Index

Page numbers in *italics* refer to figures and diagrams.

adenine
dirhodium complexes, interaction with, 303, 304–305
metal ion affinities, 3
metal-DNA supramolecular chemistry
 2D coordination polymers, 118–119, 119
 3D coordination polymers, 119–121, 120, 121
 chelates, 124, 125
 H-bonding patterns, 123, 124
 triangular supramolecules, 100–101
organotin complexes, interaction with, 309
platinum complexes, interaction with, 138, 138–139, 217, 220–222, 222
A-DNA, 335
affinity chromatography, 337–338
ammonium
 DNA affinity element, use as, 383
 G-quadruplexes
 competition with Na⁺ and K⁺, 75–76
 coordination in d[(G₄T₄G₄)], 74
 movement within, 79–80
 residence times, 78–79
 role in, 59
 structure, effect on, 77–78
aptamers, 55, 275–276, 398
ARCUT system, 385, 385
arsenic
carcinogenicity and cocarcinogenicity, 492, 502
exposure pathways, 491
genotoxicity, 495
metabolism of inorganic arsenic, 492–494, 493
modes of cancer induction, proposed, 502
epigenetic effects, 496–497
induction of genetic damage, 494–495
inhibition of DNA repair, 497–499, 500–501
oxidative stress, 495–496
ascorbate, 465–467, 466, 479
barium, 59, 60
base excision repair, 178, 179, 180, 193
effected by arsenic, 498
repair of Cr(VI) induced nucleobase lesions, 473, 473–474
B-DNA, 22–23, 238, 239, 335
biomethylation of inorganic arsenic, 492–494, 493
cadmium
metal-DNA supramolecular chemistry
1D coordination polymers, 113, 114, 114–116, 115, 116
supramolecular squares, 102, 102–103, 104
caesium, 59
calcium
basic properties of Ca²⁺ cations, 416–417
Ca²⁺ in substrate binding, 422–423
G-quadruplexes
coordination in d(TG₄T), 71, 72
role in, 59–60
polymerases and nucleases, inhibition
of, 425
preferred coordination geometry of Ca²⁺ cations, 417
cancer, modes of action, 236
arsenic-induced cancers, 494–499, 502
base mismatches, 307
chromium-induced cancers, 464–465
telomere dysfunction, 209, 225
cancer therapies, 236. see also photodynamic therapy (PDT)
antitetelomerase drugs, 213, 223
chemotherapy, 176
oligonucleotide therapies, 273–276
platinum drugs, 135–137, 136, 200, 216–217, 224–225
potential
G-quadruplex targets for antitumour drugs, 215–216
ruthenium complexes, 339
telomerase inhibition, 213, 225
carboplatin, 135, 136, 188
catalysis in nucleic acid enzymes. see nucleic acid enzyme catalysis
cerium
Ce₂–HXTA complex in DNA hydrolysis, 378
Ce(IV) complexes in DNA hydrolysis, 373–374, 383–384
Ce(IV)-EDTA complex in ARCUT system, 385, 385
chemical shifts
C chemical shifts, 446
calculation, 452–453
N chemical shifts, 447, 450, 452
in T-Hg\(^{11}\)-T base pair formation, 452–454
cromium
adduct formation, 477–478, 478
carcinogenic classification and limits, 463–464
carcinogenic properties, 464–465, 479, 479–480
cromate structure, 464
cromium(III) structure, 464
clastogenic classification, 476
Cr(VI) reductions, intracellular
by ascorbate, 465–467, 466
by glutathione, 466, 467
by hydrogen peroxide, 466, 467
Cr(VI)-induced DNA crosslinks
formation, 480–481, 481
repair, 481–482
DNA damage, 468–473, 480–482
exposure sources, 468
hydrogen chromate structure, 464
industrial uses, 464
lesions formed, 472
8-oxoG, 469, 469–470, 470
crosslinks, 480–482
guanidinohydantoin lesions, 471, 472
spiroiminodihydantoin lesions, 470–471, 471, 472
nucleobase oxidation
electron abstraction pathway, 469–473
reactive oxygen species pathway, 468–469
reduction potentials, 469
repair, 473–474
sugar oxidation
C₁’ hydrogen abstraction mechanism, 475, 475
C₄’ hydrogen abstraction mechanism, 475–476, 476
repair, 476–477
cisplatin (and related platinum complexes), 135,136. see also platinum drugs
binding patterns, 18
conformer distribution in cisplatin
adducts of G derivatives
adducts with 1-Me-5′-GMP, 154–155
adducts with 3′-GMP, 152–154, 153
adducts with 5′-GMP, 154
conformer distribution signature, 152,153
quantification of atropisomer
distribution, 156
cytotoxic activity, 301–302
DNA adducts
repair, 193–200
repair, inhibition of, 183
structure, 188–189
types, 139, 139–140
DNA adducts with tethered guanine
bases
chirality, 158
flexibility, 161–163,162
