Index

a
activity plan 318
agricultural enterprise 21
annual increase factor 12
annuity factor 44, 156
annuity method 38
ANSI code numbers 237
arrester, protection level 245
assessment of losses 38–40, 42–43
– added losses 42
– energy costs 43
– energy loss factor 41
– loss hours 42
– production costs 43
atmospheric correction factor 254
autoreclosure 230
autotransformers 83

b
back-flashover 245
biomass 207
breakers 74
buchholz protection 235
busbar sectionalizer 193
business enterprises 18

c
cable abbreviation codes 111
cable loading 130
– cross-bonding 130
– example 127
– flat formation 130
– thermally unfavorable areas 129
– triangle formation 130
 cable 112–117, 132
– alphanumeric abbreviations 112
– charging currents 115
– dare for capacitances 115
– electrical parameters 114
– impregnated paper insulation 112
– inductive reactances 116
– maximal permissible temperature 117
– permissible short-circuit current 132, 134
– plastic insulation 113
– rated short-time current density 132
– short-circuit 132
cables trenches 127
– minimum distance 128
– rights-of-way 128
– water pipe 128
circuit-breakers 74
conductor sag 150, 156
conductor shape 111
continuous power frequency voltage 239, 242
contracting 289
– project definition 289
contracting 317
contribution of motors 177, 183
coordination withstand voltage 252–253
– deterministic coordination factor 253
– deterministic procedure 252
– external insulation 254
– internal insulation 253
– statistical procedure 252
corona damping 246, 248
corona discharges 148
cost estimate 156
cost 38
coupling of busbars 192

Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40759-0
Index

<table>
<thead>
<tr>
<th>Current Transformer</th>
<th>75, 77, 221</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Accuracy</td>
<td>75</td>
</tr>
<tr>
<td>– Categories</td>
<td>77</td>
</tr>
<tr>
<td>– IEC 60044</td>
<td>76</td>
</tr>
<tr>
<td>– Overcurrent Factor</td>
<td>76</td>
</tr>
<tr>
<td>– Remanence Flux</td>
<td>77</td>
</tr>
<tr>
<td>Currents Through Earth</td>
<td>175–176</td>
</tr>
<tr>
<td>– Capacitive Earth-Fault Current</td>
<td>176</td>
</tr>
<tr>
<td>– Ground Fault Residual Current</td>
<td>176</td>
</tr>
<tr>
<td>– Single-Phase Short-Circuit Current</td>
<td>176</td>
</tr>
</tbody>
</table>

d
- Daily Load Curves 17
- Degree of Electrification 16
- Design Criteria 290
- Development Banks 293
- Differential Protection 231, 233
 - Disconnecting Switches 75
- Distance Protection 229
 - Grading Time 229
 - Single-Phase Faults 229
 - Threshold Value 229
- Distance Protection 234
- Distance 226
- Dynamization Factor 17

e
- Earth Conductivity 251
- Earth Fault Factor 242
- Earth Resistance 251
- Earth-Fault Compensation 224
- Earth-Fault Factors 267
- Earthing Impedance 199
- Earthing of Neutrals 284
- HV Side and LV Side 284
- Earthing of Neutrals 9
- Earthing Resistance 251
- Earthing with Current Limitation 268
- Economy 9
- Electrical Length 159
- Electromagnetic Fields 9

F
- FACTS 8
- FACTS, See Flexible AC Transmission System 159
- Fast-Front Overvoltage 239
- Fast-Front Overvoltages 245–246, 249–250, 252
 - Calculation 252
 - Detailed Calculation 246
 - Direct Strokes 249
 - Failure Rate 249
 - Impact Radius 249
 - Representative Overvoltage 250
 - Simplified Approach 245
 - Steepness 250
- Ferranti Effect 244
- Ferro-Resonances 80
- FIDIC 294, 298
- Flexible AC Transmission System 159
- Flicker 187, 207, 213–214
- Fuel-Cell 207
- Full-Load Hours 41
- Fuses 75, 194

