODE)</td>
<td>2</td>
</tr>
<tr>
<td>0.4 Stochastic differential equations (SDE) and their solution</td>
<td>3</td>
</tr>
<tr>
<td>0.5 Generating uniform and normal random numbers</td>
<td>4</td>
</tr>
<tr>
<td>0.5.1 Uniform random number generation</td>
<td>4</td>
</tr>
<tr>
<td>0.5.2 Polar Marsaglia method</td>
<td>4</td>
</tr>
<tr>
<td>0.5.3 Box-Muller method</td>
<td>5</td>
</tr>
<tr>
<td>0.5.4 C++ code for uniform and normal random variate generation</td>
<td>5</td>
</tr>
<tr>
<td>0.5.5 Other methods</td>
<td>8</td>
</tr>
<tr>
<td>0.6 The Monte Carlo method</td>
<td>8</td>
</tr>
<tr>
<td>0.7 Calculating sensitivities</td>
<td>9</td>
</tr>
<tr>
<td>0.8 The initial C++ Monte Carlo framework: hierarchy and paths</td>
<td>10</td>
</tr>
<tr>
<td>0.9 The initial C++ Monte Carlo framework: calculating option price</td>
<td>19</td>
</tr>
<tr>
<td>0.10 The predictor-corrector method: a scheme for all seasons?</td>
<td>23</td>
</tr>
<tr>
<td>0.11 The Monte Carlo approach: caveats and nasty surprises</td>
<td>24</td>
</tr>
<tr>
<td>0.12 Summary and conclusions</td>
<td>25</td>
</tr>
<tr>
<td>0.13 Exercises and projects</td>
<td>25</td>
</tr>
</tbody>
</table>

PART I FUNDAMENTALS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mathematical Preparations for the Monte Carlo Method</td>
<td>31</td>
</tr>
<tr>
<td>1.1 Introduction and objectives</td>
<td>31</td>
</tr>
<tr>
<td>1.2 Random variables</td>
<td>31</td>
</tr>
<tr>
<td>1.2.1 Fundamental concepts</td>
<td>31</td>
</tr>
<tr>
<td>1.2.2 Relative frequency and the beginnings of probability</td>
<td>32</td>
</tr>
<tr>
<td>1.2.3 Random variables</td>
<td>32</td>
</tr>
</tbody>
</table>
Contents

1.3 Discrete and continuous random variables 34
1.4 Multiple random variables 37
1.5 A short history of integration 38
1.6 σ-algebras, measurable spaces and measurable functions 39
1.7 Probability spaces and stochastic processes 40
1.8 The Ito stochastic integral 41
1.9 Applications of the Lebesgue theory 43
 1.9.1 Convergence theorems 43
 1.9.2 Fubini’s theorem 45
1.10 Some useful inequalities 45
1.11 Some special functions 46
1.12 Convergence of function sequences 48
1.13 Applications to stochastic analysis 49
1.14 Summary and conclusions 50
1.15 Exercises and projects 50

2 The Mathematics of Stochastic Differential Equations (SDE) 53
 2.1 Introduction and objectives 53
 2.2 A survey of the literature 53
 2.3 Mathematical foundations for SDEs 55
 2.3.1 Metric spaces 55
 2.3.2 Cauchy sequences, complete metric spaces and convergence 56
 2.3.3 Continuous and Lipschitz continuous functions 57
 2.4 Motivating random (stochastic) processes 59
 2.5 An introduction to one-dimensional random processes 59
 2.6 Stochastic differential equations in Banach spaces: prologue 62
 2.7 Classes of SIEs and properties of their solutions 62
 2.8 Existence and uniqueness results 63
 2.9 A special SDE: the Ito equation 64
 2.10 Numerical approximation of SIEs 66
 2.11 Transforming an SDE: the Ito formula 68
 2.12 Summary and conclusions 69
 2.13 Appendix: proof of the Banach fixed-point theorem and some applications 69
 2.14 Exercises and projects 71

3 Alternative SDEs and Toolkit Functionality 73
 3.1 Introduction and objectives 73
 3.2 Bessel processes 73
 3.3 Random variate generation 74
 3.4 The exponential distribution 74
 3.5 The beta and gamma distributions 75
 3.6 The chi-squared, Student and other distributions 79
 3.7 Discrete variate generation 79
 3.8 The Fokker-Planck equation 80
 3.9 The relationship with PDEs 81
 3.9.1 The Fichera function 81
 3.10 Alternative stochastic processes 84
Contents

