Contents

Preface XIII

1 Review of probability concepts 1
1.1 Random Variables 1
1.2 Average Values, Moments 6
1.3 Some Important Probability Distributions with a Given Name 6
1.3.1 Bernoulli Distribution 6
1.3.2 Binomial Distribution 7
1.3.3 Geometric Distribution 8
1.3.4 Uniform Distribution 8
1.3.5 Poisson Distribution 10
1.3.6 Exponential Distribution 11
1.3.7 Gaussian Distribution 12
1.3.8 Gamma Distribution 13
1.3.9 Chi and Chi-Square Distributions 14
1.4 Successions of Random Variables 16
1.5 Jointly Gaussian Random Variables 18
1.6 Interpretation of the Variance: Statistical Errors 20
1.7 Sums of Random Variables 22
1.8 Conditional Probabilities 23
1.9 Markov Chains 26
Further Reading and References 28
Exercises 29

2 Monte Carlo Integration 31
2.1 Hit and Miss 31
2.2 Uniform Sampling 34
2.3 General Sampling Methods 36
2.4 Generation of Nonuniform Random Numbers: Basic Concepts 37
2.5 Importance Sampling 50
2.6 Advantages of Monte Carlo Integration 56
2.7 Monte Carlo Importance Sampling for Sums 57
2.8 Efficiency of an Integration Method 60
2.9 Final Remarks 61
Further Reading and References 62
Exercises 62

3 Generation of Nonuniform Random Numbers: Noncorrelated Values 65
3.1 General Method 65
3.2 Change of Variables 67
3.3 Combination of Variables 72
3.3.1 A Rejection Method 74
3.4 Multidimensional Distributions 76
3.5 Gaussian Distribution 81
3.6 Rejection Methods 84
Further Reading and References 94
Exercises 94

4 Dynamical Methods 97
4.1 Rejection with Repetition: a Simple Case 97
4.2 Statistical Errors 100
4.3 Dynamical Methods 103
4.4 Metropolis et al. Algorithm 107
4.4.1 Gaussian Distribution 108
4.4.2 Poisson Distribution 110
4.5 Multidimensional Distributions 112
4.6 Heat-Bath Method 116
4.7 Tuning the Algorithms 117
4.7.1 Parameter Tuning 117
4.7.2 How Often? 118
4.7.3 Thermalization 119
Further Reading and References 121
Exercises 121

5 Applications to Statistical Mechanics 125
5.1 Introduction 125
5.2 Average Acceptance Probability 129
5.3 Interacting Particles 130
5.4 Ising Model 134
5.4.1 Metropolis Algorithm 137
5.4.2 Kawasaki Interpretation of the Ising Model 143
5.4.3 Heat-Bath Algorithm 146
5.5 Heisenberg Model 148
5.6 Lattice Φ^4 Model 149
5.6.1 Monte Carlo Methods 152
5.7 Data Analysis: Problems around the Critical Region 155
5.7.1 Finite-Size Effects 157
8.1.2 The Occupation Numbers Point of View 239
8.2 The General Case 242
8.3 Examples 244
8.3.1 Radioactive Decay 244
8.3.2 Birth (from a Reservoir) and Death Process 245
8.3.3 A Chemical Reaction 246
8.3.4 Self-Annihilation 248
8.3.5 The Prey–Predator Lotka–Volterra Model 249
8.4 The Generating Function Method for Solving Master Equations 251
8.5 The Mean-Field Theory 254
8.6 The Fokker–Planck Equation 256
Further Reading and References 257
Exercises 257

9 Numerical Simulations of Master Equations 261
9.1 The First Reaction Method 261
9.2 The Residence Time Algorithm 268
Further Reading and References 273
Exercises 273

10 Hybrid Monte Carlo 275
10.1 Molecular Dynamics 275
10.2 Hybrid Steps 279
10.3 Tuning of Parameters 281
10.4 Relation to Langevin Dynamics 283
10.5 Generalized Hybrid Monte Carlo 284
Further Reading and References 285
Exercises 286

11 Stochastic Partial Differential Equations 287
11.1 Stochastic Partial Differential Equations 288
11.1.1 Kardar-Parisi-Zhang Equation 288
11.2 Coarse Graining 289
11.3 Finite Difference Methods for Stochastic Differential Equations 291
11.4 Time Discretization: von Neumann Stability Analysis 293
11.5 Pseudospectral Algorithms for Deterministic Partial Differential Equations 300
11.5.1 Evaluation of the Nonlinear Term 303
11.5.2 Storage of the Fourier Modes 304
11.5.3 Exact Integration of the Linear Terms 305
11.5.4 Change of Variables 306
11.5.5 Heun Method 306
11.5.6 Midpoint Runge–Kutta Method 307
11.5.7 Predictor–Corrector 308
11.5.8 Fourth-Order Runge–Kutta 310