CONTENTS

Preface xiii

1 Introductory Concepts and Calculus Review 1
 1.1 Basic Tools of Calculus 2
 1.1.1 Taylor’s Theorem 2
 1.1.2 Mean Value and Extreme Value Theorems 9
 1.2 Error, Approximate Equality, and Asymptotic Order Notation 14
 1.2.1 Error 14
 1.2.2 Notation: Approximate Equality 15
 1.2.3 Notation: Asymptotic Order 16
 1.3 A Primer on Computer Arithmetic 20
 1.4 A Word on Computer Languages and Software 29
 1.5 Simple Approximations 30
 1.6 Application: Approximating the Natural Logarithm 35
 1.7 A Brief History of Computing 37
 1.8 Literature Review 40
 References 41

2 A Survey of Simple Methods and Tools 43
 2.1 Horner’s Rule and Nested Multiplication 43
 2.2 Difference Approximations to the Derivative 48
CONTENTS

2.3 Application: Euler's Method for Initial Value Problems 56
2.4 Linear Interpolation 62
2.5 Application---The Trapezoid Rule 68
2.6 Solution of Tridiagonal Linear Systems 78
2.7 Application: Simple Two-Point Boundary Value Problems 85

3 Root-Finding 89

3.1 The Bisection Method 90
3.2 Newton's Method: Derivation and Examples 97
3.3 How to Stop Newton's Method 103
3.4 Application: Division Using Newton's Method 106
3.5 The Newton Error Formula 110
3.6 Newton's Method: Theory and Convergence 115
3.7 Application: Computation of the Square Root 119
3.8 The Secant Method: Derivation and Examples 122
3.9 Fixed-Point Iteration 126
3.10 Roots of Polynomials, Part I 136
3.11 Special Topics in Root-finding Methods 143
 3.11.1 Extrapolation and Acceleration 143
 3.11.2 Variants of Newton's Method 147
 3.11.3 The Secant Method: Theory and Convergence 151
 3.11.4 Multiple Roots 155
3.11.5 In Search of Fast Global Convergence: Hybrid Algorithms 159
3.12 Very High-order Methods and the Efficiency Index 165
3.13 Literature and Software Discussion 168

References 168

4 Interpolation and Approximation 171

4.1 Lagrange Interpolation 171
4.2 Newton Interpolation and Divided Differences 177
4.3 Interpolation Error 187
4.4 Application: Muller's Method and Inverse Quadratic Interpolation 192
4.5 Application: More Approximations to the Derivative 195
4.6 Hermite Interpolation 198
4.7 Piecewise Polynomial Interpolation 202
4.8 An Introduction to Splines 210
 4.8.1 Definition of the Problem 210
 4.8.2 Cubic B-Splines 211
4.9 Application: Solution of Boundary Value Problems 223
4.10 Tension Splines 228
4.11 Least Squares Concepts in Approximation 234
4.11.1 An Introduction to Data Fitting 234
4.11.2 Least Squares Approximation and Orthogonal Polynomials 237
4.12 Advanced Topics in Interpolation Error 250
 4.12.1 Stability of Polynomial Interpolation 250
 4.12.2 The Runge Example 253
 4.12.3 The Chebyshev Nodes 255
4.13 Literature and Software Discussion 261
 References 262

5 Numerical Integration 263
 5.1 A Review of the Definite Integral 264
 5.2 Improving the Trapezoid Rule 266
 5.3 Simpson's Rule and Degree of Precision 271
 5.4 The Midpoint Rule 282
 5.5 Application: Stirling's Formula 286
 5.6 Gaussian Quadrature 288
 5.7 Extrapolation Methods 300
 5.8 Special Topics in Numerical Integration 307
 5.8.1 Romberg Integration 307
 5.8.2 Quadrature with Non-smooth Integrands 312
 5.8.3 Adaptive Integration 317
 5.8.4 Peano Estimates for the Trapezoid Rule 322
 5.9 Literature and Software Discussion 328
 References 328