5.4 The Karhunen-Loeve expansion ... 143
5.5 Cholesky decomposition .. 144
5.6 Spread options with stochastic volatility 146
5.7 The Heston stochastic volatility model 153
5.8 Path-dependent options and the Monte Carlo method 160
5.9 A small software framework for pricing options 161
5.10 Summary and conclusions .. 162
5.11 Exercises and projects .. 162

6 Advanced Finance Models and Numerical Methods 167
6.1 Introduction and objectives ... 167
6.2 Processes with jumps .. 168
 6.2.1 Specific choices for jump processes 169
 6.2.2 Simulating jumps, fixed dates 169
 6.2.3 Simulating jump times ... 169
 6.2.4 Finite difference approximations 170
6.3 Lévy processes .. 171
6.4 Measuring the order of convergence 172
 6.4.1 A general convergence principle 172
 6.4.2 Applications to ordinary differential equations 174
 6.4.3 Applications to stochastic differential equations 175
6.5 Mollifiers, bump functions and function regularisation 176
6.6 When Monte Carlo does not work: counterexamples 177
 6.6.1 How good is the random number generator \texttt{rand()}? 177
 6.6.2 Special stochastic differential equations 179
6.7 Approximating SDEs using strong Taylor, explicit and implicit schemes ... 179
 6.7.1 Stability analysis of SDEs with multiplicative and additive noise .. 180
 6.7.2 Strong Taylor approximants 181
 6.7.3 Explicit strong schemes .. 182
 6.7.4 Implicit strong schemes .. 183
6.8 Summary and conclusions .. 183
6.9 Exercises and projects .. 184

7 Foundations of the Monte Carlo Method 189
7.1 Introduction and objectives ... 189
7.2 Basic probability ... 189
7.3 The Law of Large Numbers .. 190
7.4 The Central Limit Theorem .. 191
 7.4.1 Lindeberg-Feller Central Limit Theorem 192
 7.4.2 Explicit calculations of the confidence intervals 193
7.5 Quasi Monte Carlo methods ... 194
 7.5.1 Uniform distribution and its geometric interpretation 196
7.6 Summary and conclusions .. 198
7.7 Exercises and projects .. 198
PART II DESIGN PATTERNS

8 Architectures and Frameworks for Monte Carlo Methods: Overview 203
 8.1 Goals of Part II of this book 203
 8.2 Introduction and objectives of this chapter 203
 8.3 The advantages of domain architectures 204
 8.4 Software Architectures for the Monte Carlo method 207
 8.4.1 Market model systems 207
 8.4.2 Numerical simulator systems 209
 8.4.3 Pricing, hedge and risk systems 211
 8.5 Summary and conclusions 212
 8.6 Exercises and projects 213

9 System Decomposition and System Patterns 217
 9.1 Introduction and objectives 217
 9.2 Software development process; a critique 217
 9.3 System decomposition, from concept to code 217
 9.3.1 Phases 218
 9.4 Decomposition techniques, the process 220
 9.4.1 A special case: geometric decomposition 221
 9.4.2 Examples of task and data decomposition 222
 9.5 Whole-part 222
 9.6 Whole-part decomposition; the process 223
 9.6.1 Task-based decomposition 223
 9.6.2 Data decomposition 224
 9.7 Presentation-Abstraction Control (PAC) 226
 9.8 Building complex objects and configuring applications 229
 9.8.1 The Factory Method pattern 229
 9.8.2 Abstract Factory pattern 234
 9.8.3 Builder pattern 237
 9.9 Summary and conclusions 239
 9.10 Exercises and projects 239

10 Detailed Design using the GOF Patterns 243
 10.1 Introduction and objectives 243
 10.2 Discovering which patterns to use 244
 10.2.1 Whole-Part structure for a finite difference scheme 245
 10.2.2 The Preprocessor agent 246
 10.2.3 The Conversion agent 251
 10.2.4 The Display agent and Top-Level agent 254
 10.3 An overview of the GOF patterns 255
 10.3.1 Strengths and limitations of GOF patterns 257
 10.4 The essential structural patterns 257
 10.4.1 Facade pattern 258
 10.4.2 Bridge pattern, template version 258
 10.4.3 Bridge pattern, run-time version 262
 10.4.4 Adapter pattern 266
 10.4.5 Layers pattern 266
Contents