g
- Gas Losses 303
- GDP 13
- GEC 13
- GNP 13
- Grading Time 224, 228, 235
- Green-Energy 47, 205, 208
 - Connection 205
 - Flicker 213
 - Harmonics 211
 - Interharmonics 211
 - PCC 205
 - Protection 209
 - Reactive Power Compensation 209
 - Short-Circuit Currents 209
 - System Studies 208
 - Unbalance Factor 215
 - Voltage Increase 211
- Gridstations and Substations 71, 72, 73
 - Double Busbar 72
 - Reserve Busbar 73
 - Single Busbar with Sectionalizer 71
 - Special H-Arrangement 71
- Gridstations and Substations 69
 - Single Busbar 69
- Ground-Fault Protection 231
 - “cos Ω” Measurement 232
 - “sin Ω” Measurement 232
 - Fifth Harmonic 232
 - Isolated Neutral 232

f
- Evaluation of Tender 312
- Evaluation 317
 - Financial Evaluation 317
 - Technical Evaluation 317
- External Insulation 240
Index

- resonance earthing 232
- transient 231–232
ground-fault protection 234

h
harmonic 211
holmgreen 221
hot-spot temperature 93
- actual temperature profile 93
- simulated temperature profile 93
- weighted ambient temperature 93

households 16
HV transmission systems 62

i
IEC 60038 28, 47, 188, 210, 242
IEC 60044 302
IEC 60066 303
IEC 60071 241
IEC 60071-1 242
IEC 60071-2 243, 245, 252
IEC 60076-7 91, 95
IEC 60085 90
IEC 60287 126
IEC 60354-90, 92–93
- hot-spot temperature 92
- reduction of lifetime 92
IEC 60354-95
IEC 60617-7 237
IEC 60853-2 126
IEC 60865 108, 175
IEC 60865-1 106, 152
IEC 60890 74
IEC 60905 84, 102–103
IEC 60909 175, 178
- voltage factor 178
IEC 60909-0 107
IEC 60947 74
IEC 61000 211
IEC 61000-3-11 213
IEC 61000-3-12 211
IEC 61000-3-2 211
IEC 61000-3-3 213
IEC 61660 175
IEC 77A/136/CDV 214
IEC/TR 62095 126
IEEE C37.2 237
impedance voltage 199
individual load profiles 17
initial short-circuit current 179
insulation coordination 241
- range I 241
- range II 241
insulation coordination 257
- example 257
insulation coordination 8
insulation materials 114
interest factor 38
interest rate 38
interference 9
interharmonic 211
internal insulation 240
I_p limiter 194
ISO 9000 295
isoceraunic level 249
isolated neutral 270–275
- earth-fault current 271
- overvoltage factor 275
- recovery voltage 273
- reignition of fault 274
- self-extinguishing 272
- transient frequency 274
- voltage displacement 273