6 Numerical Methods for Ordinary Differential Equations 329
 6.1 The Initial Value Problem: Background 330
 6.2 Euler's Method 335
 6.3 Analysis of Euler's Method 339
 6.4 Variants of Euler's Method 342
 6.4.1 The Residual and Truncation Error 344
 6.4.2 Implicit Methods and Predictor-Corrector Schemes 347
 6.4.3 Starting Values and Multistep Methods 352
 6.4.4 The Midpoint Method and Weak Stability 354
 6.5 Single-Step Methods: Runge-Kutta 359
 6.6 Multistep Methods 366
 6.6.1 The Adams Families 366
 6.6.2 The BDF Family 370
 6.7 Stability Issues 372
 6.7.1 Stability Theory for Multistep Methods 372
 6.7.2 Stability Regions 376
6.8 Application to Systems of Equations 378
 6.8.1 Implementation Issues and Examples 378
 6.8.2 Stiff Equations 381
 6.8.3 A-Stability 382
6.9 Adaptive Solvers 386
6.10 Boundary Value Problems 399
 6.10.1 Simple Difference Methods 399
 6.10.2 Shooting Methods 403
 6.10.3 Finite Element Methods for BVPs 407
6.11 Literature and Software Discussion 414
 References 415

7 Numerical Methods for the Solution of Systems of Equations 417

7.1 Linear Algebra Review 418
7.2 Linear Systems and Gaussian Elimination 420
7.3 Operation Counts 427
7.4 The LU Factorization 430
7.5 Perturbation, Conditioning, and Stability 441
 7.5.1 Vector and Matrix Norms 441
 7.5.2 The Condition Number and Perturbations 443
 7.5.3 Estimating the Condition Number 450
 7.5.4 Iterative Refinement 453
7.6 SPD Matrices and the Cholesky Decomposition 457
7.7 Iterative Methods for Linear Systems: A Brief Survey 460
7.8 Nonlinear Systems: Newton’s Method and Related Ideas 469
 7.8.1 Newton’s Method 469
 7.8.2 Fixed-Point Methods 472
7.9 Application: Numerical Solution of Nonlinear Boundary Value Problems 474
7.10 Literature and Software Discussion 477
 References 477

8 Approximate Solution of the Algebraic Eigenvalue Problem 479

8.1 Eigenvalue Review 479
8.2 Reduction to Hessenberg Form 485
8.3 Power Methods 490
8.4 An Overview of the QR Iteration 509
8.5 Application: Roots of Polynomials, Part II 518
8.6 Literature and Software Discussion 519
 References 519
9 A Survey of Numerical Methods for Partial Differential Equations 521

9.1 Difference Methods for the Diffusion Equation 521
 9.1.1 The Basic Problem 521
 9.1.2 The Explicit Method and Stability 522
 9.1.3 Implicit Methods and the Crank–Nicolson Method 527

9.2 Finite Element Methods for the Diffusion Equation 536

9.3 Difference Methods for Poisson Equations 539
 9.3.1 Discretization 539
 9.3.2 Banded Cholesky Solvers 542
 9.3.3 Iteration and the Method of Conjugate Gradients 543

9.4 Literature and Software Discussion 553
 References 553

10 An Introduction to Spectral Methods 555

10.1 Spectral Methods for Two-Point Boundary Value Problems 556
10.2 Spectral Methods for Time-Dependent Problems 568
10.3 Clenshaw–Curtis Quadrature 577
10.4 Literature and Software Discussion 579
 References 579

Appendix A: Proofs of Selected Theorems, and Additional Material 581

A.1 Proofs of the Interpolation Error Theorems 581
A.2 Proof of the Stability Result for ODEs 583
A.3 Stiff Systems of Differential Equations and Eigenvalues 584
A.4 The Matrix Perturbation Theorem 586

Index 587