10.5 The essential creational patterns 266
 10.5.1 Factory Method pattern 267
 10.5.2 Builder pattern 270

10.6 The essential behavioural patterns 270
 10.6.1 Visitor pattern 271
 10.6.2 Strategy and Template Method patterns 271

10.7 Summary and conclusions 276

10.8 Exercises and projects 276

11 Combining Object-Oriented and Generic Programming Models 281
 11.1 Introduction and objectives 281
 11.2 Using templates to implement components: overview 281
 11.3 Templates versus inheritance, run-time versus compile-time 283
 11.4 Advanced C++ templates 286
 11.4.1 Default values for template parameters 286
 11.4.2 Template nesting 287
 11.4.3 Template member functions 289
 11.4.4 Partial template specialisation 290
 11.4.5 Template template parameters 291
 11.5 Traits and policy-based design 294
 11.5.1 Traits 294
 11.5.2 Policy-based design (PBD) 301
 11.5.3 When to use inheritance and when to use generics 304
 11.6 Creating templated design patterns 306
 11.7 A generic Singleton pattern 307
 11.8 Generic composite structures 310
 11.8.1 Applications of generic composites 314
 11.9 Summary and conclusions 314
 11.10 Exercises and projects 314

12 Data Structures and their Application to the Monte Carlo Method 319
 12.1 Introduction and objectives 319
 12.2 Arrays, vectors and matrices 319
 12.3 Compile-time vectors and matrices 324
 12.3.1 One-dimensional data structures: vectors 324
 12.3.2 Two-dimensional data structures: matrices 327
 12.3.3 Application: modelling N-factor SDEs 328
 12.4 Creating adapters for STL containers 331
 12.5 Date and time classes 334
 12.5.1 Basic functionality in date class 335
 12.5.2 Creating sets of dates and using set operations 335
 12.5.3 Mapping dates to mesh points 338
 12.5.4 Calendars, business days and business conventions 339
 12.6 The class string 339
 12.6.1 String constructors and string properties 340
 12.6.2 Extracting characters and substrings 342
12.7 Modifying strings

12.7.1 Searching and finding in strings
12.7.2 Conversions between strings and other data types

12.8 A final look at the generic composite

12.9 Summary and conclusions

12.10 Exercises and projects

13 The Boost Library: An Introduction

13.1 Introduction and objectives

13.2 A taxonomy of C++ pointer types

13.2.1 The smart pointer types
13.2.2 Scoped pointers
13.2.3 Shared pointers
13.2.4 Using smart pointers in Monte Carlo applications

13.3 Modelling homogeneous and heterogeneous data in Boost

13.3.1 Tuples
13.3.2 Variants and discriminated unions
13.3.3 Any and undiscriminated types
13.3.4 A property class
13.3.5 Boost arrays

13.4 Boost signals: notification and data synchronisation

13.5 Input and output

13.5.1 Boost.Serialization
13.5.2 Boost.Filesystem

13.6 Linear algebra and uBLAS

13.7 Date and time

13.8 Other libraries

13.8.1 String and text processing
13.8.2 Function objects and higher-order programming
13.8.3 Concurrent and multi-threading programming
13.8.4 Interval arithmetic

13.9 Summary and conclusions

13.10 Exercises and projects

PART III ADVANCED APPLICATIONS

14 Instruments and Payoffs

14.1 Introduction and objectives

14.2 Creating a C++ instrument hierarchy

14.2.1 Instrument hierarchy
14.2.2 Underlyings and derivatives

14.3 Modelling payoffs in C++

14.3.1 Simple property sets
14.3.2 Extending the payoff class
14.3.3 Heterogeneous property sets
14.3.4 The payoff base class
14.3.5 Abstract factories for payoff classes 389
14.3.6 Exception handling 391
14.4 Summary and conclusions 392
14.5 Exercises and projects 393