interligand interactions, 159
multiple conformers, 159–160
structure of d(GpG), 157
wrapping of platinum binding site,
160–161,161
G-quadruplex structures, interaction
with
human telomeric sequence
AG₅(T₅AG₃)₅, 220, 220–221
known classes, 217–218, 218
platinum-acridine complex, 221–
222, 222
platinum-quinacridine complex,
221–222, 222
Tetrahymena sequence (T₄G₄)₄,
218–219,219
method of anticancer activity, 216–217,
301
models of G/G crosslinks, 140–141
platinated oligonucleotides, 279, 280,
287
retro modelling, 141–145,142,144
structure, 136
telomerase, interaction with, 223–224
telomeric DNA, interaction with, 223,
224
cobalt
Co(II)-dependent DNAzymes, selection
of, 398–399,399
Co(III) complexes in DNA hydrolysis,
374,383
G-quadruplexes, role in, 59–60
oligodeoxynucleotides, interaction with,
7,15
copper
copper complex-peptide conjugate,
353–354
Cu-(GMP) complex, 4,5
Cu(II) complexes in DNA hydrolysis,
375–377,376
DNA melting temperature, effect on,
4,16
DNAlzyme for Cu(II), 396
DNAlzyme-based Cu²⁺ sensor, 406
metal-DNA supramolecular chemistry,
107
1D coordination polymers, 110–
113,112
2D coordination polymers, 118,118
3D porous coordination polymer,
119–120,120
oligodeoxynucleotides, adducts with,
15–16
crosslinking of oligonucleotides, 276–278,
277,278,289–295
cytosine
depurination, 46–47
double-proton transfer, 44–46, 45
metal ion affinities, 3
metal-DNA supramolecular chemistry
1D coordination polymers, 110,
110, 113
2D coordination polymers, 118,118
chelates, 124
H-bonding patterns to metals, 122
large supramolecules, 107–108,
108
square supramolecules, 104
triangular supramolecules, 101,
101–102
platinum binding sites, possible, 138,
138,140
point defects, 48
depurination, 46–47, 48
dirhodium complexes, 303–305,304
DNA. see also B-DNA; M-DNA
 catalytic properties, 31
 control of metal complexes, 124, 125
DNA binding. see also metal ion-DNA
 interactions, binding
 chromium, 477–478, 478
 groove binding, 22–26
 intercalation vs. groove binding, 359–361
 mismatch recognition, 308
 nucleobase-metal binding angles, 97
 photobinding, 259–260
 platinum, 138, 138–140, 139
 ruthenium, 325–329. see also ruthenium,
dinuclear complexes as DNA
 probes; ruthenium, mononuclear
 complexes as DNA probes
 stability constants, 34–38, 35, 36, 37, 38
 transition metal polyazine complexes,
 257–258
DNA bulge sequences, 330, 330–331, 331, 333
DNA cleavage
 degradation pathways, 370, 370–371
DNA hydrolysis. see DNA hydrolysis
 oxidative vs. hydrolytic, 362
 phosphoryl transfer reaction, 415–416, 416
 photocleavage, 6, 7–9, 260–262, 305, 308, 352
DNA damage. see also DNA
 photomodification and
 photochemical degradation
 agents of damage, 175, 176
 arsenic-induced, 494–502
 chromium-induced, 468–473, 480–482
 cisplatin-induced, 140
dealetion, 48
double-strand breaks, 182, 199
mismatches, 307–308
oxidation, 308
persistence, factors contributing to, 185
photocleavage, 6, 7–9, 260–262, 305, 308, 352
DNA repair
arsenic-induced, 494, 497–499
defined, 176
double-stranded breaks, repair of,
182–184, 184, 184–185, 186
implications for design of platinum
drugs, 200
platinum compounds, 189
platinum adducts, 176–177
nonhomologous end-joining
system, 192
DNA grooves
 intercalation vs. groove binding, 359–361
sequence specific binding
 dative cations, 24–26
general binding trends, 26
 monovalent cations, 23–24
 structure, 22–23
DNA hairpin sequences, 332–334, 333
DNA photomodification and photochemical
degradation
mechanism of photomodification, 257–258
mechanisms of photochemical
degradation
 photobinding DNA through a
 coordinated ligand, 260
 photobinding DNA through a
 metal centre, 259
photocleavage of DNA, 260–262, 262
DNA polymerases, 179, 418, 418
DNA recognition code, 348, 348–349
DNA repair
arsenic-induced inhibition, 494, 497–499
base excision repair system, 189
high-mobility group proteins, 193
homologous recombination system, 192
mismatch repair system, 191–192
nonhomologous end-joining
system, 192
nucleotide excision repair system, 189–191
translesion synthesis DNA polymerases, 192–193
single-strand breaks, repair of, 476–477