l
large generation plants 206
length of insulation 148
lightning currents 247
- parameters 247
lightning impulse withstand voltage 149
lightning overvoltage 245
lightning protection angle 244
limit distance 246, 248
limitation of short-circuit currents 187
- examples 187
line corridor, width 155
load assumptions 16
load densities 15
load factor 41, 126
load forecast 11–14, 17
- degrees of electrification 14
- economic characteristic data 13
- estimated values 14
- load increase factors 12
- specific loads 14
- standardized load curves 17
load profile 18, 21
- household 18
- other consumer 18
load 174
- constant current 174
- constant impedance 174
- constant power 174
- load pattern 175
- measurement 174
load-break switches 74
<table>
<thead>
<tr>
<th>Section</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>load-flow analysis</td>
<td>7, 173–175</td>
</tr>
<tr>
<td>- FACTS</td>
<td>173</td>
</tr>
<tr>
<td>- PQ busbars</td>
<td>174</td>
</tr>
<tr>
<td>- PV busbar</td>
<td>174</td>
</tr>
<tr>
<td>slack</td>
<td>174</td>
</tr>
<tr>
<td>loading of cables</td>
<td>125–126</td>
</tr>
<tr>
<td>- characteristic diameter</td>
<td>125</td>
</tr>
<tr>
<td>- cyclic rating</td>
<td>126</td>
</tr>
<tr>
<td>- emergency rating</td>
<td>126</td>
</tr>
<tr>
<td>- standard conditions</td>
<td>125</td>
</tr>
<tr>
<td>- thermal parameters</td>
<td>124</td>
</tr>
<tr>
<td>load-shedding</td>
<td>243</td>
</tr>
<tr>
<td>losses</td>
<td>39</td>
</tr>
<tr>
<td>- energy losses</td>
<td>39</td>
</tr>
<tr>
<td>- no-load losses</td>
<td>39</td>
</tr>
<tr>
<td>low-impedance earthing</td>
<td>264, 285</td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>maximal conductor sag</td>
<td>149</td>
</tr>
<tr>
<td>maximum load portion</td>
<td>39</td>
</tr>
<tr>
<td>- degree of utilization</td>
<td>40</td>
</tr>
<tr>
<td>- power losses</td>
<td>40</td>
</tr>
<tr>
<td>meshed systems</td>
<td>62, 64–65, 226</td>
</tr>
<tr>
<td>- HV and MV levels</td>
<td>62</td>
</tr>
<tr>
<td>- LV level</td>
<td>65</td>
</tr>
<tr>
<td>- multiple-line supply</td>
<td>65</td>
</tr>
<tr>
<td>- MV systems</td>
<td>64</td>
</tr>
<tr>
<td>- single-line supply</td>
<td>65</td>
</tr>
<tr>
<td>- station-by-station</td>
<td>65</td>
</tr>
<tr>
<td>multiple busbar operation</td>
<td>193</td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>natural power</td>
<td>159</td>
</tr>
<tr>
<td>negative-sequence component</td>
<td>178</td>
</tr>
<tr>
<td>network protection</td>
<td>9</td>
</tr>
<tr>
<td>neutral earthing</td>
<td>263</td>
</tr>
<tr>
<td>non-self-restoring insulation</td>
<td>240</td>
</tr>
<tr>
<td>norms</td>
<td>321</td>
</tr>
<tr>
<td>o</td>
<td></td>
</tr>
<tr>
<td>OHL loading</td>
<td>137–138, 142–145</td>
</tr>
<tr>
<td>- convection</td>
<td>142</td>
</tr>
<tr>
<td>- correction factor</td>
<td>143</td>
</tr>
<tr>
<td>- emission coefficients</td>
<td>143</td>
</tr>
<tr>
<td>- example</td>
<td>145</td>
</tr>
<tr>
<td>- forced convection</td>
<td>144</td>
</tr>
<tr>
<td>- grashof factor</td>
<td>144</td>
</tr>
<tr>
<td>- heat balance</td>
<td>138</td>
</tr>
<tr>
<td>- modulus of elasticity</td>
<td>137</td>
</tr>
<tr>
<td>- nusselt factor</td>
<td>144</td>
</tr>
<tr>
<td>- prandtl factor</td>
<td>144</td>
</tr>
<tr>
<td>- radiation</td>
<td>142</td>
</tr>
<tr>
<td>- reynolds factor</td>
<td>144</td>
</tr>
<tr>
<td>- tensile strength</td>
<td>137</td>
</tr>
<tr>
<td>OHL</td>
<td>141, 145, 148, 151</td>
</tr>
<tr>
<td>- AC resistance</td>
<td>141</td>
</tr>
<tr>
<td>- electric field strength</td>
<td>145</td>
</tr>
<tr>
<td>- mechanical design</td>
<td>148</td>
</tr>
<tr>
<td>- minimum distances</td>
<td>148</td>
</tr>
<tr>
<td>- polluted areas</td>
<td>148</td>
</tr>
<tr>
<td>- short-circuit</td>
<td>151</td>
</tr>
<tr>
<td>- specific creepage distance</td>
<td>148</td>
</tr>
<tr>
<td>overcurrent protection</td>
<td>234</td>
</tr>
<tr>
<td>overhead line, see OHL</td>
<td>137</td>
</tr>
<tr>
<td>overvoltage return rate</td>
<td>245</td>
</tr>
<tr>
<td>overvoltages</td>
<td>239</td>
</tr>
<tr>
<td>p</td>
<td></td>
</tr>
<tr>
<td>parallel compensation</td>
<td>162–163</td>
</tr>
<tr>
<td>peak short-circuit current</td>
<td>179</td>
</tr>
<tr>
<td>- accuracy</td>
<td>182</td>
</tr>
<tr>
<td>- equivalent frequency</td>
<td>182</td>
</tr>
<tr>
<td>- meshed power system</td>
<td>181</td>
</tr>
<tr>
<td>- peak factor</td>
<td>179</td>
</tr>
<tr>
<td>- safety factor</td>
<td>182</td>
</tr>
<tr>
<td>permissible current of cables</td>
<td>116</td>
</tr>
<tr>
<td>permissible thermal loading</td>
<td>8</td>
</tr>
<tr>
<td>petersen coil</td>
<td>275, 282</td>
</tr>
<tr>
<td>- limits</td>
<td>282</td>
</tr>
<tr>
<td>- plunger-coil</td>
<td>282</td>
</tr>
<tr>
<td>- tuning</td>
<td>282</td>
</tr>
<tr>
<td>phase-shifting</td>
<td>162, 166</td>
</tr>
<tr>
<td>photovoltaic</td>
<td>207</td>
</tr>
<tr>
<td>planning criteria</td>