15 Path-Dependent Options
15.1 Introduction and objectives 395
15.2 Monte Carlo – a simple general-purpose version 396
15.2.1 The structure 396
15.2.2 Adding models 397
15.2.3 Adding schemes 398
15.2.4 The Monte Carlo evaluation 400
15.3 Asian options 401
15.3.1 Mapping Asian options into our framework 402
15.3.2 Approximation formulae for Asian options 405
15.3.3 Control variates 406
15.4 Options on the running Max/Min 411
15.5 Barrier options 412
15.5.1 Mapping barrier options into our framework 413
15.5.2 Approximation formulae for barrier options 414
15.5.3 Importance sampling 415
15.5.4 Antithetic variables 416
15.5.5 Numerical results 417
15.6 Lookback options 418
15.6.1 Approximation formulae for lookback options 420
15.6.2 Results 421
15.7 Cliquet Options 422
15.7.1 Remarks on cliquet options 422
15.7.2 C++ implementation 423
15.7.3 Version of the basic cliquet option 423
15.7.4 Results 424
15.8 Summary and conclusions 424
15.9 Exercises and projects 424

16 Affine Stochastic Volatility Models
16.1 Introduction and objectives 427
16.2 The volatility skew/smile 427
16.3 The Heston model 429
16.3.1 Implementing the Heston model 432
16.3.2 Euler scheme 434
16.3.3 Full truncation Euler scheme 434
16.3.4 Andersen’s QE scheme 435
16.3.5 A biased-free scheme 441
16.4 The Bates/SVJ model 441
16.5 Implementing the Bates model 443
16.6 Numerical results – European options 444
16.7 Numerical results – skew-dependent options 446
16.7.1 European options – digital options 446
16.7.2 Path-dependent options – cliquet options 448
16.7.3 Results 449
16.8 XLL – using DLL within Microsoft Excel 449
16.8.1 What is an xll? 452
16.8.2 XLW – A framework for creating xll 452
16.8.3 Developing using XLW 452
16.9 Analytic solutions for affine stochastic volatility models 455
16.10 Summary and conclusions 457
16.11 Exercises and projects 458

17 Multi-Asset Options 461
17.1 Introduction and objectives 461
17.2 Modelling in multiple dimensions 461
17.3 Implementing payoff classes for multi-asset options 465
17.4 Some multi-asset options 466
17.4.1 Spread options 466
17.4.2 Approximation formulae 466
17.4.3 Quanto options 468
17.5 Basket options 469
17.6 Min/Max options 471
17.7 Mountain range options 475
17.8 The Heston model in multiple dimensions 480
17.8.1 Extending the QE scheme 481
17.8.2 Spread options 482
17.9 Equity interest rate hybrids 482
17.10 Summary and conclusions 486
17.11 Exercises and projects 486

18 Advanced Monte Carlo I – Computing Greeks 489
18.1 Introduction and objectives 489
18.2 The finite difference method 489
18.3 The pathwise method 492
18.4 The likelihood ratio method 497
18.4.1 Examples 499
18.5 Likelihood ratio for finite differences – proxy simulation 503
18.6 Summary and conclusions 504
18.7 Exercises and projects 506

19 Advanced Monte Carlo II – Early Exercise 511
19.1 Introduction and objectives 511
19.2 Description of the problem 511
19.3 Pricing American options by regression 512
19.4 C++ design 513
19.5 Linear least squares regression 516
xiv Contents

19.5.1 The regression function 518
19.5.2 The exercise decision 519
19.6 Example – step by step 520
19.7 Analysis of the method and improvements 521
19.7.1 Selecting basis functions 522
19.8 Upper bounds 525
19.9 Examples 527
19.10 Summary and conclusions 528
19.11 Exercises and projects 528

20 Beyond Brownian Motion 531
20.1 Introduction and objectives 531
20.2 Normal mean variance mixture models 531
20.2.1 The normal inverse Gaussian model 532
20.2.2 C++ implementation 532
20.2.3 The variance gamma model 535
20.2.4 Matching underlying assets and martingale dynamics 535
20.3 The multi-dimensional case 536
20.4 Summary and conclusions 536
20.5 Exercises and projects 538