types
base excision repair, 178, 179, 180, 193, 473, 473–474
direct reversal of damage, 177–178
DNA damage bypass (translesion synthesis), 185–188, 187
homologous recombination, 184–185, 186, 199–200
nonhomologous end-joining, 199
recombination repair, 482
translesion synthesis (DNA damage bypass), 185–188, 187

DNA synthesis, 415, 416
DNA-metal interactions. see metal complex-DNA interactions; metal ion-DNA interactions

DNAzymes
catalytic activities, 395
cofactors, 396–398
future research needs, 410
as metal ion sensors
colorimetric sensors, 407–409, 408, 409
fluorescence-based sensors, 404–407, 405, 406
other sensors, 409–410
nucleic acid enzyme-metal ion interactions, 399–403
selection using in vitro evolution, 397, 397–399
double-proton transfer (DPT), 31–32, 43–46, 45, 47–48

europium
Eu(III) complexes in DNA hydrolysis, 377–378, 381–382, 383–384
G-quadruplexes, role in, 59
excited state light absorbers
applications in photodynamic therapy (PDT)
excited state electron transfer theory, 252–253

excited state energy transfer theory, 254
Type I photooxidation reactions, 253–254
Type II photooxidation reactions, 254–255
groups of bimolecular interactions, 251–252
fluorescent DAPI-displacement assays, 337
gene promoters in G-quadruplex-forming sequences, 64
c-kit promoter sequence, 65, 66
c-myc-1245 sequence, 65, 66
c-myc-2345 sequence, 65, 65–66
c-myc-23456 sequence, 65, 66

glutathione
reduction of Cr(VI), 466, 467
role in arsenic-induced cancers, 493, 493, 496

G-quadruplexes
cation competition, 75–77
cation coordination and effect on stability, 59–61, 80–81
cation localization, 76
cation locations and coordination geometries, 69–70, 70
cation movement, 78–80
coordination of cations within d[(G1T1G1)2], crystal structures, 73–75
d(G1T1G1), 73–75
NMR studies, 75–78
coordination of cations within d[(TG1T)4], 69–73
d(TG1T), 71, 71–72
inhibition of cell proliferation, 213–215, 215
metallo-organic complexes, 215–216, 216
molecular switches, 61
numbers of bound cations, 77
Oxytricha telomere repeat analogues, 67, 67–69
platinum complexes, interaction with, 217–223, 218
promoter regions, adoption by, 64–66
structure
basic, 56, 56–57
in human telomeric DNA, 61–64, 63
loops, 58, 58–59
stoichiometry, 57, 57–58
structure of r(UG4U), 72–73
structure of telomeric DNA sequences, 213, 214
four-repeat sequences, 62–64, 63
single repeat sequences, 62
two-repeat sequences, 62
guanine. see also G-quadruplexes
cis amine interactions in M-DNA adducts, 149–150
depurination, 46–47
dirhodium complexes, binding with, 303, 305
double-proton transfer, 44–46, 45
G/G crosslinks, orientations in, 140–141, 141
G-H8 resonances affected by Mn2+ adducts, 10–14, 11, 12, 13, 14
interacting sites, strength of, 6
metal ion affinities, 3
metal-DNA supramolecular chemistry
1D coordination polymers, 110–
111, 112, 114, 114, 115, 115
chelates, 124
cyclic hexanuclear platinum-
guanine derivative, 105–106, 106
H-bonding patterns to metals, 123, 124
square supramolecules, 102, 102–
103, 103
oxidation, 7, 469–473
platinum binding sites, possible, 138, 139–140
point defects, 48
retro models with untethered guanine bases, 143–145
rhodium(III) complexes, binding with, 307
telomeric DNA, 209, 223