<td>30, 31, 32, 33, 34</td>
</tr>
<tr>
<td>- extra-high-voltage</td>
<td>32</td>
</tr>
<tr>
<td>- faults</td>
<td>34</td>
</tr>
<tr>
<td>- high-voltage</td>
<td>32</td>
</tr>
<tr>
<td>- IEC 60038</td>
<td>30</td>
</tr>
<tr>
<td>- independent outages</td>
<td>33</td>
</tr>
<tr>
<td>- loading of equipment</td>
<td>33</td>
</tr>
<tr>
<td>- load-shedding</td>
<td>34</td>
</tr>
<tr>
<td>- loss of generation</td>
<td>34</td>
</tr>
<tr>
<td>- loss of load</td>
<td>34</td>
</tr>
<tr>
<td>- low-voltage</td>
<td>31</td>
</tr>
<tr>
<td>- medium-voltage</td>
<td>32</td>
</tr>
<tr>
<td>- multiple outages</td>
<td>33</td>
</tr>
<tr>
<td>- single outage</td>
<td>32–33</td>
</tr>
<tr>
<td>- stability</td>
<td>34</td>
</tr>
<tr>
<td>- voltage band</td>
<td>30</td>
</tr>
<tr>
<td>- voltage tolerance</td>
<td>31</td>
</tr>
<tr>
<td>planning principle</td>
<td>23–25</td>
</tr>
<tr>
<td>- disturbance statistics</td>
<td>24</td>
</tr>
<tr>
<td>- energy not supplied</td>
<td>25</td>
</tr>
<tr>
<td>- frequency of outages</td>
<td>24</td>
</tr>
<tr>
<td>- loss of power</td>
<td>25</td>
</tr>
<tr>
<td>- reliability</td>
<td>23</td>
</tr>
</tbody>
</table>
planning, basics 26–28, 30
 – economy 30
 – frequency control 28
 – generation 27
 – IEC 60038 28
 – loading of the equipment 26
 – preloading conditions 27
 – realization times 28
 – short-circuit currents 27
 – voltage level 28
positive-sequence component 178, 266
power quality 205
power system planning 4, 5, 7
 – needs 4
 – systematic approach 4
power system planning 5, 7
 – basic planning 5
 – instruments 7
 – objective 5
 – project planning 7
 – system development planning 5
power system 45
 – sub-transmission 45
 – transmission grid 45
power system 46
 – distribution 46
power systems topology 48, 67
 – meshed systems 48
 – operating considerations 67
 – radial systems 48
 – ring-main systems 48
present value 37, 44, 105
primary reserve 35
project funding 293
project implementation schedule 290
project schedule 319
protection of busbars 236
 – current criteria 236
 – differential protection 236
 – high-impedance protection 237
 – impedance criteria 237
 – switching image 237
 – UMZ 236
protection of lines 223
protection of transformers 233
 – ground-fault protection 235
 – protection measures 234
protection 217, 226
 – criteria 219
 – faults 219
 – general 220
proximity effect 119, 139
self-restoring insulation 240
self-restoring insulation 272
sensitivity 217
serial compensation 162
serial compensation 165
sheath losses 119
short-circuit current calculations 7
short-circuit current density 108
short-circuit current 180
 – impedance correction 180
short-circuit currents 175, 187
 – far-from-generator 176
 – interference 175
 – limitation 187
 – near-to-generator 176
 – protection 175
 – stability 175
 – voltage factor 178
short-circuit limiting reactor 199
short-circuit strength 106
short-circuit withstand 132, 151, 185
 – electromagnetic effect 185
 – maximal permissible temperatures 151
 – thermal effects 185
short-time current density 153
skin effect 119, 139
slow-front overvoltage 239
slow-front overvoltages 243–244
 – autoreclosing 244
 – case-related analysis 244
 – load-shedding 244
 – phase-related analysis 244
 – statistical dispersion 243
small hydro plants 206
soil characteristic 120
 – thermally stabilized 123
soil characteristics 120
 – humidity content 120
 – temperature 120
 – thermal conductivity 120
solar radiation 140
 – irradiation angle 140
solar radiation 141
 – degree of latitude 141
special-spare cable system 60
specification 290
speed 218
spirality-effect 140
stability analyses 8
stability 168
 – FACTS 170
 – improvement 168
standard insulation levels 255–256
 – in range II 256
 – range I 255
standard test voltages 254
standards 321
statistic 218
steady-state short-circuit current 183
stefan–boltzmann law 142
subtransient reactance 201
surge impedance 159
switches 74
switching impulse withstand voltage 149
symmetrical short-circuit breaking current 182
system separation 189
T
T-connections 49
 – application 50
technical data sheets 310–315
 – sample 311–315
technical specifications 300–304, 306–307
 – AC-supply 307
 – breakers 302
 – cables 306
 – DC-supply 307
 – general parameters 301
 – medium-voltage switchgear 303
 – metal-clad switchgear 301
 – overhead lines 304
 – protection 304
 – reactors 306
 – scope of tender 301
 – switches 302
 – transformers 306
temporary overvoltage 239, 242
tender documents 294–297, 308
 – approval 294
 – awarding of contracts 294
 – environmental aspects 297
 – general technical requirements 296
 – planning and design 295
 – prequalification 294
 – short listing 295
tender structure 297–299
 – conditions of contract 298
 – lots 297
 – sample price sheet 299
 – tender set-up 298
tendering 289
 – project definition 289
tensile stress 149
terms of reference 291
Index

