# Contents

**Foreword**  
XI

## 1 Introduction  
1.1 Reliability, Security, Economy  
1.2 Legal, Political and Social Restrictions  
1.3 Needs for Power System Planning  
1.4 Basic, Development and Project Planning  
1.4.1 Basic Planning  
1.4.2 System Development Planning  
1.4.3 Project Planning  
1.5 Instruments for Power System Planning  
1.6 Further Tasks of Power System Engineering

## 2 Power System Load  
2.1 General  
2.2 Load Forecast with Load Increase Factors  
2.3 Load Forecast with Economic Characteristic Data  
2.4 Load Forecast with Estimated Values  
2.5 Load Forecast with Specific Loads and Degrees of Electrification  
2.6 Load Forecast with Standardized Load Curves  
2.7 Typical Time Course of Power System Load

## 3 Planning Principles and Planning Criteria  
3.1 Planning Principles  
3.2 Basics of Planning  
3.3 Planning Criteria  
3.3.1 Voltage Band According to IEC 60038  
3.3.2 Voltage Criteria  
3.3.3 Loading Criteria  
3.3.4 Stability Criteria

## 4 Economic Consideration and Loss Evaluation  
4.1 Present Value and Annuity Method  
4.2 Evaluation of Losses
4.2.1 Energy Losses 39
4.2.2 Power Losses 40

5 Topologies of Electrical Power Systems 45
5.1 Development of Power Systems 45
5.2 Recommended Voltage Levels 47
5.3 Topology of Power Systems 48
5.3.1 Radial Systems 48
5.3.2 Ring-Main Systems 50
5.3.3 Meshed Systems at HV and MV Levels 62
5.3.4 Meshed Systems at the LV Level 65
5.4 Special Operating Considerations 67

6 Arrangement in Gridstations and Substations 69
6.1 Busbar Arrangements 69
6.1.1 General 69
6.1.2 Single Busbar without Separation 69
6.1.3 Single Busbar with Sectionalizer 71
6.1.4 Special H-Arrangement 71
6.1.5 Double Busbar Arrangement 72
6.1.6 Double Busbar with Reserve Busbar 73
6.2 Arrangement in Switchyards 74
6.2.1 Breakers and Switches 74
6.2.2 Incoming and Outgoing Feeders 75
6.2.3 Current Transformers 75
6.2.4 Voltage Transformers 78

7 Transformers 81
7.1 General 81
7.2 Utilization and Construction of Transformers 81
7.2.1 Utilization of Transformers 81
7.2.2 Oil-Immersed Transformers and Dry-Type Transformers 83
7.2.3 Characteristic Data of Transformers 86
7.3 Operation of Transformers 86
7.3.1 Voltage Drop 86
7.3.2 Permissible Loading of Transformer Neutral 88
7.4 Thermal Permissible Loading 88
7.4.1 Temperature Models 88
7.4.2 Maximum Permissible Loading of Oil-Immersed Transformers 95
7.4.3 Maximal Permissible Loading of Dry-Type Transformers 102
7.5 Economical Operation of Transformers 105
7.6 Short-Circuit Strength 106

8 Cable Systems 111
8.1 General 111
8.2 Construction Details 112
8.3 Electrical Parameters of Cables 114
8.4 Losses and Permissible Current 115
8.4.1 General 115
8.4.2 Calculation of Losses 118
8.4.3 Soil Characteristics 120
8.4.4 Thermal Resistances of Cables 123
8.4.5 Calculation according to VDE 0276-1000 124
8.4.6 Determination of Maximal Permissible Loading by Computer Programs 126
8.5 Planning and Design of Cable Routes and Trenches 127
8.5.1 Coordination with Other Cables and Pipes 127
8.5.2 Effect of Thermally Unfavorable Areas 129
8.5.3 Influence of Other Parameters 130
8.6 Short-Circuit Withstand Capability 132
8.6.1 General 132
8.6.2 Rating of Cable Screens 134

9 Overhead Lines 137
9.1 General 137
9.2 Permissible Loading (Thermal) Current 137
9.2.1 Design Limits 137
9.2.2 Losses 138
9.2.3 Heating by Solar Radiation 140
9.2.4 Heat Dissipation by Radiation and Convection 142
9.2.5 Examples for Permissible Thermal Loading 145
9.3 Electric Field Strength 145
9.4 Sag, Tensions and Minimum Distances 148
9.4.1 Minimal Length of Insulation 148
9.4.2 Conductor Sag and Span Length 150
9.5 Short-Circuit Thermal Withstand Strength 151
9.6 Right-of-way (ROW) and Tower Arrangement 153
9.7 Cost Estimates 156