highest occupied molecular orbital (HOMO), 6–7, 7
HOMO-LUMO interactions, 6, 127, 239–240, 240, 453, 454
hydrogen peroxide reduction of Cr(VI), 466, 467

tercalation, 320, 322–323
tercalator-metal conjugates, 380–382, 381, 382

ionization potentials (IP), 6, 8, 8
iridium, 100–101
iron
Fe(III) complexes in DNA hydrolysis, 378–379
iron complex-peptide conjugate, 353–354
oligodeoxynucleotides adducts, 14–15
preferred coordination geometry of Fe2+ cations, 417
lanthanides, 373–374
lead
DNA binding models, 34–35, 35
DNA binding parameters, 35
DNAzyme for Pb(II), 396
DNAzyme-based Pb2+ sensors, 453, 454, 457–460, 408, 409
G-quadruplexes, role in, 59
lesions. see also DNA damage; DNA repair
cromium-induced, 469, 469–470, 470, 471, 472, 480
growth, 236
Lewis acidity, 301
ligands. see also nucleobases
Cu(II) complexes in DNA hydrolysis, use with, 376
Fe(III) complexes in DNA hydrolysis, use with, 379
G-quadruplexes, 215, 215, 216, 218
guanine cis amine interactions, 149–150
interligand interactions, 151
lanthanide ions in DNA hydrolysis, use with, 374, 375, 377, 378
metal-DNA binding sites, role in determining, 22
metallosupramolecular-peptide conjugates, used in, 353, 355
platinum complexes, 137, 142, 142–145, 144
polyazaine, used in PDT, 218, 244
ruthenium(II) probes of DNA, used in, 321–322
ancillary, 324
bridging, 325–329, 326–327, 334
flexible, 335–337, 336
intercalating, 320, 322, 323–324
solid-state structures of dynamic nucleotides, 150–151
lipophilicity, 309, 310
lithium
 G-quadruplexes
 coordination in d(TG₄T), 71
 role in, 59
lowest unoccupied molecular orbital
 (LUMO), 6
HOMO-LUMO interactions, 6, 127, 239–240, 240, 453, 454
magnesium
 basic properties of Mg²⁺ cations, 416–417
 DNA grooves, occupancy in, 25, 25
 DNAzyme for Mg(II), 396
 G-quadruplexes
 coordination in d(TG₄T), 72
 role in, 59–60
 polymerase catalysis Mg²⁺ requirement, 417–419
 ion alignment, 419–420
 preferred coordination geometry of Mg²⁺ ions, 417, 417
manganese
 DNA grooves, occupancy in, 25
 G-H8 resonances in oligodeoxynucleotide adducts,
 effect on, 10–14, 11, 12, 13, 14
 G-quadruplexes, role in, 59–60
 Mn(II) complexes in DNA hydrolysis, 375
 as relaxation probe, 9
M-DNA, 125–127, 126
M-DNA adducts
 internucleotide interactions, 145–147, 147, 148
 solid-state structures, 150–151
mercury
 DNAzyme-based Hg²⁺ sensor, 406
 metal-DNA supramolecular chemistry,
 T-HgII-T base pair
 applications, 454–455
 biological relevance, 455–457
 crystallographic studies, 440–441, 441, 442
 HgII-complex with uracil, 440–441, 441
 NMR studies, 444–452, 449, 450, 451, 452
 proposed structures, 440
 reaction pathway, 453
 research history, 439–440
 types of HgII-T/U complexes, 444
 UV, UVCD and vibrational studies, 441–444, 443
metal complex-DNA interactions. see also specific metals
 covalence index, correlation with, 38, 38
 modes of interaction with oligonucleotides, 302
 photochemical reactions, 255–257
 types of DNA used in experiments, 256, 256–257
metal complex-peptide conjugates. see also specific metals
 binding, 347–349
 bioactive peptides, 354
 cleavage, 359–361
 compared to metal-peptide complexes, 361
de novo designed peptides, 354–355
dipeptides, 350, 350
DNA-binding affinity, 357–358
nuclease activity on super-coiled plasmid, 360
protein fragments, 355, 355–357
sequence selectivity, 361
tripeptides
 glycyl-L-histidyl-L lysine (GHK), 350–352, 351, 352
 Gly-Gly-Ser-CoNH₂, 353, 353–354
 ruthenium-peptide complexes, 351–353
metal ion-DNA interactions. see also specific metals
 binding, 3–4, 4, 5, 32, 38–43
 DNA hydrolysis, role in, 371, 371
 mechanistic investigations, importance of, 372–373
G-quadruplexes
 effect on stability, 59–61
 locations and geometries, 69–70, 74
 movement within, 78–80
 role in determining structure, 61
 ion reactions with hydrated electrons, 32, 32
metal-induced point defects
 depurination, 46–47
 double proton transfer, 43–46, 45
 formation, 47–48
NMR studies with oligonucleotides
 [Pt(dien)]⁺ ions, 18–21
 Co³⁺ ions, 15
Cu2+ ions, 15–16
Fe2+ ions, 14–15
Mn2+ ions, 10–14
Ni2+ ions, 15
Zn2+ ions, 16–18

