Contents

1 Executive Overview of this Book 1
 1.1 What is this book? 1
 1.2 What’s special about this book? 1
 1.3 Who is this book for? 2
 1.4 Software requirements 3
 1.5 The structure of this book 4
 1.6 Pedagogical approach 5
 1.7 What this book is not 6
 1.8 Source code on the CD 6

PART I TEMPLATE PROGRAMMING IN C++

2 A Gentle Introduction to Templates in C++ 9
 2.1 Introduction and objectives 9
 2.2 Motivation and background 10
 2.3 Defining a template 11
 2.3.1 An example 13
 2.4 Template instantiation 15
 2.5 Function templates 16
 2.5.1 An example 17
 2.6 Default values and typedefs 18
 2.7 Guidelines when implementing templates 18
 2.8 Conclusions and summary 19

3 An Introduction to the Standard Template Library 20
 3.1 Introduction and objectives 20
 3.1.1 Why use STL? 20
 3.2 A Bird’s-eye view of STL 20
 3.3 Sequence containers 23
 3.3.1 Programming lists 24
 3.3.2 Vectors and arrays in STL 25
 3.4 Associative containers 27
 3.4.1 Sets in STL 27
 3.4.2 Maps in STL 29
7.3.2 Efficiency 79
7.3.3 Reliability 79
7.3.4 Understandability 80
7.4 The core processes 80
7.4.1 Interactions between matrices and vectors 83
7.4.2 Some examples 84
7.5 Other function categories 85
7.5.1 Measures of central tendency 85
7.5.2 Measures of dispersion 86
7.5.3 Moments, skewness, kurtosis 86
7.5.4 Inequalities 87
7.6 Using the functions 87
7.6.1 Calculating historical volatility 88
7.6.2 Variance of return of a portfolio 88
7.7 An introduction to exception handling 88
7.7.1 Try, throw and catch: A bit like tennis 89
7.8 Conclusions and summary 90

8 Numerical Linear Algebra 91
8.1 Introduction and objectives 91
8.2 An introduction to numerical linear algebra 91
8.2.1 Direct methods 93
8.2.2 Iterative methods 93
8.3 Tridiagonal systems 94
8.3.1 LU decomposition 94
8.3.2 Godunov’s Double Sweep method 97
8.3.3 Designing and implementing tridiagonal schemes 99
8.4 Block tridiagonal systems 99
8.5 What requirements should our matrix satisfy? 101
8.5.1 Positive-definite matrices and diagonal dominance 101
8.5.2 M-Matrices 102
8.6 Conclusions and summary 102

9 Modelling Functions in C++ 103
9.1 Introduction and objectives 103
9.2 Function pointers in C++ 103
9.3 Function objects in STL 106
9.3.1 Comparison functions 108
9.3.2 STL and financial engineering 108
9.4 Some function types 109
9.4.1 Applications in numerical analysis and financial engineering 111
9.4.2 An example: Functions in option pricing 111
9.5 Creating your own function classes 111
9.6 Arrays of functions 114
9.7 Vector functions 115
9.8 Real-valued functions 115
9.9 Vector-valued functions 116
9.10 Conclusions and summary 116

10 C++ Classes for Statistical Distributions 117
10.1 Introduction and objectives 117
10.2 Discrete and continuous probability distribution functions 117
10.3 Continuous distributions 119
 10.3.1 Uniform (rectangular) distribution 119
 10.3.2 Normal distribution 121
 10.3.3 Lognormal distribution 122
 10.3.4 Gamma distribution and its specialisations 122
10.4 Discrete distributions 124
 10.4.1 Poisson distribution 124
 10.4.2 Binomial and Bernoulli distributions 125
 10.4.3 Pascal and geometric distributions 126
10.5 Tests 127
 10.5.1 Continuous distributions 127
 10.5.2 Discrete distributions 127
10.6 Conclusions and summary 128

