Preface ... vii

Physical Constants ... ix

Notations ... xi

Chapter 1. From MEMS to NEMS 1
 1.1. Micro- and nanoelectromechanical systems: an overview 1
 1.2. Conclusion ... 9

Chapter 2. Transduction on the Nanometric Scale and the Notion of Noise .. 13
 2.1. Mechanical transfer function 14
 2.2. Transduction principles 20
 2.2.1. The actuation of nanostructures 23
 2.2.2. Detection ... 31
 2.3. Self-oscillation and noises 49
 2.4. Conclusion ... 58

Chapter 3. Monolithic Integration of NEMS with their Readout Electronics ... 61
 3.1. Foreword .. 61
 3.1.1. Why integrate NEMS with their readout electronics? ... 61
 3.1.2. What are the differences between MEMS-CMOS and NEMS-CMOS? ... 62
 3.2. The advantages of and main approaches to monolithic integration ... 64
 3.2.1. A comparison of integration schemes and their electrical performance 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2. Closed-loop NEMS-CMOS oscillators: the essential building block for NEMS-based frequency sensors</td>
<td>69</td>
</tr>
<tr>
<td>3.2.3. Overview of the main achievements from the perspective of manufacturing technology</td>
<td>70</td>
</tr>
<tr>
<td>3.3. Analysis of some significant achievements from the perspective of transduction</td>
<td>75</td>
</tr>
<tr>
<td>3.3.1. Examples of capacitive NEMS-CMOS</td>
<td>75</td>
</tr>
<tr>
<td>3.3.2. Examples of piezoresistive NEMS-CMOS</td>
<td>82</td>
</tr>
<tr>
<td>3.3.3. Alternative approaches</td>
<td>85</td>
</tr>
<tr>
<td>3.4. Conclusions and future perspectives</td>
<td>86</td>
</tr>
</tbody>
</table>

CHAPTER 4. NEMS AND SCALING EFFECTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Introduction</td>
<td>89</td>
</tr>
<tr>
<td>4.1.1. Intrinsic losses</td>
<td>89</td>
</tr>
<tr>
<td>4.1.2. Extrinsic losses</td>
<td>96</td>
</tr>
<tr>
<td>4.2. Near field effect in a nanostructure: Casimir force</td>
<td>102</td>
</tr>
<tr>
<td>4.2.1. Intuitive explanation of the Casimir force</td>
<td>102</td>
</tr>
<tr>
<td>4.2.2. The problem</td>
<td>105</td>
</tr>
<tr>
<td>4.2.3. Rigorous calculation of the Casimir force between two silicon slabs</td>
<td>107</td>
</tr>
<tr>
<td>4.2.4. Impact of the Casimir force in a nano-accelerometer</td>
<td>113</td>
</tr>
<tr>
<td>4.2.5. Conclusion</td>
<td>117</td>
</tr>
<tr>
<td>4.3. Example of “intrinsic” scaling effects: electrical conduction laws</td>
<td>117</td>
</tr>
<tr>
<td>4.3.1. Electrical resistivity</td>
<td>117</td>
</tr>
<tr>
<td>4.3.2. Piezoresistive effect</td>
<td>125</td>
</tr>
<tr>
<td>4.4. Optomechanical nano-oscillators and quantum optomechanics</td>
<td>136</td>
</tr>
<tr>
<td>4.5. Conclusion</td>
<td>147</td>
</tr>
</tbody>
</table>

CHAPTER 5. CONCLUSION AND APPLICATION PROSPECTS: FROM FUNDAMENTAL PHYSICS TO APPLIED PHYSICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX</td>
<td>167</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>175</td>
</tr>
<tr>
<td>INDEX</td>
<td>193</td>
</tr>
</tbody>
</table>