sequence selectivity, 4

ab initio calculation studies, 6–9
photo-cleavage studies, 6, 7–9
stability constants, 34–38, 35, 36, 37
thermodynamic adsorption model of
complex formation, 33–34

metal-DNA supramolecular chemistry
building blocks and structural
possibilities, 96–98, 97, 98

discrete architectures
larger supramolecules, 105–108,
106, 107, 108
square supramolecules, 100, 102,
102–105, 103, 104, 105
triangular supramolecules, 99–102,
100, 101
H-binding patterns, 122, 122–124, 123

infinite architectures
1D coordination polymers, 109,
109–117, 110, 111, 112, 117
2D coordination polymers, 118,
118–119, 119
3D coordination polymers, 119–
121, 120, 121
potential applications, 108, 109

known structures, 95, 96
M-DNA, 125–127
metal coordination sites and base-base
interactions
crystals, 124
H-bonding, 121–124

metallo-DNAzymes
Cu(II), 396
Mg(II), 396
nucleic acid enzyme-metal ion
interactions studies
fluorescence resonance energy
transfer (FRET), 401–402, 402
nucleic acid enzyme-metal ion
interactions, 401
nucleic acid-metal ion interactions,
401
single molecule FRET (smFRET),
402–403, 403
structural studies, 400

Pb(II), 396

metallointercalator-metallopeptide
conjugates, 358–359, 359
metallonucleases, artificial, 387
metal-oxalate frameworks, 116, 117
mismatch repair, 180–182, 183, 198–199,
478–480
molecular wires, 113, 125–127
mutations
metal-induced point defects
depurination, 46–47
double-proton transfer (DPT),
43–46, 45
formation of point defects, 47–48
transition-type, 31, 47–48
transversion-type, 31

nickel
chemical shift probe, 9
G-H8 and A-H8 resonances, effect on,
16
oligodeoxynucleotides, adducts with,
15, 16
UV spectra of various DNAs and
polynucleotides, influence on, 41,
41–43, 42, 43

NMR studies
cation coordination in d[(G\textsubscript{i}T\textsubscript{i}G\textsubscript{i})\textsubscript{2}],
75–78
G-quadruplexes
cation coordination and effect on
stability, 59–61
cation movement, 78–80
coordination of cations within
d[(G\textsubscript{i}T\textsubscript{i}G\textsubscript{i})\textsubscript{2}], 75–78
human telomeric sequences,
structure of, 62–63, 63
loops, 58–59
Oxytricha telomeric sequences,
structure of, 67, 67–69

sequence selectivity in DNA-metal
binding, 9–21
methodology, 9–10
model systems, 10
oligodeoxynucleotides-transition
metal adducts, 10–21
structure of the T-HgII-T base pair
15N-HgII, 15N covalent linking, 450,
450, 451
J-coupling values, 451
nucleoside-metal ion systems,
444–448
Index 519

oligonucleotide-metal systems, 448–449, 449
T-HgII-T base pair, 449–452

nucleases, artificial
mechanistic pathways, 361–362
metallonucleases, 387
research aims, 359

nucleic acid enzyme catalysis
catalytic centres, types of, 418
Mg2+ ions, requirement for two
DNA and RNA polymerases, 417–419
RNase H and MutH, 420–427, 421
one-metal-ion mechanism, 428–429
two-metal-ion mechanism
advantages, 428, 429
catalytic specificity enhancement, 423–424
effect of substrate on binding of metal ions, 422–423
ion alignment, 419–420, 424, 427
Mg2+ ions, 417–419, 420–422
movement of two metal ions, 425
prediction, 429–430
separate and joint functions of metal ions, 426–427, 427
types of catalytic centres, 418–419

nucleobases. see also adenine; cytosine; guanine; thymine; uracil

as bridging ligands
1D coordination polymers, 109, 110, 110–113
3D coordination polymers, 119–121, 120

as bridging ligands with anions
1D coordination polymers, 114–117
2D coordination polymers, 118–119