PART III ORDINARY AND STOCHASTIC DIFFERENTIAL EQUATIONS

11 Numerical Solution of Initial Value Problems: Fundamentals 131
11.1 Introduction and objectives 131
11.2 A model problem 132
 11.2.1 Qualitative properties of the solution 132
11.3 Discretisation 133
11.4 Common schemes 134
11.5 Some theoretical issues 136
11.6 Fitting: Special schemes for difficult problems 137
11.7 Non-linear scalar problems and predictor–corrector methods 138
11.8 Extrapolation techniques 139
11.9 C++ design and implementation 140
11.10 Generalisations 143
11.11 Conclusions and summary 144

12 Stochastic Processes and Stochastic Differential Equations 145
12.1 Introduction and objectives 145
12.2 Random variables and random processes 145
 12.2.1 Random variables 145
 12.2.2 Generating random variables 147
 12.2.3 Random (stochastic) processes 150
12.3 An introduction to stochastic differential equations 151
12.4 Some finite difference schemes 152
 12.4.1 Improving the accuracy: Richardson extrapolation 153
12.5 Which scheme to use? 153
12.6 Systems of SDEs
12.7 Conclusions and summary

13 Two-Point Boundary Value Problems
13.1 Introduction and objectives
13.2 Description of problem
13.3 (Traditional) centred-difference schemes
 13.3.1 Does the discrete system have a solution?
 13.3.2 Extrapolation
13.4 Approximation of the boundary conditions
 13.4.1 Linearity boundary condition
13.5 Exponentially fitted schemes and convection–diffusion
13.6 Approximating the derivatives
13.7 Design issues
13.8 Conclusions and summary

14 Matrix Iterative Methods
14.1 Introduction and objectives
14.2 Iterative methods
14.3 The Jacobi method
14.4 Gauss–Seidel method
14.5 Successive overrelaxation (SOR)
14.6 Other methods
 14.6.1 The conjugate gradient method
 14.6.2 Block SOR
 14.6.3 Solving sparse systems of equations
14.7 The linear complementarity problem
14.8 Implementation
14.9 Conclusions and summary

PART IV PROGRAMMING THE BLACK–SCHOLES ENVIRONMENT

15 An Overview of Computational Finance
15.1 Introduction and objectives
15.2 The development life cycle
15.3 Partial differential equations
15.4 Numerical approximation of PDEs
15.5 The class of finite difference schemes
15.6 Special schemes for special problems
15.7 Implementation issues and the choice of programming language
15.8 Origins and application areas
15.9 Conclusions and summary