PART IV SUPPLEMENTS

21 C++ Application Optimisation and Performance Improvement 543
21.1 Introduction and objectives 543
21.2 Modelling functions in C++: choices and consequences 543
21.2.1 Function pointers 544
21.2.2 Generic classes that model functions 547
21.2.3 Function objects in STL 549
21.2.4 What is polymorphism? 550
21.3 Performance issues in C++: classifying potential bottlenecks 552
21.3.1 Inlining 553
21.3.2 Static and dynamic casting 554
21.3.3 Preventing unnecessary object construction 554
21.3.4 Exception handling 557
21.3.5 Templates versus inheritance 558
21.3.6 Performance and the STL 559
21.3.7 Some final tips 559
21.4 Temporary objects 560
21.5 Special features in the Boost library 562
21.6 Boost multiarray library 563
21.7 Boost random number library 564
21.8 STL and Boost smart pointers: final remarks 566
21.9 Summary and conclusions 568
21.10 Exercises, projects and guidelines 569
22 Random Number Generation and Distributions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1</td>
<td>Introduction and objectives</td>
<td>571</td>
</tr>
<tr>
<td>22.2</td>
<td>Uniform number generation</td>
<td>571</td>
</tr>
<tr>
<td>22.2.1</td>
<td>Pseudo random number generators</td>
<td>572</td>
</tr>
<tr>
<td>22.2.2</td>
<td>Quasi random number generators</td>
<td>576</td>
</tr>
<tr>
<td>22.2.3</td>
<td>Sobol numbers</td>
<td>576</td>
</tr>
<tr>
<td>22.3</td>
<td>The Sobol class</td>
<td>578</td>
</tr>
<tr>
<td>22.4</td>
<td>Number generation due to given distributions</td>
<td>580</td>
</tr>
<tr>
<td>22.4.1</td>
<td>Methods for computing variates</td>
<td>581</td>
</tr>
<tr>
<td>22.4.2</td>
<td>The inverse method</td>
<td>581</td>
</tr>
<tr>
<td>22.4.3</td>
<td>Acceptance/Rejection and ratio of uniforms</td>
<td>581</td>
</tr>
<tr>
<td>22.4.4</td>
<td>C++ implementation</td>
<td>582</td>
</tr>
<tr>
<td>22.4.5</td>
<td>Generating normal variates</td>
<td>583</td>
</tr>
<tr>
<td>22.4.6</td>
<td>Generating gamma distributed variates</td>
<td>583</td>
</tr>
<tr>
<td>22.4.7</td>
<td>Generating χ^2-distributed variates</td>
<td>587</td>
</tr>
<tr>
<td>22.4.8</td>
<td>Generating Poisson distributed variates</td>
<td>587</td>
</tr>
<tr>
<td>22.5</td>
<td>Jump processes</td>
<td>588</td>
</tr>
<tr>
<td>22.5.1</td>
<td>The Poisson process</td>
<td>588</td>
</tr>
<tr>
<td>22.5.2</td>
<td>Simple generalisations</td>
<td>590</td>
</tr>
<tr>
<td>22.5.3</td>
<td>Compensation and compounding</td>
<td>590</td>
</tr>
<tr>
<td>22.5.4</td>
<td>Poisson random measures</td>
<td>591</td>
</tr>
<tr>
<td>22.5.5</td>
<td>Jump measures</td>
<td>592</td>
</tr>
<tr>
<td>22.6</td>
<td>The random generator templates</td>
<td>593</td>
</tr>
<tr>
<td>22.7</td>
<td>Tests for randomness</td>
<td>596</td>
</tr>
<tr>
<td>22.8</td>
<td>Summary and conclusions</td>
<td>596</td>
</tr>
<tr>
<td>22.9</td>
<td>Exercises and projects</td>
<td>597</td>
</tr>
</tbody>
</table>