Cr(VI)-induced damage and repair
base excision repair (BER) pathway, 473
lesion pathways, 468–473, 469, 470, 471, 472
reduction potentials, 469
formation of chromium-DNA adducts, 477–478, 478
metal-DNA supramolecular chemistry
building blocks, 96–97, 97
chelating, 124, 125
self-pairing, 122, 122–124, 123
preferred metal ion binding sites, 3

oligonucleotides
formation of G-quadruplexes, 57
metal complexes
coupled with, 384
modes of interactions with, 302
NMR studies with metal complexes, 448–449, 449
NMR studies with metal ions
[Pt(dien)]2+ ions, 18–21
Co2+ ions, 15
Cu2+ ions, 15–16
Fe2+ ions, 14–15
Mn2+ ions, 10–14
Ni2+ ions, 15
Zn2+ ions, 16–18
platinum complexes, interaction with, 160–163, 161, 162

oligonucleotides, platinated
crosslinking, 276–278, 277, 278
duplex, 289–294, 290, 291, 293
triplex, 294–295
drug requirements, 276
sulfur-platinum-nitrogen adducts, 286–287, 287

synthesis
base-modified oligonucleotides, 286–289, 289
partially protected oligonucleotides, 283–284, 284
platination site, identification of, 288
protected oligonucleotides, 285, 285–286, 286
solid-phase synthesis, 281–283, 282
unmodified oligonucleotides, 279–281, 280
unprotected oligonucleotides, 281, 281