16 Finite Difference Schemes for Black–Scholes
16.1 Introduction and objectives
16.2 Model problem: The one-dimensional heat equation
16.3 The Black–Scholes equation
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4</td>
<td>Initial conditions and exotic options payoffs</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>16.4.1 Payoff functions in options modelling</td>
<td>188</td>
</tr>
<tr>
<td>16.5</td>
<td>Implementation</td>
<td>190</td>
</tr>
<tr>
<td>16.6</td>
<td>Method of lines: A whirlwind introduction</td>
<td>190</td>
</tr>
<tr>
<td>16.7</td>
<td>Conclusions and summary</td>
<td>191</td>
</tr>
<tr>
<td>17</td>
<td>Implicit Finite Difference Schemes for Black–Scholes</td>
<td>192</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction and objectives</td>
<td>192</td>
</tr>
<tr>
<td>17.2</td>
<td>Fully implicit method</td>
<td>193</td>
</tr>
<tr>
<td>17.3</td>
<td>An introduction to the Crank–Nicolson method</td>
<td>194</td>
</tr>
<tr>
<td>17.4</td>
<td>A critique of Crank–Nicolson</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>17.4.1 How are derivatives approximated?</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>17.4.2 Boundary conditions</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>17.4.3 Initial conditions</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>17.4.4 Proving stability</td>
<td>198</td>
</tr>
<tr>
<td>17.5</td>
<td>Is there hope? the Keller scheme</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>17.5.1 The advantages of the Box scheme</td>
<td>201</td>
</tr>
<tr>
<td>17.6</td>
<td>Conclusions and summary</td>
<td>202</td>
</tr>
<tr>
<td>18</td>
<td>Special Schemes for Plain and Exotic Options</td>
<td>203</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction and objectives</td>
<td>203</td>
</tr>
<tr>
<td>18.2</td>
<td>Motivating exponentially fitted schemes</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>18.2.1 A new class of robust difference schemes</td>
<td>203</td>
</tr>
<tr>
<td>18.3</td>
<td>Exponentially fitted schemes for parabolic problems</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>18.3.1 The fitted scheme in more detail: Main results</td>
<td>205</td>
</tr>
<tr>
<td>18.4</td>
<td>What happens when the volatility goes to zero?</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>18.4.1 Graceful degradation</td>
<td>208</td>
</tr>
<tr>
<td>18.5</td>
<td>Exponential fitting with explicit time</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>18.5.1 An explicit time-marching scheme</td>
<td>209</td>
</tr>
<tr>
<td>18.6</td>
<td>Exponential fitting and exotic options</td>
<td>210</td>
</tr>
<tr>
<td>18.7</td>
<td>Some final remarks</td>
<td>211</td>
</tr>
<tr>
<td>19</td>
<td>My First Finite Difference Solver</td>
<td>212</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction and objectives</td>
<td>212</td>
</tr>
<tr>
<td>19.2</td>
<td>Modelling partial differential equations in C++</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>19.2.1 Function classes in C++</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>19.2.2 Function classes for partial differential equations</td>
<td>217</td>
</tr>
<tr>
<td>19.3</td>
<td>Finite difference schemes as C++ classes, Part I</td>
<td>218</td>
</tr>
<tr>
<td>19.4</td>
<td>Finite difference schemes as C++ classes, Part II</td>
<td>219</td>
</tr>
<tr>
<td>19.5</td>
<td>Initialisation issues</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>19.5.1 Functions and parameters</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>19.5.2 The main program</td>
<td>221</td>
</tr>
<tr>
<td>19.6</td>
<td>Interfacing with Excel</td>
<td>224</td>
</tr>
<tr>
<td>19.7</td>
<td>Conclusions and summary</td>
<td>224</td>
</tr>
<tr>
<td>20</td>
<td>An Introduction to ADI and Splitting Schemes</td>
<td>225</td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction and objectives</td>
<td>225</td>
</tr>
</tbody>
</table>
20.2 A model problem 226
20.3 Motivation and history 227
20.4 Basic ADI scheme for the heat equation 228
 20.4.1 Three-dimensional heat equation 229
20.5 Basic splitting scheme for the heat equation 230
 20.5.1 Three-dimensional heat equation 231
20.6 Approximating cross-derivatives 231
20.7 Handling boundary conditions 232
20.8 Algorithms and design issues 234
20.9 Conclusions and summary 236

21 Numerical Approximation of Two-Factor Derivative Models 237
21.1 Introduction and objectives 237
21.2 Two-factor models in financial engineering 237
 21.2.1 Asian options 237
 21.2.2 Convertible bonds with random interest rates 239
 21.2.3 Options with two underlying assets 239
 21.2.4 Basket options 240
 21.2.5 Fixed-income applications 241
21.3 Finite difference approximations 241
21.4 ADI schemes for Asian options 242
 21.4.1 Upwinding 242
21.5 Splitting schemes 243
21.6 Conclusions and summary 243

PART V DESIGN PATTERNS

22 A C++ Application for Displaying Numeric Data 247
22.1 Introduction and objectives 247
22.2 Input mechanisms 248
22.3 Conversion and processing mechanisms 249
22.4 Output and display mechanisms 250
 22.4.1 Ensuring that Excel is started only once 251
22.5 Putting it all together 252
22.6 Output 252
22.7 Other functionality 252
 22.7.1 Accessing cell data 254
 22.7.2 Cell data for functions 255
 22.7.3 Using Excel with finite difference schemes 255
22.8 Using Excel and property sets 258
22.9 Extensions and the road to design patterns 259
22.10 Conclusions and summary 260