23 Some Mathematical Background

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>Introduction and objectives</td>
<td>601</td>
</tr>
<tr>
<td>23.2</td>
<td>A matrix class</td>
<td>601</td>
</tr>
<tr>
<td>23.3</td>
<td>Matrix functions</td>
<td>601</td>
</tr>
<tr>
<td>23.3.1</td>
<td>The Cholesky decomposition</td>
<td>601</td>
</tr>
<tr>
<td>23.3.2</td>
<td>The spectral decomposition</td>
<td>603</td>
</tr>
<tr>
<td>23.3.3</td>
<td>Singular value decomposition</td>
<td>607</td>
</tr>
<tr>
<td>23.4</td>
<td>Functional analysis</td>
<td>608</td>
</tr>
<tr>
<td>23.4.1</td>
<td>The basics</td>
<td>608</td>
</tr>
<tr>
<td>23.4.2</td>
<td>Fourier transform</td>
<td>609</td>
</tr>
<tr>
<td>23.4.3</td>
<td>Hilbert spaces and L_2-basis</td>
<td>609</td>
</tr>
<tr>
<td>23.4.4</td>
<td>Measures and Fourier transform</td>
<td>609</td>
</tr>
<tr>
<td>23.4.5</td>
<td>The characteristic function of a random variable</td>
<td>610</td>
</tr>
<tr>
<td>23.5</td>
<td>Applications to option pricing</td>
<td>610</td>
</tr>
<tr>
<td>23.5.1</td>
<td>Semi-analytical prices and their C++ implementation</td>
<td>611</td>
</tr>
<tr>
<td>23.6</td>
<td>Summary and conclusions</td>
<td>614</td>
</tr>
<tr>
<td>23.7</td>
<td>Exercises and projects</td>
<td>614</td>
</tr>
</tbody>
</table>
24 An Introduction to Multi-threaded and Parallel Programming

24.1 Introduction and objectives 617
24.2 Shared memory models 617
24.3 Sequential, concurrent and parallel programming 619
24.4 How fast is fast? Performance analysis of parallel programs 623
24.5 An introduction to processes and threads 625
 24.5.1 The life of a thread 625
 24.5.2 How threads communicate 626
24.6 What kinds of applications are suitable for multi-threading? 626
 24.6.1 Suitable tasks for multi-threading 626
24.7 The multi-threaded application lifecycle 627
 24.7.1 Finding concurrency and decomposition patterns 627
 24.7.2 Algorithm structure 627
 24.7.3 Supporting structures, models and patterns 628
 24.7.4 Implementation mechanisms 628
24.8 Some model architectures 629
 24.8.1 The Monte Carlo engine 631
 24.8.2 The market model system 632
 24.8.3 What’s next? 633
24.9 Analysing and designing large software systems: a summary of the steps 633
24.10 Conclusions and summary 634
24.11 Exercises and projects 634

25 An Introduction to OpenMP and its Applications to the Monte Carlo Method

25.1 Introduction and objectives 637
25.2 Loop optimisation 637
 25.2.1 Loop interchange 638
 25.2.2 Loop fission and fusion 639
 25.2.3 Loop unrolling 640
 25.2.4 Loop tiling 641
 25.2.5 Serial loop optimisation in Monte Carlo applications 642
25.3 An overview of OpenMP 644
25.4 Threads in OpenMP 644
25.5 Loop-level parallelism 646
25.6 Data sharing 646
 25.6.1 Ensuring private variable initialisation and finalisation 648
 25.6.2 Reduction operations 649
 25.6.3 The copyin clause and threadprivate directive 650
 25.6.4 The flush directive 651
25.7 Work-sharing and parallel regions 651
 25.7.1 Work-sharing constructs 652
 25.7.2 The nowait clause 653
25.8 Nested loop optimisation 654
25.9 Scheduling in OpenMP 656
Contents

25.10 OpenMP for the Monte Carlo method 657
25.11 Conclusions and summary 661
25.12 Exercises and projects 661

26 A Case Study of Numerical Schemes for the Heston Model 665
26.1 Introduction and objectives 665
26.2 Test scenarios 666
26.3 Numerical approximations for the Heston model 667
26.4 Testing different schemes and scenarios 672
26.5 Results 675
26.6 Lessons learned 678
26.7 Extensions, calibration and more 679
26.8 Other numerical methods for Heston 680
26.9 Summary and conclusions 681
26.10 Exercises and projects 681

27 Excel, C++ and Monte Carlo Integration 685
27.1 Introduction and objectives 685
27.2 Integrating applications and Excel 686
27.3 ATL architecture 686
 27.3.1 Interfaces and data structures 686
 27.3.2 The structure of an ATL project and its classes 688
 27.3.3 Implementing the methods in IDTExtensibility2 691
27.4 Creating my first ATL project: the steps 693
27.5 Creating automation add-ins in Excel 695
 27.5.1 Automation interfaces 695
27.6 Useful utilities and interoperability projects 696
27.7 Test Case: a COM add-in and complete code 697
 27.7.1 COM add-in 697
 27.7.2 Automation add-in 701
 27.7.3 The utilities class 704
27.8 Summary and conclusions 707
27.9 Exercises and projects 707

References 711

Index 719