therapeutic applications
antisense oligonucleotides, 273–274, 274
aptamers, 275–276
microRNA targeting, 275
ribozymes, 274–275
RNA interference, 275
triplex-forming oligonucleotides, 275
organotin
industrial uses, 308
lipophilicity and toxicity, correlation between, 309
organotin complex-DNA interactions, 309–311, 310
toxicity, 308
osmium
polyazine complexes used in PDT
electronic excitation and
unimolecular decay, 242, 243, 247–248, 248
phototoxicity, 265–266
oxaliplatin, 135–136, 136, 155, 155–156, 188
p53 tumour suppressor protein, 496, 498
palladium, 103, 103
paramagnetic relaxation, 9–10
peptides. see metal complex-peptide
congjugates; metallointercalator-
maltopeptide conjugates
peraklylammonium groups, 383–384
pH
effect on H-conformer preferences in
platinum complexes, 149, 150
influence on organotin-DNA
interactions, 310
phosphoryl transfer reactions, 415–416, 416
photo-cleavage studies, 6, 7–8, 8
photodynamic therapy (PDT)
cell studies with metal complexes
cellular uptake, 263–265
complexes used, 263
phototoxicity, 265, 265–266
clinical treatments, 236–237, 237
definition, 236
designing polyazines for DNA
photomodification
design considerations, 238, 257
ground state interactions, 257–258
photochemical degradation
mechanisms, 258–262
DNA type used, influence of, 256,
256–257
PDT agents, 237–238
research needed, 267
rhodium complexes, 305–306, 306
photophysical processes of interest in PDT
research
bimolecular excited state interactions,
251–255
electronic excitation, 239–240, 240, 241
unimolecular electronic excited state
decay, 240–242, 242
picoplatin, 136, 136
plasmid DNA, 371–372, 372
platination
DNA, effects on, 140
enhancement of biological effects,
276–278, 278
oligonucleotides
base-modified, 286–289
duplex crosslinking, 289–294
partially protected, 283–284, 284
protected, 285, 285–286, 286
solid-phase synthesis, 281–283, 282
triplex crosslinking, 294–295
unmodified, 279–281, 280
unprotected, 281, 281
telomeric DNA, 225
platinum. see also cisplatin (and related
platinum complexes);
platination; platinum drugs;
transplatin
binding to DNA, 138, 138–140
crosslinking DNA duplexes, use in,
289–294, 290
DNA damage and repair, 176–177
metal-DNA supramolecular chemistry
1D coordination polymers, 109–
110, 110, 111
2D coordination polymers, 118, 118
large structures, 105–107, 106, 107,
108
metallocalixarenes, 104, 105, 105,
105, 105
supramolecular triangles and
squares, 100, 101, 101–102
oligodeoxynucleotides, adducts with,
18–21, 19, 20, 21
peptide-tethered complexes, 350, 350
telomerase, interaction with, 223–225
telomeric DNA duplexes, interaction
with, 223
platinum drugs. see also cisplatin (and
related platinum complexes)
activity series, 137
delivery to tumours, 136
design factors to consider, 200
drugs in use, 135–136, 136
effects of DNA repair, 177
repair of DNA damage
 base excision repair, 193
 homologous recombination repair, 199–200
 mismatch repair, 198–199
 nonhomologous end-joining, 199
 nucleotide excision repair, 193–198
structure–activity relationships (SARs), 137
types, 135–136, 136
polyazine complexes, transition metal cellular uptake, 263–265
 common electronic transitions, 243
 complexes used in PDT, 263
 electronic excitation and unimolecular decay
 osmium complexes, 242, 243, 247–248
 rhodium complexes, 242, 248–250, 249, 250
 ruthenium complexes, 242, 243–247, 247, 248
 ruthenium-rhodium mixed complexes, 250–251, 251
ligands, 244
 photophysical properties, 245–246
toxicity studies, 265–266
potassium
G-quadruplexes
 competition with Na+, 77
 coordination in d[(G,T,G₃)], 73–74
 coordination in d(G₃T₃G₃), 73–74
 human telomeric sequences, 63, 63–64
 melting temperatures, 60
 residence times, 78
 role in, 59, 61
praseodymium, 377
proteins
 repair of DNA modified by antitumour platinum compounds
 AAG, 189
 base excision repair, 189
 DNA-PK, 192
 high-mobility group proteins, 193
 hMutLα, 191–192
 hMutSα, 191–192
 homologous recombination repair, 192
 mismatch repair, 191–192
 nonhomologous end-joining, 192
 nucleotide excision repair, 189–191
 RNA polymerase II, 191
 RPA, 190, 191
 translesion synthesis DNA polymerases, 192–193
 XPA, 190
 XPC-HR23B, 190–191
 in telomeres, 210–211, 211
proton tunneling, 44–46, 45
purines
 metal-DNA supramolecular chemistry
 cyclic trimeric complexes, 100–101
 large structures, 105–106
 molecular squares, 100, 102, 102–103, 104
 molecular triangles, 99–101, 100, 101
 tetrameric complexes, 100–101
 structure, 97
pyrimidines
 metal-DNA supramolecular chemistry
 large structures, 106–108
 metallocalixarenes, 103–105
 molecular triangles, 101–102
 structure, 97
reactive nitrogen species, 495–496
reactive oxygen species, 495–496
recombination repair, 482
retro modelling
 cisplatin analogues, 141–143, 142