23 Object Creational Patterns 261
23.1 Introduction and objectives 261
23.2 The Singleton pattern 263
 23.2.1 The templated Singleton solution 263
23.2.2 An extended example 266
23.2.3 Applications to financial engineering 269

23.3 The Prototype pattern 270
23.3.1 The Prototype pattern: Solution 271
23.3.2 Applications to financial engineering 271

23.4 Factory Method pattern (virtual constructor) 272
23.4.1 An extended example 274

23.5 Abstract Factory pattern 275
23.5.1 The abstract factory: solution 277
23.5.2 An extended example 277

23.6 Applications to financial engineering 279

23.7 Conclusions and summary 279

24 Object Structural Patterns 281
24.1 Introduction and objectives 281
24.2 Kinds of structural relationships between classes 281
24.2.1 Aggregation 282
24.2.2 Association 283
24.2.3 Generalisation/specialisation 286
24.3 Whole–Part pattern 286
24.4 The Composite pattern 288
24.5 The Façade pattern 289
24.6 The Bridge pattern 290
24.6.1 An example of the Bridge pattern 290
24.7 Conclusions and summary 295

25 Object Behavioural Patterns 296
25.1 Introduction and objectives 296
25.2 Kinds of behavioural patterns 297
25.3 Iterator pattern 298
25.3.1 Iterating in composites 299
25.3.2 Iterating in property sets 300
25.4 The Visitor pattern 301
25.4.1 Visitors and the Extensible Markup Language (XML) 302
25.5 Notification patterns 305
25.6 Conclusions and summary 307