337
test conversion factor 256
three-winding transformers 83
TOR, see terms of reference 291
tower arrangement 153
transducers 220
transferable power 164–165
transferable power, general 161
transferable 167
transformer loading 95–104
 – continuous loading 96, 98
 – current 97
 – distribution transformers 95
 – dry-type transformers 102
 – example 99, 101, 104
 – hot-spot temperature 100, 103
 – large power transformers 96
 – loading conditions 96
 – long-time emergency operation 96, 100
 – maximal permissible temperature rise 103
 – medium-sized transformers 95
 – normal cyclic load 96, 98
 – oil-immersed transformers 95
 – short-time emergency operation 96, 100
 – temperature 97
 – thermal class 103
transformer 81, 83–84, 86–90, 92, 94, 105–106
 – climatic classes 84
 – dry-type 83
 – economical operation 105
 – efficiency curve 105
 – environmental class 84
 – oil-immersed 83
 – rated apparent power 81
 – short-circuit strength 106
 – standard operating conditions 84
 – temperature correction 94
transformers 85
 – cooling 85, 91
 – insulation 85
 – kapp’s triangle 86
 – montsinger’s law 90
 – permissible loading of neutral 88
 – phase-shift 88
 – tap-changers 87
 – thermal classes of insulation 91
 – thermal permissible loading 88
 – vector group 89
 – voltage drop 86
transient overvoltage 239
transient stability 8
trip-release 220
type testing 253
types of cooling 98

u
UCTE 34
UCTE 45
UMZ 224

v
VDE 0276-1000 124
very-fast-front overvoltage 240
voltage factor 177
voltage fluctuation 210
voltage increase 210
voltage level 188, 206
voltage transformer 78–79, 221
 – accuracy 79
 – rate voltage factor 79
voltage unbalance 214

w
width of the line corridor 154–155
wind energy plants 207

z
zero-sequence component 178, 266, 287