 untethered guanine bases, 143, 143–145, 144
rhodium
 complexes used in PDT, 305–306, 306
 dirhodium (II) complexes, 303–305, 304
 intercalator-metal conjugates, 381, 381
 metal-DNA supramolecular chemistry, 100–101, 113, 114
polyazine complexes used in PDT cellular uptake, 264
 DNA photochemical degradation, 259–260
 electronic excitation and unimolecular decay, 242, 248–251, 249, 250, 251
 phototoxicity, 265, 265–266
 rhodium (I) complexes, 302–303
 rhodium (III) complexes, 306–307
rhodium complex-peptide conjugate, 354, 358–359, 359
site-specific rhodium-DNA interactions, 307, 307–308
ribozymes, 274–275, 400
RNA
dinuclear ruthenium, interaction with, 334–335
Okazaki fragments, 209–210, 210
RNA cleavage, 415–416, 416, 426–427, 427
RNA interference, 275
RNA polymerases, 418, 418–419
RNA repair, 177
RNA synthesis, 415, 416
rubidium, 23, 23
ruthenium
advantages of, as DNA probe, 319–320
dinuclear complexes as DNA probes
advantages over mononuclear species, 325
affinity chromatography, 337–338
applications, potential, 338–339
binding behavior, 325–329
DNA bulge sequences, interaction with, 330–332, 331, 333
DNA hairpin sequences, interaction with, 332–334
duplex DNA, interaction with, 329–330
flexible ligands, 335–337, 336
fluorescent DAPI-displacement assays, 337
research needs, 338
RNA sequences, interaction with, 334–335
S-O-S bridge, 325, 327
stereoisomers, 329
intercalator-metal conjugates, 381, 381
metal-DNA supramolecular chemistry, 100–101, 101
mononuclear complexes as DNA probes
binding site and orientation, 322–324
enantioselectivity, 320
influence of nature of ligands on binding, 323–324
intercalation, 320, 322
polyazine complexes used in PDT cellular uptake, 264
electronic excitation and unimolecular decay, 242, 243–247, 247, 248, 250–251, 251
photobinding of DNA, 259, 260
phototoxicity, 265, 265–266
ruthenium complex-peptide conjugate de novo designed peptides, 354–355
protein fragments, 355–357
satraplatin, 136, 136
shelterin (telosome), 210–211, 211
silver
metal-DNA supramolecular chemistry
1D coordination polymers, 109–110, 110, 111
2D coordination polymers, 118–119, 119
3D coordination polymers, 120–121, 121
sodium
DNA grooves, occupancy in, 24
effect on stability constants of metal ions, 36, 36–37
G-quadruplexes
competition with K+, 77
competition with NH4+, 75–76
coordination in d[(G4T4G4)], 74
coordination in d[(TG4T)4], 70
coordination in d(G4T4G4), 72
coordination in d(TG4T), 71, 71, 72
localization, 70, 76
melting temperatures, 60
residence times, 78–79
role in, 59, 61
spine of hydration, 23, 24
stability constants of metal-DNA complexes
coaivalence index, correlation with, 38, 38
determination, 34–36, 35, 36
DNA G-C content, effect of, 37, 37–38
ionic strength, effects of, 36, 36–37
strontium
G-quadruplexes
coordination in r(UG4U), 72–73
role in, 59, 60
sugar oxidation, Cr(VI)-induced, 474–477, 475, 476
tautomerization transformations, 44, 47
telomerase, 212, 212–213, 223–225
telomeres, 209–211, 210
telomeric DNA
G-quadruplexes, 213, 214
human, 61–64, 63
Oxytricha, 67, 67–69
platinum complexes, interaction with, 223, 225
telosome (shelterin), 210–211, 211
thallium
G-quadruplexes
coordination in d[(G₄T₄G₄)], 74
coordination in d(G₃T₃G₃), 75
coordination in d(TG₄T), 71, 72
localization, 76–77
residence times, 78
role in, 59
thermodynamic adsorption model of
complex formation, 33–34
thymine
loop coordination in G-quartets
d(G₄T₃G₃), 68
d(G₃T₃G₃C), 61
d(G₄T₃G₃), 69
d(G₃T₄G₃), 68–69
d(G₄T₄G₃), 67–68, 73–75
metal ion affinities, 3
metal-DNA supramolecular chemistry
1D coordination polymers, 109
chelates, 124, 125
H-bonding patterns to metals, 122
large supramolecules, 106–107, 107
square supramolecules, 105, 105
uranium, 405–406, 406
UV studies
Hgᵢ⁺-nucleobase complexes, 441
study of metal-DNA interactions
bathochromic shift, 39, 39–41, 40
double-proton transfer (DPT) measurements, 43–46
influence of GC composition, 41–43
influence of Ni²⁺ on spectra of DNAs and polymerases, 41, 41–43, 42, 43
vibrational studies with Hgᵢ⁺-nucleobase complexes, 441–444, 443
X-ray crystallography studies
cation-groove interaction studies, 22
G-quadruplexes
coordination of cations within
d[(G₄T₄G₄)], 73–75
coordination of cations within
d[(TG₄T)], 69–73
metal ion–ribozyme complexes, 400
zinc
 DNA cleavage, 358
 G-quadruplexes, role in, 59–60
 oligodeoxynucleotides, adducts with, 16–18
 chemical shift variation for G-H8 resonances, 16–17, 17
 effect of ZnCl₂ concentrations, 17
 preferred coordination geometry of Zn²⁺ cations, 417, 417

zinc-finger peptides in DNA hydrolysis, 384
Zn(II) complexes in DNA hydrolysis, 374–375, 375, 379–380, 380, 383
 intercalator-metal conjugates, 381, 382, 383
Zn(II) complexes in DNA oxidative cleavage, 373, 373
zirconium, 384–385