PART VI DESIGN AND DEPLOYMENT ISSUES

26 An Introduction to the Extensible Markup Language 311
26.1 Introduction and objectives 311
26.1.1 What’s the big deal with XML? 311
26.2 A short history of XML 312
26.3 The XML structure 312
26.3.1 XML files 312
26.3.2 XML syntax 313
26.3.3 Attributes in XML 314
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.4</td>
<td>Document Type Definition</td>
<td>315</td>
</tr>
<tr>
<td>26.4.1</td>
<td>DTD syntax</td>
<td>315</td>
</tr>
<tr>
<td>26.4.2</td>
<td>Validation issues</td>
<td>319</td>
</tr>
<tr>
<td>26.4.3</td>
<td>Limitations of DTDs</td>
<td>320</td>
</tr>
<tr>
<td>26.5</td>
<td>Extensible Stylesheet Language Transformation (XSLT)</td>
<td>320</td>
</tr>
<tr>
<td>26.5.1</td>
<td>Namespaces in XML</td>
<td>321</td>
</tr>
<tr>
<td>26.5.2</td>
<td>Main concepts in XSL</td>
<td>322</td>
</tr>
<tr>
<td>26.6</td>
<td>An application of XML: Financial products Markup Language</td>
<td>324</td>
</tr>
<tr>
<td>26.6.1</td>
<td>Product architecture overview</td>
<td>324</td>
</tr>
<tr>
<td>26.6.2</td>
<td>Example: Equity derivative options product architecture</td>
<td>326</td>
</tr>
<tr>
<td>26.7</td>
<td>Conclusions and summary</td>
<td>327</td>
</tr>
<tr>
<td>27</td>
<td>Advanced XML and Programming Interface</td>
<td>328</td>
</tr>
<tr>
<td>27.1</td>
<td>Introduction and objectives</td>
<td>328</td>
</tr>
<tr>
<td>27.2</td>
<td>XML Schema</td>
<td>328</td>
</tr>
<tr>
<td>27.2.1</td>
<td>Element declaration</td>
<td>329</td>
</tr>
<tr>
<td>27.2.2</td>
<td>User-defined simple and complex types</td>
<td>330</td>
</tr>
<tr>
<td>27.2.3</td>
<td>Multiplicity issues</td>
<td>331</td>
</tr>
<tr>
<td>27.2.4</td>
<td>An example</td>
<td>332</td>
</tr>
<tr>
<td>27.2.5</td>
<td>Comparing DTDs and the XML Schema</td>
<td>334</td>
</tr>
<tr>
<td>27.2.6</td>
<td>XML Schemas and FpML</td>
<td>334</td>
</tr>
<tr>
<td>27.3</td>
<td>Accessing XML data: The Document Object Model</td>
<td>334</td>
</tr>
<tr>
<td>27.3.1</td>
<td>DOM in a programming environment</td>
<td>335</td>
</tr>
<tr>
<td>27.4</td>
<td>DOM and C++: The essentials</td>
<td>335</td>
</tr>
<tr>
<td>27.5</td>
<td>DOM, entities and property sets</td>
<td>338</td>
</tr>
<tr>
<td>27.5.1</td>
<td>XML readers and writers</td>
<td>340</td>
</tr>
<tr>
<td>27.5.2</td>
<td>Examples and applications</td>
<td>342</td>
</tr>
<tr>
<td>27.6</td>
<td>XML structures for plain and barrier options</td>
<td>342</td>
</tr>
<tr>
<td>27.7</td>
<td>Conclusions and summary</td>
<td>345</td>
</tr>
<tr>
<td>28</td>
<td>Interfacing C++ and Excel</td>
<td>346</td>
</tr>
<tr>
<td>28.1</td>
<td>Introduction and objectives</td>
<td>346</td>
</tr>
<tr>
<td>28.2</td>
<td>Object model in Excel: An overview</td>
<td>346</td>
</tr>
<tr>
<td>28.3</td>
<td>Under the bonnet: Technical details of C++ interfacing to Excel</td>
<td>348</td>
</tr>
<tr>
<td>28.3.1</td>
<td>Startup</td>
<td>348</td>
</tr>
<tr>
<td>28.3.2</td>
<td>Creating charts and cell values</td>
<td>349</td>
</tr>
<tr>
<td>28.3.3</td>
<td>Interoperability with the SimplePropertySet</td>
<td>350</td>
</tr>
<tr>
<td>28.4</td>
<td>Implementing the core process</td>
<td>351</td>
</tr>
<tr>
<td>28.4.1</td>
<td>Registration: Getting basic input</td>
<td>352</td>
</tr>
<tr>
<td>28.4.2</td>
<td>Calculations</td>
<td>352</td>
</tr>
<tr>
<td>28.4.3</td>
<td>Displaying the results of the calculations</td>
<td>353</td>
</tr>
<tr>
<td>28.4.4</td>
<td>The application (main program)</td>
<td>354</td>
</tr>
<tr>
<td>28.5</td>
<td>Extensions</td>
<td>354</td>
</tr>
<tr>
<td>28.6</td>
<td>Application areas</td>
<td>355</td>
</tr>
<tr>
<td>28.7</td>
<td>Conclusions and summary</td>
<td>355</td>
</tr>
</tbody>
</table>
29 Advanced Excel Interfacing 356
29.1 Introduction and objectives 356
29.2 Status report and new requirements 356
29.3 A gentle introduction to Excel add-ins 357
 29.3.1 What kinds of add-ins are there? 357
29.4 Automation add-in in detail 359
 29.4.1 Functions with two parameters 362
 29.4.2 Functions that accept a range 364
 29.4.3 Using the Vector template class 366
29.5 Creating a COM add-in 367
29.6 Future trends 373
29.7 Conclusions and summary 373

30 An Extended Application: Option Strategies and Portfolios 374
30.1 Introduction and objectives 374
30.2 Spreads 374
30.3 Combinations: Straddles and strangles 375
30.4 Designing and implementing spreads 376
30.5 Delta hedging 378
30.6 An example 379
30.7 Tips and guidelines 381

Appendices
 A1 My C++ refresher 383
 A2 Dates and other temporal types 394

References 397

Index 401