10 Flexible AC Transmission Systems (FACTS) 159
10.1 Basics of Transmission of Power through Lines 159
10.2 Parallel Compensation of Lines 163
10.3 Serial Compensation of Lines 165
10.4 Phase-Shifting Equipment 166
10.5 Improvement of Stability 168

11 Load-Flow and Short-Circuit Current Calculation 173
11.1 Load-Flow Calculation 173
11.2 Calculation of Short-Circuit Currents 175
11.2.1 General 175
11.2.2 Initial Short-Circuit Current (AC) 179
11.2.3 Peak Short-Circuit Current 179
11.2.4 Symmetrical Short-Circuit Breaking Current 182
11.2.5 Steady-State Short-Circuit Current 183
11.2.6 Influence of Synchronous and Asynchronous Motors 183
11.3 Short-Circuit Withstand Capability 185
11.4 Limitation of Short-Circuit Currents 187
11.4.1 General 187
11.4.2 Measures in Power Systems 188
11.4.3 Measures in Installations and Switchgear Arrangement 193
11.4.4 Measures Concerning Equipment 199

12 Connection of “Green-Energy” Generation to Power Systems 205
12.1 General 205
12.2 Conditions for System Connection 208
12.2.1 General 208
12.2.2 Short-Circuit Currents and Protective Devices 209
12.2.3 Reactive Power Compensation 209
12.2.4 Voltage Fluctuations and Voltage Increase 210
12.2.5 Harmonic and Interharmonic Currents and Voltages 211
12.2.6 Flicker 213
12.2.7 Voltage Unbalance 214

13 Protection of Equipment and Power System Installations 217
13.1 Faults and Disturbances 217
13.2 Criteria for Operation of Protection Devices 218
13.3 General Structure of Protective Systems; Transducers 220
13.4 Protection of Equipment 222
13.5 Protection of Lines (Overhead Lines and Cables) 223
13.5.1 General 223
13.5.2 Overcurrent Protection 224
13.5.3 Distance (Impedance) Protection 226
13.5.4 Differential Protection of Lines 231
13.5.5 Ground-Fault Protection 231
13.6 Protection of Transformers 233
13.6.1 General 233
13.6.2 Differential Protection 233
13.6.3 Overcurrent Protection, Distance Protection, Ground-Fault Protection 234
13.6.4 Buchholz Protection 235
13.7 Protection of Busbars 236
13.7.1 Current Criteria for Busbar Protection 236
13.7.2 Impedance Criteria for Busbar Protection 237
13.8 Protection of Other Equipment 237
13.9 Reference List of IEC-Symbols and ANSI-Code-Numbers 237
14  **Overvoltages and Insulation Coordination**  239  
14.1 General; Definitions  239  
14.2 Procedure of Insulation Coordination  241  
14.3 Determination of the Representative Overvoltages  242  
14.3.1 Continuous Power-Frequency Voltage and Temporary Overvoltages  242  
14.3.2 Slow-Front Overvoltages  243  
14.3.3 Fast-Front Overvoltages  245  
14.4 Determination of the Coordination Withstand Voltage and the Required Withstand Voltage  252  
14.5 Selection of the Rated Voltage  254  
14.6 Application Example  257  

15  **Influence of Neutral Earthing on Single-Phase Short-Circuit Currents**  263  
15.1 General  263  
15.2 Power System with Low-Impedance Earthing  264  
15.3 Power System Having Earthing with Current Limitation  268  
15.4 Power System with Isolated Neutral  270  
15.5 Power System with Resonance Earthing (Petersen Coil)  275  
15.5.1 General  275  
15.5.2 Calculation of Displacement Voltage  279  
15.5.3 Tuning of the Petersen Coil  282  
15.6 Earthing of Neutrals on HV Side and LV Side of Transformers  284  

16  **Tendering and Contracting**  289  
16.1 General (Project Definition)  289  
16.2 Terms of Reference (TOR)  291  
16.2.1 Background  291  
16.2.2 Objective  291  
16.2.3 Scope of Engineering Activities  292  
16.3 Project Funding  293  
16.4 Form of Tendering  293  
16.4.1 International Tendering  294  
16.4.2 Prequalification  294  
16.4.3 Short Listing  295  
16.5 Planning and Design  295  
16.6 Tender Structure  297  
16.6.1 General  297  
16.6.2 Tender Set-up  298  
16.6.3 General Technical Specifications  300  
16.7 Scope of Work and Supply  308  
16.7.1 General  308  
16.7.2 380kV Switchgear  308  
16.7.3 123kV Switchgear  309